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ABSTRACT
With greater pressures of providing high-quality care at lower
cost due to a changing financial and policy environment, the
ability to understand variations in care delivery and associ-
ated outcomes and act upon this understanding is of critical
importance. Building on prior work in visualizing health-
care event sequences and in collaboration with our clinical
partner, we describe our process in developing a multiple,
coordinated visualization system that helps identify and an-
alyze care processes and their conformance to existing care
guidelines. We demonstrate our system using data of 5,784
pediatric emergency department visits over a 13-month pe-
riod for which asthma was the primary diagnosis.

CCS Concepts
•Human-centered computing→Visual analytics; In-
formation visualization; Visualization systems and
tools; •Social and professional topics→Personal health
records; •Applied computing → Health informatics;

Keywords
Visual analytics, information visualization, health informat-
ics, visual process mining, conformance, pediatric emergency
medicine

1. INTRODUCTION
Visualizing healthcare event sequences derived from clini-

cal and administrative claims data has been a topic of grow-
ing interest to information visualization researchers [20, 6].
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Conceptualizing sequential healthcare activities as“careflow”
has become widespread in visualization research [14] and
healthcare systems engineering research [12]. A key motiva-
tion behind this body of research is to understand how care
is delivered to an individual or a group of patients, with the
aim to identify common care delivery patterns, bottlenecks,
and best practices [4]. With greater pressures of providing
high-quality care at lower cost due to a changing financial
and policy environments, the ability to understand varia-
tions in care and associated outcomes and act upon this
understanding is of critical importance [21].

[18] provide a comprehensive overview to different interac-
tive information visualization approaches for exploring and
querying electronic health records of individual as well as
collection of patients. Exemplary visualization systems at
the individual patient level include LifeLines [16], KHOSH-
PAD [7], and Midgaard [2]; at the cohort level examples
include Lifelines2 [22], Similan [25], LifeFlow [24], Outflow
[23], and VisCareTrails [11]. However, there are still many
open challenges in visualizing time-oriented healthcare data,
including the scalable analysis of patient cohorts and varia-
tions in care [1]. Recently, visual analytics approach is being
actively applied to comparison between actual care process
and guideline care process for a single patient [5] or a patient
cohort [8].

Our research builds on and integrates many different as-
pects of prior and focuses on the design and development
of a multiple coordinated visualization system that helps
identify and analyze variation of care processes and their
conformance to existing care guidelines. Our use context
is pediatric asthma care in emergency departments. This
paper describes our journey in designing and implementing
our system in collaboration with our clinical partner. We
conclude with implications and next steps.

2. DATA
Our dataset includes all pediatric ED visits over a 13-

month period for which asthma was the primary diagno-
sis. For each of these 5,784 visits we obtained informa-
tion regarding administrative events, clinical respiratory test



Table 1: Descriptive Summary of Patient Population
Data (n=5,784)

Gender Male 3575 (61.8%)
Female 2209 (38.2%)

Age 0-18 months 562 (9.7%)
18-36 months 1048 (18.1%)
3-6 years 1682 (29.1%)
>6 years 2492 (43.1%)

Acuity ESI 1 3 (0.1%)
ESI 2 1516 (26.2%)
ESI 3 2913 (50.4%)
ESI 4 1283 (22.2%)
ESI 5 62 (1.1%)
Unknown 7 (0.1%)

Disposition Discharge 3,995 (69.1%)
Admit to Ward 1,598 (27.6%)
Admit to ICU 140 (2.4%)
Admit to OR 47 (0.8%)
Transfer 4 (0.1%)

events, laboratory test events and medication administra-
tion events with their date/timestamps. We also received
detailed demographic, charge, and provider-related infor-
mation for each visit. A summary of the data is provided
in Table 1. For this study we focused only on the visual-
ization of laboratory and medication-related events for pa-
tients grouped based on laboratory tests or medications. We
ignored administrative events since they are performed for
almost all patients. The data was received as comma sep-
arated value (csv) files split into several tables as a rela-
tional database. The visit.csv file contained 5,785 visit ob-
servations and had 143 attributes, including demographic
information and administrative timestamps. The medica-
tions.csv and labresult.csv files contained information re-
garding medication and lab-related date/timestamps, respec-
tively.

