

Variations on the Hermann grid: an extinction illusion

```
Jacques Ninio
Laboratoire de Physique Statistique (1), École Normale Supérieure, 24 rue Lhomond,
75231 Paris cedex 05, France; e-mail: jacques.ninio@lps.ens.fr
Kent A Stevens
Department of Computer Science, Deschutes Hall, University of Oregon, Eugene, OR 97403, USA;
e-mail:kent@cs.uoregon.edu
Received 21 September 1999, in revised form 21 June 2000
```

[^0]
Fundamental matrix

Let p be a point in left image, p^{\prime} in right image

Epipolar relation

- p maps to epipolar line l '
- p^{\prime} maps to epipolar line /

Epipolar mapping described by a $3 x 3$ matrix F

$$
p^{\prime T} F p=0
$$

Fundamental matrix

This matrix F is called

- the "Essential Matrix"
- when image intrinsic parameters are known
- the "Fundamental Matrix"
- more generally (uncalibrated case)

Can solve for F from point correspondences

- Each (p, p') pair gives one linear equation in entries of F

$$
p^{\prime T} F p=0
$$

- F has 9 entries, but really only 7 or 8 degrees of freedom.

The scale of algorithm name quality

RANSAC
SIFT
Deep Learning

Optical Flow
Hough Transform
Neural Networks
Essential and Fundamental Matrix
Dynamic Programming

Today's lecture

- Stereo Matching (Sparse correspondence to Dense Correspondence)
- Next lecture: Optical Flow (Dense motion estimation)

Stereo Matching

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3x3 transform), one for each input image reprojection
$>$ C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification example

The correspondence problem

- Epipolar geometry constrains our search, but we still have a difficult correspondence problem.

Fundamental Matrix + Sparse correspondence

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington
Microsoft Research
SIGGRAPH 2006

Fundamental Matrix + Dense correspondence

The Visual Turing Test for Scene Reconstruction Supplementary Video

$$
\begin{array}{lc}
\text { Qi Shan }^{+} \quad \text { Riley Adams }^{+} & \text {Brian Curless }^{+} \\
\text {Yasutaka Furukawa }
\end{array}
$$

SIFT + Fundamental Matrix + RANSAC

Despite their scale invariance and robustness to appearance changes, SIFT features are local and do not contain any global information about the image or about the location of other features in the image. Thus feature matching based on SIFT features is still prone to errors. However, since we assume that we are dealing with rigid scenes, there are strong geometric constraints on the locations of the matching features and these constraints can be used to clean up the matches. In particular, when a rigid scene is imaged by two pinhole cameras, there exists a 3×3 matrix F, the Fundamental matrix, such that corresponding points $x_{i j}$ and $x_{i k}$ (represented in homogeneous coordinates) in two images j and k satisfy ${ }^{10}$:

$$
\begin{equation*}
x_{i j}^{\top} F x_{i j}=0 . \tag{3}
\end{equation*}
$$

A common way to impose this constraint is to use a greedy randomized algorithm to generate suitably chosen random estimates of F and choose the one that has the largest support among the matches, i.e., the one for which the most matches satisfy (3). This algorithm is called Random Sample Consensus (RANSAC) ${ }^{6}$ and is used in many computer vision problems.

Sparse to Dense Correspodence

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112

Structure from motion (or SLAM)

- Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates

? $\quad R_{3}, t_{3}$

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points in the image remain exactly the same:

$$
\mathbf{x}=\mathbf{P X}=\left(\frac{1}{k} \mathbf{P}\right)(k \mathbf{X})
$$

It is impossible to recover the absolute scale of the scene!

How do we know the scale of image content?

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

$$
E(\mathbf{P}, \mathbf{X})=\sum_{i=1}^{m} \sum_{j=1}^{n} D\left(\mathbf{x}_{i j}, \mathbf{P}_{i} \mathbf{X}_{j}\right)^{2}
$$

Correspondence problem

Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are "soft" constraints to help identify corresponding points
- Similarity
- Uniqueness
- Ordering
- Disparity gradient
- To find matches in the image pair, we will assume
- Most scene points visible from both views
- Image regions for the matches are similar in appearance

Dense correspondence search

For each epipolar line
For each pixel / window in the left image

- compare with every pixel / window on same epipolar line in right image
- pick position with minimum match cost (e.g., SSD, normalized correlation)

Correspondence search with similarity constraint

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search with similarity constraint

Correspondence search with similarity constraint

Correspondence problem

Intensity
profiles

- Clear correspondence between intensities, but also noise and ambiguity

Correspondence problem

Neighborhoods of corresponding points are similar in intensity patterns.

Correlation-based window matching

Correlation-based window matching

left image band (x)
right image band (x^{\prime})

Correlation-based window matching

left image band (x)
right image band (x^{\prime})

cross
correlation
disparity $=x^{\prime}-x$

Correlation-based window matching

left image band (x)
right image band (x^{\prime})

Correlation-based window matching

Effect of window size

Effect of window size

$$
\mathrm{W}=3
$$

$\mathrm{W}=20$

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Window-based matching (best window size)

Better solutions

- Beyond individual correspondences to estimate disparities:
- Optimize correspondence assignments jointly
- Scanline at a time (e.g. dynamic programming)
- Full 2D grid (e.g. graph cuts)
- Approximate 2D solution (e.g. semi-global matching)

Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

Matching using Epipolar Lines
Left Image

For a patch in left image Compare with patches along same row in right image

Right Image

Match Score Values

Matching using Epipolar Lines
Left Image

Select patch with highest match score.

