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Scalable tools to make sense of
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Current Research Thrusts

Why focus on them?
How are they related?



Al now used in safety-critical applications.
Important to study threats & countermeasures.
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The self-driving Uber
3 was traveling north at
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How a Self Drlvmg Uber

Killed a Pedestrian in Arizona



Al Security Problems Are Everywhere

¥ Tue TOASTER HAS BEEN HACKED
INTO THINKING (TS A BLENDER, "

Smart toaster does exist!



Al Security is becoming
Increasingly important
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How do we know if a defense for Al is working?




Al models often used as black-box




Interpretable .
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Interpretable

Via scalable, interactive, usable interfaces to help
people understand complex, large-scale ML systems.
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ShapeShifter First attack fooling object detectors
SHIELD & Adagio Real-time defense

Interpretable Al

Summit scalable interpretation for deep learning

GAN Lab & CNN EXxplainer interactive learning

Surveys Al guidelines, visual analytics for deep learning



. First Targeted Physical
S h d peS h |fte I Adversarial Attack

ECML-PKDD 2018 for Object Detection
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Challenges of Physically Attacking Faster R-CNN

1. Multiple region proposals 2. Distances, angles, lightings
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Our Solution: Fool Multiple Region Proposals

Minimize: sum of classification losses + deviation loss

Only perturb RED area
Human eye is less sensitive
to changes in darker color




Our Solution: Robust to Real-World Distortions

Adapt Expectation over Transformation [Athalye et al, ICML’18]

Optimize over different backgrounds, scales, rotations, lightings



Untargeted Attack

stop sign: 98%
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ShapeShifter Motivates
DARPA Program GARD (Defense for Al)

@ State of the art: few physical attacks

Graffiti:
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-
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(Evtimov et al., UC Berkeley, 2017)

Patch:
_ A,

L[

(Brown et al., Google, 2017)

3D Printed Objects:

Fooling Deep Neural Networks
with

Physical Attacks

Security and Privacy Research, Intel Labs
Shang-tse Chen | Cory Cornelius | Jason Martin

(Intel / GTECH 2018)

« All physical attacks to date are White Box
* No current consideration of resource constraints

https://www.darpa.mil/attachments/GARD_ProposersDay.pdf

Highlights ShapeShifter
as the state-of-the-art
physical attack



S H I E LD Fast, Practical Defense
for Image Classification
Y KDD’18 Audience Appreciation Award (runner-up)
KDD’19 LEMINCS [Open-sourced|
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Adversarial Machine Learning Landscape

Defense

Our Focus:
Fast & Practical
(digital)




& SHIELD

Secure Heterogeneous Image
Ensemble with Localized Denoising

| Correctly
Classified

"Chain Mail" _ s,
(Attacked) .

Real-time Vaccinated
Fbisiadliioat Compression Deep Neural Ptidiallitont
Labrador Preprocessing Network Ensemble Correctly

Retriever Classified



SHIELD leverages JPEG compression

JPEQ Quality 80

JPEQ Quality 60 | /%

JPEQ Quality 40 | 4.

SHIELD's 5LC) applies JPEG compression
of a random quality to each
8 x 8 block of the image

* larger blocks shown for presentation

JPEQ Quality 20 ‘ .




Defense Runtime Comparison
(in seconds; shorter is better)
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L 2049
Total Variation ,, ppye

Denoising ;, gem
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tested on 50,000 images from the ImageNet validation set



IPKDD18]

Interactive Experimentation with
.I||'II|' ADAG I O Adversarial Attack & Defense for Audio

ADAGIO Adversarial Defense for Audio in a Gadget with Interactive Operations

@: Upload your own audio sample ¥ | TPV S . e '
X Perform audio adversarial atack | ......ooo S50 o e e
# Apply compression to defend ==

J Play audio, listen for differences | == o= o2 “Wt

ADAGIO = Attack & Defense for Audio in a Gadget with Interactive Operations



ADAGIO



https://mlsploit.github.io P~ Joint work with (inter)
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SUMMIT IEEE VIS 2019

Scalably summarize and interactively visualize
neural network feature representations
for millions of images

white wolf



SUMMIT

Scalably summarize and interactively visualize
neural network feature representations
for millions of images
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MODEL DATASET CLASSES INSTANCES
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|IEEE VIS 2020

Bluff understand how neural networks misclassify GIANT PANDA ~ into ARMADILLO + when attacked
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GAN Lab

Understanding Complex Deep Generative Models
using Interactive Visual Experimentation

?
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Generative Adversarial Networks (GANS)

“the most interesting idea in the last 10 years in ML”
- Yann LeCun
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Face images generated bBEGAN [Berthelot et al., 2017] 32



Why GANSs are hard?

A GAN uses two competing neural networks

Generator Discriminator
synthesizes outputs spots fake

Counterfeiter Police
makes fake bills spots fake bills

33



|IEEE VIS 2019

GAN Lab is Live! Try at bit.ly/gan-lab

@ 1.9K Likes 11800+ Retweets 30K visitors, 135 countries
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|IEEE VIS 2020

CNN Explainer also went viral! Try at bit.ly/cnn-explainer
5.3K GitHub Stars ' 700 lees 36K visitors, 151 countries
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A Comparative Analysis of An Interrogative Survey for the Next Frontiers
Industry Human-Al Interaction Guidelines Visual Analytics in Deep Learning

WHY WHAT WHEN

Guidelines for Human-Al Interaction Why would one want to use What data, features, and relationships When in the deep learning
visualization in deep learning? in deep learning can be visualized? process is visualization used?
Interpre ility & Explainabilit Computational Graph & Network Architecture During Training
Debugging & Improving Models Learned Model Parameters \fter Training
( aring & Selecting Models dividual Computational Units
ching Deep Learning Concepts Neurons | gh-dimensional Space
Aggregated Information

People +Al
Guidebook

7 WHERE

Who would use and benefit How can we visualize deep learning Where has deep learning

from visualizing deep learning? data, features, and relationships? visualization been used?
Model Developers & Builders ] ( A ition Domains & Models

ant Research Community
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TREX Workshop @ IEEE VIS 2020
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