3. DESIGN REQUIREMENTS
We conducted in-depth field studies and interviews with

seven clinicians, health informaticians, and care quality im-
provements managers with significant work experience to
derive design requirements for a care process visualization
tool. All participants had significant decision support expe-
rience and basic knowledge of data visualization techniques.
Cumulatively, this group of practitioners provided a signif-
icant level of expertise needed to inform the design of our
system. The results of our field study led to the identifica-
tion of a number of core requirements that drove our system
development.

• Provide a performance summary. All participants
emphasized the need for a single page summary dash-
board of key performance metrics. One clinician noted
that “this summary should help provide an overview to
everything that matters about that patient population.”

• Enable interactive specification of a patient pop-
ulation. Three participants suggested that the abil-
ity to specify a patient population based on clinical
and demographic characteristics for analysis was im-
portant. They also suggested that it would be good

to save these customized patient populations for sub-
sequent analysis.

• Provide multiple, coordinated visualizations. Five
of the participants encouraged us to develop multiple,
coordinated visualizations that provided complemen-
tary insights into the same underlying dataset. As one
quality improvement manager commented“it is impor-
tant to see the data from different perspectives to gain
triangulated insights.”

• Enable comparisons between patient popula-
tions. Six participants encouraged us to develop vi-
sualizations that would compare the care processes of
patient populations.

• Provide data in table view. Interestingly, despite
the perceived value of visualizations, all participants
also wanted to see the raw data in a sortable table for-
mat, partly because they were compatible with spread-
sheets formats.

4. SYSTEM
Based on this user and task analysis, we developed a

web-based visualization system that enabled clinicians and
quality managers to explore care processes and their con-
formance to guidelines. The initial version of the system
provided a single graph-based visualization using a semantic
substrate approach [3]. While most users felt the visualiza-
tion was intuitive and user-friendly, it lacked the ability to
deeply analyze and compare care processes of patient popu-
lations because it focused on visualizing individual careflows
and comparing two careflows from separate two individuals
[10]. We thus decided to fundamentally redesign our system
incorporating the knowledge we gained building and evalu-
ating the first version.

The system interface (see Figure 1) is divided into two
regions. At the top is the navigation bar that allows the
clinicians to switch between visualizations and access the
performance summary page. A menu icon at the top left
allows a user to see, on-demand, what patient population
has been selected and what filters have been applied. The
bottom frame is dedicated to the display of visualizations.
Within each visualizations, there are tabs that allow switch-
ing between subvisualizations.

4.1 Visualizations and Interactions

4.1.1 Summary Charts and Tables
The summary chart page provides three patient cohort

descriptors and interactive histograms to represent the dis-
tribution of six key performance variables (see Figure 1).
The patient cohort descriptors include the total number of
patients, the number of providers for these patients, and
an overall disposition index. The key performance variables
include acuity, change in CRS (clinical respiratory score),
disposition (Admit, Discharge, ICU (intensive care unit),
OR (operating room), Transfer), the length of stay (in min-
utes), number of medication/lab activities, and total charges
($). We used cross-filters to enable users to brush over one
chart and see the corresponding changes appear in the other
performance charts (see Figure 2).



Figure 1: System interface and dashboard of six key performance metrics for the selected cohort. In this
example, we are summarizing performance metrics for a cohort of 5,778 patients, who were seen by 130
unique providers, and has a disposition index of 32. At the top is the navigation bar that allows users to
click to a different visualization or switch to the cohort comparison mode.

Figure 2: Screenshot showing cross filter applied to the patient population.



Figure 3: Two cohort comparison.

