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Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



Fitting and Alignment: Methods

* Global optimization / Search for parameters
—Leastsguarestit
—Robustleastsguares
—Otherparametersearch-methods
+Hypethesizeand-test
—Hough-transform
— RANSAC

* |terative Closest Points (ICP)



Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid



Review: Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Given a set of poinfts, find the curve or line that
explains the data points best

o

Hough space

y=mx+Db

Slide from S. Savarese



Review: Hough transform

Slide from S. Savarese
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Hough Transform

e How would we find circlese
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation




Hough franstorm for circles

e Conceptually equivalent procedure: for each (x,y.r),
draw the corresponding circle in the image and
compute its “support”
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Is this more or less efficient than voting with features?



Hough transform for circles

« Circle: center (a,b) and radius r Equation of circle?
(x;—a)*+(y;—b)* =r"

circles that all pass
A b A through a point?
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Image space Hough space d

Adapted by Devi Parikh from: Kristen Grauman
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Hough transform for circles

« Circle: center (a,b) and radius r
(x,—a)’ +(y,—b)* =r?

 For a fixed radius r

: Intersection:

: most votes for
: center occur

: here.
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Kristen Grauman
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Hough transform for circles

« Circle: center (a,b) and radius r
(x,—a)’ +(y,—b)* =r?

 For an unknown radius r
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Image space Hough space

Kristen Grauman
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Hough transform for circles

« Circle: center (a,b) and radius r

(%, —2)2 +(y, ~b)* =r?

 For an unknown radius r

A r
¥
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\ X ;
O \ \/ b
(%,
0 X""‘ 3
Image Space ¢ Hough Space

Kristen Grauman
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Hough transform for circles

« Circle: center (a,b) and radius r
(X —a)*+(y,—h)* =r’
* For an unknown radius r, known gradient direction
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Image space Hough space

Kristen Grauman
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Hough transform for circles

For every edge pixel (X,y) :
For each possible radius value r:
For each possible gradient direction 6:

a=X-—rcos(6)
b=y +rsin(6)
H[a,b,r] +=1
end
end

* Check out online demo : http://www.markschulze.net/java/hough/

Kristen Grauman
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http://www.markschulze.net/java/hough/

Example: detecting circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).
21

Slide credit: Kristen Grauman



Example: detecting circles with Hough

Comb@eadin@tections Edges Votes: Quarter

Slide credit: Kristen Grauman Coin finding sample images from: Vivek Kwatra
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Fitting and Alignment: Methods

* Global optimization / Search for parameters
—Leastsguarestit
—Robustleastsguares

—Otherparametersearch-methods
* Hypothesize and test

—Hough-transform
— RANSAC

* |terative Closest Points (ICP)



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

* Number of samples N

— Choose N so that, with probability p, at least one random sample is free

from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose ¢ so that a good point with noise is likely (e.g., prob=0.95) within threshold

N =log(l—p)/ |09(1—(1—e)s)

proportion of outliers e

S 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 / 11 17

3 3 4 / 9 11 19 35

4 3 S 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 / 16 24 37 97 293

/ 4 8 20 33 54 163 588

8 S 9 26 44 /8 272 1177
For P= 0.99 modified from M. Pollefeys



RANSAC conclusions
Good

e Robust to outliers

* Applicable for larger number of model parameters than
Hough transform

* Optimization parameters are easier to choose than Hough
transform

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)



How do we fit the best alighment?

d \m‘
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Alignment

* Alignment: find parameters of model that maps
one set of points to another

e Typically want to solve for a global transformation
that accounts for *most™ true correspondences

e Difficulties
— Noise (typically 1-3 pixels)
— QOutliers (often 50%)
— Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate-changing machine:
p'=T(p)

What does it mean that T is global and parametric?
— Global: Is the same for any point p
— Parametric: can be described by just a few numbers

We’re going to focus on linear transformations, we can represent T as
a matrix multiplication



Common transformations

4 \‘k‘ = "‘“\*“" o
original

Transformed

rotation

perspective



Scaling

Scaling a coordinate means multiplying each of its components by a

scalar

Uniform scaling means this scalar is the same for all components:

X 2

N




Scaling

* Non-uniform scaling: different scalars per component:

X x 2,
Y x 0.5




Scaling

* Scaling operation: X'= ax
y'=Dy
* Or,in matrix form: - _ _
X a O
y'| |0 b
a_l

scaling matrix S




2-D Rotation (around the origin)

o (X, Y)

(X, y)

oy




2-D Rotation

This is easy to capture in matrix form:
x| [cos(@) —sin(@)] x
y'| |sin(@) cos(@) |y

.

