








Review: Iast Iecture on stereo matching
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Review: last lecture on stereo matching

Dissimilarity Values

Enter each vector of
match scores as a
column in the DSI

- Fight back against
ambiguity by considering
matches jointly with a
preference for smooth
disparities

- Scanline stereo uses
dynamic programming to
optimize each scanline (1d
smoothness)

- Graph cut formulations
iInclude 2d smoothness

- Semi-global matches is a
greedy optimization that
considers 2d smoothness.
Fast but still pretty accurate.



Review: last lecture on stereo matching

Or simply remove the ambiguity by projecting structured light
patterns onto the scene

Simplifies the correspondence problem

Replaces one camera in the stereo system with a projector



Computer Vision
Motion and Optical Flow

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others...



Video

A video Is a sequence of frames captured over time

Now our image data is a function of space
(X, y) and time (1)
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Motion and perceptual organization

Gestalt psychology
(Max Wertheimer,
1880-1943)



Motion and perceptual organization

- Sometimes, motion is the only cue
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Motion and perceptual organization

- Sometimes, motion is the only cue



Motion and perceptual organization

- Sometimes, motion is the only cue




Motion and perceptual organization

- Sometimes, motion is the only cue




Motion and perceptual organization

- Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.



Motion and perceptual organization

- Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.



Motion and perceptual organization

Experimental study of apparent behavior.
Fritz Heider & Marianne Simmel. 1944



250 HEIDER AND SIMMEL

Q. 3: What kind of person is the circle?

Does not like fighting, is frightened, afraid, fearful, cowardly, shy,
timid, meek, not too sure of herself, goes where # goes, a follower, not
much personality of her own, less initiative and nerve, relies for pro-
tection on #, helpless, dependent. N = 27 (75%)

Girl, woman, female, feminine. N = 22 (61%)

Shrewd, intelligent, clever, smart. N = 5 (14%)

Courageous, resistent, has courage. N = 4 (11%)

Weak. N = 3 (8%)

Opportunist, looks after own good, teasing, curious, playful, good na-
tured, more gentle, very refined, nervous, retiring, beautiful, loyal, affec-
tionate, coming to aid when necessary. (One § each)

The withdrawing of ¢ during the fight and the fact that ¢ never hits
T accounts for the description of it as ‘afraid, meek,” etc. Some Ss ob-
viously make ¢ at least partly responsible for the ruse played on T and call
¢ clever.

Q. 5: Why did the circle go into the house?

For protection, afraid to watch fight, frightened by fighting, to get out
of the way of the fight, scared, tried to hide, for shelter against T, to
escape villain T, afraid of what T might do to #. N = 33 (92%)



Motion estimation: Optical flow

Optical flow is the apparent motion of objects or surfaces
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The term “scene flow” is used to describe 3d motion estimation
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Motion field + camera motion
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Problem definition: optical flow
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How to estimate pixel motion from image I(x,y,t) to I(x,y,t+1) ?

« Solve pixel correspondence problem
— given a pixel in I(x,y,t), look for[nearby Jpixels of the

Key assumptions

same color

in 1(x,y,t+1)

« color constancy: a pointin I(x,y,t) looks the same in I(x,y,t+1)
— For grayscale images, this is brightness constancy

« small motion: points do not move very far
This is called the optical flow problem



Optical flow constraints (grayscale images)

(z,9)
Ndisplacement = (u, v) .
(z +u,y+v)
(X, Y,1) (X, y,t+1)

- Let’s look at these constraints more closely
 brightness constancy constraint (equation)
1(X,y,t)=1(X+u,y+v,t+1)

« small motion: (u and v are less than 1 pixel, or smooth)
Taylor series expansion of the spatial changes of I:



Taylor Series Reminder

sin(x)

f(x)

The sine function (blue) is closely
approximated by its Taylor polynomial of
degree 7 (pink) for a full period centered
at the origin.

By No machine-readable author provided. Riojajar~commonswiki assumed (based on copyright
claims). - No machine-readable source provided. Own work assumed (based on copyright
claims)., Public Domain, https://commons.wikimedia.org/w/index.php?curid=825819



Optical flow constraints (grayscale images)

(z,9)
Ndisplacement = (u, v) .
(z +u,y+v)
(X, Y,1) (X, y,t+1)