The main dashboard affords to show comparison between
two selected cohorts. Figure 3 demonstrates a concrete ex-
ample of such comparison between patients with beginning
CRS>3 (Cohort A; blue) and patients with beginning CRS<3
(Cohort B; orange). Clinically speaking, Cohort A is sicker
than Cohort B. We use blue and orange colors to distinguish
between the two cohorts. Six visualizations of key metrics
show stacked charts. Inspection of the six panels of stacked
charts already validates some intuitions and provides addi-
tional insights about the selected cohorts. The acuity level
of Cohort A is actually lower than that of Cohort B, which
is counter-intuitive and potentially revealing fundamental
differences between acuity and CRS measures. Cohort A
experiences larger drop in CRS than Cohort B as there is
little room for improving CRS for patients in Cohort B. The
discharge-to-admission ratio is much higher for Cohort B,
while the length of stay per ED visit episode is much longer
for Cohort A. Patients in Cohort B receive less medications
and lab tests, thus are billed less amount of total charges.

The table view in Figure 4 complements the summary
charts by providing in-depth inspection into the data on
three different levels of aggregation. At the patient level,
users are able to browse individual patients and their clin-
ical conditions and charges. The provider-level summary
table shown in Figure 4 provides performance summary of
each care provider. In this view, the average of three key
performance metrics are displayed: the change in CRS, to-
tal charges, and the disposition types. Lastly, the activity
summary table lists averages of the metrics computed per
activity. Search box on the top right allows for quick iden-
tification of the data points of interest.

4.1.2 Treemap
The treemap representation captures the hierarchical dis-

tribution of medications and laboratory tests (see Figure 5).
The treemap is zoomable and provides breadcrumb informa-
tion to allow users to navigate back quickly. Cells can be
sized and color-encoded by different variables. These vari-
ables include the number of occurrences of the activity, the
number of patients, the average charge, the average change
in clinical respiratory scores, and the average acuity level.
Cell color scales are chosen corresponding to the scale of the
selected variable.

Figure 4: Provider-level performance summary.

Figure 5: Activity treemap.

4.1.3 Scatterplot
The scatterplot allows users to specify two variables of

interest and plot the associated data points in x-y space (see
Figure 6). Users can select two variables using the dropdown
menus at the top. Given the possible data density for some
patient populations, we provide users the ability to zoom
and pan across the data. Data points are color-encoded
using the corresponding cohort color. In this case, we select
the number of activities as x-axis and the length of stay as y-
axis. We clearly see an overall positive correlation with some
variations between the two variables as expected. We also
observe a few outliers that may warrant further case-by-case
examination to gain insights for process improvement.

4.1.4 Sankey Diagram

Figure 6: Scatterplot of two selected variables.



The Sankey diagrams are suited to display flows between
interconnected networked processes [17, 19]. Figure 7 shows
the Sankey diagram of frequent care subprocesses computed
by the PrefixSpan algorithm [13]. The algorithm takes in the
threshold value as a parameter. Subprocesses experienced
by at least a certain portion of the patients in a cohort are
returned by the algorithm as frequent subprocesses. The
level of abstraction and granularity is another input dimen-
sion in our Sankey diagram. In the case shown in Figure 7,
we use 5% of the cohort as the threshold and treat activities
in the same activity group as one object. Our implemen-
tation of the Sankey diagram takes into account only the
order of the subprocesses not continuous time interval be-
tween activities, which is shown in the regularly placed and
vertically aligned nodes in the figure.

When two cohorts—Cohort A (CRS>3) and Cohort B
(CRS<3)—are selected as in Figure 7, we extract frequent
subsequences for four distinct groups: (1) only in Cohort A,
(2) only in Cohort B, (3) both in Cohort A and B, and (4)
exclusively in Cohort A and B. Overall, clinicians are inter-
ested in learning which subprocesses are associated with a
certain cohort of patients. Groups 1 and 2 are straightfor-
ward to understand. Using the set notation, those subpro-
cesses are from A \ B and B \ A. Group 3 represents the
intersection between the two cohorts, i.e., A ∩ B. Lastly,
Group 4 means the union of exclusive subprocesses, i.e.,
(A \B) ∪ (B \A).