Y
R

Even though sin(0) and cos(0) are nonlinear functions of 6,
— For a particular 0, x’ is a linear combination of x and y
— For a particular 0, y’ is a linear combination of x and y

What is the inverse transformation?
— Rotation by —0
— For rotation matrices R_l = RT



Basic 2D transformations

X'| |cos® —sin® | X x"| (1 0 1
y'| [sin® cos® |y y'| 10 1 t, I

Rotate Translate - -

X'|_|a b ¢ Affine is any combination of
y' d e f 1 translation, scale, rotation,
Affine - - shear




2D Affine Transformations

Affine transformations are combinations of ...

e Linear transformations, and
 Translations

Parallel lines remain parallel

.-

Slide credit: Kristen Grauman



Projective Transformations

X' a b c| x
y'i=|d e f|vy
W |9 h i__W_

Projective transformations:
 Affine transformations, and
* Projective warps

Parallel lines do not necessarily remain parallel
m- A

Slide credit: Kristen Grauman



2D image transformations (reference table)

A
) similarity P1o) ﬂm ©
translation
/"y
Euclidean aﬂme >
~— x
Name Matrix # D.O.F. | Preserves: Icon
translation [ I ‘ t ]2 ; 2 orientation + - - -
oy
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - O
oy
similarity [ sR | t ]2 \ 4 angles + - - - O
oy
afline [ A ]ng 6 parallelism + - - - E
projective [ H ]3){3 8 straight lines E|

Szeliski 2.1



Example: solving for translation




Example: solving for translation

(te t)

Least squares solution

1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form Ax=Db
b) Solve using pseudo-inverse or
eigenvalue decomposition




Example: solving for translation

(te t)

Problem: outliers

RANSAC solution xB XA t
1. Sample a set of matching points (1 pair) 'B = IA +
2. Solve for transformation parameters Yi Yi t

3. Score parameters with number of inliers
4. Repeat steps 1-3 N times



Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution x B x A t

1. Initialize a grid of parameter values 'B 'A +

2. Each matched pair casts a vote for Yi Yi t
consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers



Example: solving for translation




Fitting and Alignment: Methods

* Global optimization / Search for parameters
—Leastsguarestit
—Robustleastsguares

—Otherparametersearch-methods
* Hypothesize and test

—Hough-transform
—RANSAC

* |terative Closest Points (ICP)



What if you want to align but have no prior matched pairs?

* Hough transform and RANSAC not applicable

* Important applications

Medical imaging: match brain Robotics: match point clouds
scans or contours



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest spatial neighbor in
{Set 2}

3. Estimate transformation parameters

— e.g., least squares or robust least squares
4. Transform the points in {Set 1} using estimated parameters
5. Repeat steps 2-4 until change is very small



Example: aligning boundaries

Extract edge pixels p;..pn and q,..qm

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches
5. Warp points p accordingto T

Repeat 3-5 until convergence




Example: solving for translation

(te t)

Problem: no initial guesses for correspondence

ICP solution xE x| |t
1. Find nearest neighbors for each point 'B = IA +
Compute transform using matches Yi Yi ty

2.
3. Move points using transform
4. Repeat steps 1-3 until convergence



Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparse ICP

Sofien Bouaziz

Andrea Tagliasacchi

Mark Pauly



KISS-ICP: In Defense of Point-to-Point ICP —
Simple, Accurate, and Robust Registration
If Done the Right Way

Ignacio Vizzo  Tiziano Guadagnino  Benedikt Mersch ~ Louis Wiesmann  Jens Behley  Cyrill Stachniss

_,

Using the sme
parameter set

= | Livox ndeld :




File Panels Help

|iL_'J|||levact ¥ Move Camera : Focus Camera == Ir ¥ 2D Pose Estimate /" 2D Nav Goal ¥ Publish Point

() Time

Pause Synchronization: = Off ROS Time: |1674576592.37 ROS Elapsed: 3 Wall Time: 1674576592.43 Wall Elapsed: 36.63




Algorithm Summaries

* Least Squares Fit
— closed form solution
— robust to noise
— not robust to outliers
* Robust Least Squares
— improves robustness to outliers
— requires iterative optimization
* Hough transform
— robust to noise and outliers
— can fit multiple models
— only works for a few parameters (1-4 typically)
* RANSAC
— robust to noise and outliers
— works with a moderate number of parameters (e.g, 1-8)
* |terative Closest Point (ICP)
— For local alignment only: does not require initial correspondences



Rough count of mentions in recent literature

* Keypoint 2,180 mentions
 SIFT 3,530 mentions

'{]

e “Least Squares” 2,290 mentions
* “Robust Least Squares” 4 mentions
* Hough: 901 mentions

* RANSAC: 1,690 mentions

* |CP: 895 mentions

e Affine 2,970

* ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term]
Seems to find results since 2013.
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