
The blue and green colors are actually the same



http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/



Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Why do we get different, distance-dependent 
interpretations of hybrid images?

?

Slide: Hoiem







• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen 

Important filter: Gaussian



Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

• Remove “high-frequency” components from the image (low-
pass filter)
– Images become more smooth

• Convolution with self is another Gaussian
– So can smooth with small-width kernel, repeat, and get same result 

as larger-width kernel would have

– Convolving two times with Gaussian kernel of width σ is same as 
convolving once with kernel of width  σ√2 

• Separable kernel
– Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Source: D. Lowe



Separability example

*

*

=

=

2D convolution

(center location only)

Source: K. Grauman

The filter factors

into a product of 1D

filters:

Perform convolution

along rows:

Followed by convolution

along the remaining column:



Separability

• Why is separability useful in practice?



Some practical matters



How big should the filter be?
• Values at edges should be near zero

• Rule of thumb for Gaussian: set filter half-width to 
about 3 σ

Practical matters



Practical matters

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner



Recap of Filtering

• Linear filtering is dot product at 
each position

– Not a matrix multiplication

– Can smooth, sharpen, translate 
(among many other uses)

• Be aware of details for filter size, 
extrapolation, cropping

111

111

111
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Median filters

• A Median Filter operates over a window by 
selecting the median intensity in the window.

• What advantage does a median filter have over 
a mean filter?

• Is a median filter a kind of convolution?

Slide by Steve Seitz
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Comparison: salt and pepper noise

Slide by Steve Seitz



Review: questions

1. Write down a 3x3 filter that returns a positive value if the 
average value of the 4-adjacent neighbors is less than the 
center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-
direction:

 gradx(y,x) = im(y,x+1)-im(y,x) for each x, y

 

Slide: Hoiem



Review: questions

3.  Fill in the blanks:
a) _ = D * B 

b) A = _ * _

c) F = D * _

d) _ = D * D

A

B

C

D

E

F

G

H I

Filtering Operator

Slide: Hoiem



Thinking in Frequency

Slides: Hoiem, Efros, and others



This lecture

• Fourier transform and frequency domain

– Frequency view of filtering

• Reminder: Read your textbook

– Today’s lecture covers material in 3.4

Slide: Hoiem



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter



Why does a lower resolution image still make 
sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem

http://www.flickr.com/photos/igorms/136916757/


Thinking in terms of frequency



Background: Change of Basis



Background: Change of Basis

For vectors and for image patches



How is it that a 4MP image can be compressed 
to a few hundred KB without a noticeable 
change?

Related concept: Image Compression



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

https://en.wikipedia.org/wiki/JPEG



Using DCT in JPEG 

• The first coefficient B(0,0) is the DC component, the average 
intensity

• The top-left coeffs represent low frequencies, the bottom right 
– high frequencies



8x8 image patch

DCT bases

Patch representation after 

projecting on to DCT bases

Lossy Image Compression (JPEG)



Image compression using DCT

• Quantize 
– More coarsely for high frequencies (which also tend to have smaller values)

– Many quantized high frequency values will be zero

• Encode
– Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2

– People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize

• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
 Any univariate function can be 

rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

– Not translated into 
English until 1878!

•  But it’s (mostly) true!
– called Fourier Series

– there are some subtle 
restrictions

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre



How would math 

have changed if the 

Slanket or Snuggie 

had been invented?



A sum of sines

Our building block:

 

Add enough of them to get 
any signal g(x) you want!

)+xAsin(



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Slides: Efros



Frequency Spectra



= +

= 

Frequency Spectra



= +

= 

Frequency Spectra



= +

= 

Frequency Spectra



= +

= 

Frequency Spectra



= +

= 

Frequency Spectra



= 
1

1
sin(2 )

k

A kt
k




=



Frequency Spectra



Example: Music

• We think of music in terms of frequencies at different 
magnitudes

Slide: Hoiem



Other signals

• We can also think of all kinds of other signals the same way

xkcd.com



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Fourier Transform

• Fourier transform stores the magnitude and phase at each frequency
– Magnitude encodes how much signal there is at a particular frequency

– Phase encodes spatial information (indirectly)

– For mathematical convenience, this is often notated in terms of real and complex numbers

22 )()(  IRA +=
)(

)(
tan 1






R

I−=Amplitude: Phase:



Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 20 meters becomes the portrait 

of Abraham Lincoln”, 1976







Fourier Bases

This change of basis is the Fourier Transform

Teases away fast vs. slow changes in the image.



Fourier Bases



This looks a lot like DCT in JPEG compression

8x8 image patch

DCT bases

Patch representation after 

projecting on to DCT bases



Man-made Scene



Can change spectrum, then reconstruct



Low and High Pass filtering



Computing the Fourier Transform

Continuous

Discrete

k = -N/2..N/2

Fast Fourier Transform (FFT): NlogN



The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =

]]F[][F[F* 1 hghg −=



Filtering in spatial domain
-101

-202

-101

* =



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Slide: Hoiem



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Gaussian



Box Filter



Is convolution invertible?

• If convolution is just multiplication in the Fourier domain, isn’t 
deconvolution just division?

• Sometimes, it clearly is invertible (e.g. a convolution with an 
identity filter)

• In one case, it clearly isn’t invertible (e.g. convolution with an 
all zero filter)

• What about for common filters like a Gaussian?



But you can’t invert multiplication by 0

• But it’s not quite zero, is it…



Let’s experiment on Novak



Convolution

* =

FFT FFT

.* =

iFFT



Deconvolution?

iFFT FFT

./=

FFT



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .000001 magnitude



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .0001 magnitude



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .001 magnitude



With a random filter…

iFFT FFT

./=

FFT

Random noise, .001 magnitude



Deconvolution is hard

• Active research area.

• Even if you know the filter (non-blind deconvolution), it is still 
very hard and requires strong regularization.

• If you don’t know the filter (blind deconvolution) it is harder 
still. 



Blind Deconvolution Example

Edge-based Blur Kernel Estimation Using Patch Priors.

Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

IEEE International Conference on  Computational Photography 2013.



Edge-based Blur Kernel Estimation Using Patch Priors.

Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

IEEE International Conference on  Computational Photography 2013.
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