The extracted frequent subprocesses are merged into a
Sankey diagram as shown in the figure in [15]. A typical
Sankey diagram consists of multiple layers placed horizon-
tally. Layers represent the order of activities in each frequent
subprocess. Blocks (or rectangles) in each layer represent
care activities. Blue and red blocks correspond to activity
types: medication and lab test result, respectively. Green
blocks denote concurrently occurring activities. Block size
is proportional to the number of patients who go through
the care activity and each flow is also scaled by the num-
ber of patients following a certain path. Hovering over a
block or a flow triggers a pop-up box displaying the detailed
information about the item.

Each care activity is assigned a unique identifying number
such as 8004, 8062, or 19. For example, activity 8004 (medi-
cations classified as Albuterol) is the most frequent starting
point among the frequent care subprocesses. Major portions
of the patients who receive activity 8004 keep receiving 8004
followed by another 8004 or receive 19 or 8081. As such, the
Sankey diagram is useful to quickly identify major flow ele-
ments in complex interconnected patterns.

4.1.5 Conformance Flowchart
Conformance computation requires a preset pathway guide-

line for care process developed based on the actual clinical
practice. The Children’s Healthcare of Atlanta (CHOA) de-
veloped such a pathway guideline based on a few clinical
severity measures. The CRS is the main factor that pre-
scribes which type of care process a patient must receive.
We convert the original pathway guideline into a decision
tree. Diamond boxes denote branch nodes based on certain
criteria. White rectangular boxes check whether a certain
medication or lab test is given to patients. Gray rectangular
boxes are terminal nodes where final compliance scores are
computed. For each patient, we compute compliance score
as the number of conforming activities divided by the to-

tal number of activities. Alternatively, the compliance score
can be defined simply as the ratio of patients who receive
the care strictly following the pathway guideline to the total
number of patients. We implement zooming and panning
functionalities into the conformance flowchart so as to pos-
sibly accommodate large guideline flowchart.

To illustrate, the first diamond box divides patients by
their age. Those with age less than 18 months are not
the targets of the pathway guideline and are thus excluded
from compliance score computation. Next, depending on
the first CRS measurement, patients receive different sets
of medications and treatments. In our particular case, re-
quired medications are additive from low to high severity.
The lowest bracket (CRS 0-2) should receive only albuterol;
the next lowest bracket (CRS 3-5) should receive albuterol
and dexamethasone; the second highest bracket (CRS 6-8)
should receive albuterol, dexamethasone, and ipratropium;
the most severe group should receive all three medications
and magnesium sulfate. These types of conformance checks
based on CRS repeats up to three times. Patients receiving
non-conforming medications or lab tests are collected at one
of the intermediate gray rectangular boxes.

4.2 System Usage
One of the key design considerations of our revised tool

was to keep the overall workflow simple. A user begins by
selecting one of three options to start the analysis: cre-
ate/modify a patient cohort, analyze a patient cohort, or
compare a patient cohort.

4.2.1 Creating and Modifying Patient Cohorts
Users frequently want to analyze a specific group of pa-

tients. To facilitate this, we provide an interactive visual
functionality to create and modify patient cohorts based on
demographic (age, gender), process (length of stay, num-
ber activities), clinical (acuity, initial CRS), health outcome
(change in CRS, total charge, disposition), and financial
payment characteristics (payor, financial class). By using
small cross-linked, range-selectable charts to depict the dis-
tribution of each of these characteristics, a user is able to
dynamically observe how the patient population changes fol-
lowing certain selections and hone in on a population of in-
terest. After a desired patient group is selected, users can
save it for future use. A sortable list of all patient cohorts,
including their name and brief description, is provided for
quick access or modification. Our implementation of cohort
selection mechanism focuses on using traditional visual el-
ements such as histogram in order for clinicians to quickly
comprehend cohort characteristics. There is a recent study
that focuses on visualizing filtering logic and process employ-
ing advanced visual elements such as bar charts embedded
in a treemap [9].