Repeat for all pixels in left image.

Right Image

Match Score Values

Example: 5x5 windows NCC match score

Computed disparities

Black pixels: bad disparity values, or no matching patch in right image

Occlusions: No matches

Effects of Patch Size

Smoother in some areas
Loss of finer details

So far, each left image patch has been matched independently along the right epipolar line.

This can lead to errors.

We would like to enforce some consistency among matches in the same row (scanline).

Disparity Space Image

First we introduce the concept of DSI.
The DSI for one row represents pairwise match scores between patches along that row in the left and right image.

Pixels along left scanline

Disparity Space Image (DSI)

Left Image

Right Image

(1-NCC) or SSD

Disparity Space Image (DSI)

Left Image

Right Image

Dissimilarity Values
(1-NCC) or SSD

Disparity Space Image (DSI)

Left Image

Right Image

Dissimilarity Values
(1-NCC) or SSD

Disparity Space Image (DSI)

Disparity Space Image

Left scanline

Disparity Space Image

Left scanline

DSI and Scanline Consistency

Assigning disparities to all pixels in left scanline now

Lowest Cost Path

We would like to choose the "best" path.
Want one with lowest "cost" (Lowest sum of dissimilarity scores along the path)

Cox et.al. Stereo Matching

Three cases:

- Matching patches. Cost $=$ dissimilarity score
- Occluded from right. Cost is some constant value.
- Occluded from left. Cost is some constant value.

$$
\begin{array}{r}
C(\mathrm{i}, \mathrm{j})=\min ([\mathrm{C}(\mathrm{i}-1, \mathrm{j}-1)+\text { dissimilarity }(\mathrm{i}, \mathrm{j}) \\
\mathrm{C}(\mathrm{i}-1, \mathrm{j})+\text { occlusionConstant, } \\
\mathrm{C}(\mathrm{i}, \mathrm{j}-1)+\text { occlusionConstant }] ;
\end{array}
$$

Cox et.al. Stereo Matching

Recap: want to find lowest cost path from upper left to lower right of DSI image.

At each point on the path we have three choices: step left, step down, step diagonally.

Each choice has a well-defined cost associated with it.

This problem just screams out for Dynamic Programming! (which, indeed, is how Cox et.al. solve the problem)

Real Scanline Example

DSI

DP cost matrix
(cost of optimal path from each point to END)

Every pixel in left column now is marked with either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

Example

Result of DP alg

Result without DP (independent pixels)

Result of DP alg. Black pixels $=$ occluded.

Occlusion Filling

Simple trick for filling in gaps caused by occlusion.
\square

$$
\square=\text { left occluded }
$$

Fill in left occluded pixels with value from the nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

Example

Result of DP alg with occlusion filling.

Example

Result of DP alg with occlusion filling
Result without DP (independent pixels)

Example

Result of DP alg with occlusion filling. Ground truth

Stereo with 2D smoothness constraint

- What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount

Optimizing for match quality and smoothness (in any direction)

$$
E=\alpha E_{\mathrm{data}}\left(I_{1}, I_{2}, D\right)+\beta E_{\text {smooth }}(D)
$$

$E_{\text {data }}=\sum_{i}\left(W_{1}(i)-W_{2}(i+D(i))\right)^{2}$

$$
E_{\text {smooth }}=\sum_{\text {neighborsi } i, j} \rho(D(i)-D(j))
$$

- Energy functions of this form can be minimized using graph cuts
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Window-based matching (best window size)

Better results...

Graph cut method

Ground truth
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.
For the latest and greatest: https://vision.middlebury.edu/stereo/eval3/

Semi-global matching

$$
E(D)=\sum_{\mathbf{p}}\left(C\left(\mathbf{p}, D_{\mathbf{p}}\right)+\sum_{\mathbf{q} \in N_{\mathbf{p}}} P_{1} \mathrm{~T}\left[\left|D_{\mathbf{p}}-D_{\mathbf{q}}\right|=1\right]\right.
$$

$$
\left.+\sum_{\mathbf{q} \in N_{\mathbf{p}}} P_{2} \mathrm{~T}\left[\left|D_{\mathbf{p}}-D_{\mathbf{q}}\right|>1\right]\right)
$$

- Approximate the full smoothness optimization by considering 8 or 16 directions in two or three passes.
- Optimization looks like scanline, dynamic programming stereo, but with a $2 d$ notion of smoothness

Stereo Processing by Semi-Global Matching and Mutual Information. Hirschmuller, PAMI 2007. 3500+ citations

Semi-global matching

Stereo Depth Estimation Challenges

- Low-contrast ; textureless image regions
- Occlusions
- Violations of brightness constancy (e.g., specular reflections)
- Really large baselines (foreshortening and appearance change)
- Camera calibration errors

Active stereo with structured light

- Project "structured" light patterns onto the object
- Simplifies the correspondence problem
- Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

iPhone X

Self-driving efforts use both lidar and stereo

[^0]: Abstract. When the white disks in a scintillating grid are reduced in size, and outlined in black, they tend to disappear. One sees only a few of them at a time, in clusters which move erratically on the page. Where they are not seen, the grey alleys seem to be continuous, generating grey crossings that are not actually present. Some black sparkling can be seen at those crossings where no disk is seen. The illusion also works in reverse contrast.

 The Hermann grid (Brewster 1844; Hermann 1870) is a robust illusion. It is classically presented as a two-dimensional array of black squares, separated by rectilinear alleys. It is thought to be caused by processes of local brightness computation in arrays of