4.2.2 Analyzing Care Processes of a Patient Cohort
A user selects either a predefined/created cohort from a

dropdown menu in the navigation bar. The entry in the
dropdown menu includes the cohort name and the number
of patients in the cohort in parenthesis (e.g. Female with
Acuity >2 (1,083)). The user first sees the summary page
for an overall performance overview and can navigate to the
other visualizations using the navigation bar at the top.

4.2.3 Comparing Care Processes of Patient Cohorts



Figure 7: Sankey diagram of frequent subprocesses.

Figure 8: Conformance evaluation flowchart.



Similar to the analysis of a single patient cohort, a user se-
lects two patient groups from two dropdown menus. The two
patient groups and the corresponding data points in all visu-
alizations are color-differentiated (Cohort 1: blue; Cohort 2:
orange). We explored different ways of encoding the data,
but color-differentiation resulted in the best usability and ef-
fectiveness following an informal evaluation. In the treemap
view, we provide one treemap for each cohort. We consid-
ered many different ways to either integrate data into a sin-
gle treemap, but it proved to be less effective. We also con-
sidered placing treemaps side-by-side, but due to space con-
straints and desire to maintain appropriate representation
rations, we ultimately decided to “stack” the two treemaps.
Each treemap is zoomable and cell size and color can be cho-
sen from a dropdown menu. Hovering over each cell provides
details about that activity, including number of times it was
performed on number of patients. In the scatterplot, we in-
tegrate the different patient cohort data points into a single
chart. Moreover, in addition to using different colors, we
also used different shapes to encode the two groups. Patient
cohort 1 thus was encoded using blue, round markers, while
cohort 2 was encoded using orange, diamond markers. We
explored different visual encodings (size, shape), but these
proved to be most effective. Given that data points could
overlap, we applied some transparency to each marker. A
bit more involved was the visualization design of two patient
cohort careflows using Sankey diagrams. We contemplated
many different designs, including the integration of two pa-
tient cohorts into one Sankey diagram. This however made
the diagrams virtually unreadable and very cluttered. Fol-
lowing deep discussions with our clinical partners, we opted
to use a tabbed approach for denoting different careflows.
The tabs correspond to the cohorts as follows: Cohort1, Co-
hort2, careflows present in both Cohort1 and Cohort2, and
careflows present in both Cohort1 and Cohort2 with a differ-
ence factor. By providing these options, we allowed users to
deeply explore which careflows were unique in each cohort,
where they overlapped, and which were most common.

5. PRELIMINARY RESULTS
A meticulous user study for the target user group is nec-

essary for a visual analytics system because lack of vali-
dation with real users makes it hard to estimate the real
value of such systems. We are planning to conduct a for-
mal, broad value-based evaluation of our system with clini-
cians and care quality managers. The objective is to assess
whether the system provides novel insights, supports routine
tasks, and enables confidence in the underlying data. We are
also planning to examine the scalability of our system using
an expanded pediatric emergency department dataset from
broader patient population as well as other hospitals.

Preliminary results and evaluation with our clinical col-
laborators, however, suggest that out multiple coordinated
process visualizations provide important insights into the
underlying pediatric asthma care processes in the ED. The
new simplified user interface with the navigation bar at the
top (rather than at the side) and cross-linked performance
charts struck a nice response with the participants. Prac-
titioners particularly liked the ability to see the variation
in care processes and their corresponding mapping to the
guidelines. However, it was also clear from the response that
clinicians also wanted the ability to perform deep queries
along with general descriptive analytics, including the ability

to explore questions such as “given a specific activity what
are all possible prior process paths that could have lead to
it?” This suggests the need for visual query based system.
We aim to incorporate some of these more advanced features
into future versions of our system. Particularly regarding the
conformance flowchart, we plan to implement multiple views
for different stakeholders in the care processes including not
only patients and clinicians but also hospital administrators
because they may have different perspectives on defining
what good outcome is. Lastly, we plan to enhance semantic
zooming functionalities in order for the system to be able to
handle a larger patient data set than the current one.
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