Let’s look at these constraints more closely

 brightness constancy constraint (equation)
1(X,y,t)=1(X+u,y+v,t+1)
« small motion: (u and v are less than 1 pixel, or smooth)
Taylor series expansion of the spatial changes of I:
| (X+U,y+V)=1(X,y)+ . U+ ayv+[higher order terms]
X

zl(x,y)+8| u+al Vv
OX

oy




Optical flow equation
- Combining these two equations

0 =1(x+u,y+v,t+1)—1(x,y,t) o
(Short hand: I,, = —

1OV D) H LU IV =T(GY) oy orens)



Optical flow equation
Combining these two equations

0 =1(x+u,y+v,t+1)—-1(x,y,t)
(Short hand: I, = &£

zI(X1y1t+1)+IXU+IYV_I(X’y’t) for¢ or ¢+1) ”
~[1(X Y, t+D) = 1(x y, )]+ Lu+1 v
~ It + |XU+ |yV

In the limit as u and v go to zero, this becomes exact
O=I,+Vl-<u,v>

Brightness constancy constraint equation
Lu+l, v+1,=0




How does this make sense?

Brightness constancy constraint equation
Lu+l, v+1, =0

- What do the static image gradients have to do with motion

estimation?

If I told you
[, 1s -5

[, 1s2.5

I, 180

What was
the pixel
shift (u,v)?



The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at
each pixel?
O=I1,+VIl-<u,v> or |XU-|-|yV-I—|t=O

* How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,Vv)

The component of the motion perpendicular to the
gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, gradient
so does (u+u’, v+v’') if

VI-u v] =0

(u,v)

(u+u’,v+v’)

edge



Aperture problem




Aperture problem




Aperture problem




The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion



http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—-679, 1981.

How to get more equations for a pixel?
Spatial coherence constraint

Assume the pixel's neighbors have the same (u,v)
If we use a 5x5 window, that gives us 25 equations per pixel

0= I;(p;) + VI(p;) - [u v]

- I:(p1) Iy(p1) | - Ii(p1) |
Ia:(Pz) fy(Pz) { U } _ ft(Pz)
i Ia:(I.)25) fy(I.)25) ] i It(1;25) |




Solving the ambiguity...

Least squares problem:

- L(p1) Iy(p1) - Ii(p1)
Le(p2)  Iy(p2) { 0 ] _ | I(p2) | A d=0b
: : v : 25x2 2x1 25x1
| Ix(p25) Iy(p2s) | Ii(p25) |




Matching patches across images
Overconstrained linear system

- I:(p1) Iy(p1) | - Ii(p1) ]
Le(p2)  Iy(p2) UI:_ I(pa) | A d=b
: : v : 25x2 2x1 25x1
| I(p2s) Iy(p2s) | - Ii(p2s) |

Least squares solution for d given by (ATA) d= ATb

[zzxfx zfxfy] [u] _ [ S LIy
SIxly SLy || v |~ | Syl

Al A Alp

The summations are over all pixels in the K x K window



Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELI, | [w] _ [ S
SLly Sy |||~ | Sk

//’ Al'A Alp

When is this solvable? l.e., what are good points to
track?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and 1 , of ATA should not be too small
« ATA should be well-conditioned
— A ¢/ X, should not be too large (1 , = larger eigenvalue)

N Does this remind you of anything?

Criteria for Harris corner detector



Low texture region
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— large gradients, all the same

— large A, small A,



High textured region

Sovi(vn' P

— gradients are different, large magnitudes *
— large A, large A,




The aperture problem resolved

\ Actual motion



The aperture problem resolved

\Derceived motion



Revisiting the small motion assumption

- Is this motion small enough?
- Probably not—it’'s much larger than one pixel
- How might we solve this problem?



Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
Images can have many pixels with the same intensity.

l.e., how do we know which ‘correspondence’ is correct?

A f1(z) fo(x) A fi(z) fo(x)

/\/ actual shift

NS

estimated shift

-

nearest match is correct nearest match is incorrect
(no aliasing) (aliasing)

To overcome aliasing: coarse-to-fine estimation.



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

Gaussian pyramid of image 1 Gaussian pyramid of image 2



Coarse-to-fine optical flow estimation

1

—— runiterative L-K «—— i
warp & upsample |

y

Gaussian pyramid of image 2

Gaussian pyramid of image 1



Optical Flow Results

[ucas-Kanade
without pyramids

Fails in areas of large
OO

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



State-of-the-art optical flow in 2009

Start with something similar to Lucas-Kanade
+ gradient constancy

+ energy minimization with smoothing term

+ region matching

+ keypoint matching (long-range)

-
&‘ l..

Region-based +Pixel-based +Keypoint-based

Larae displacement optical flow. Brox et al.. CVPR 2009


http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf

State-of-the-art optical flow in 2015

Deep convolutional network which accepts a pair of input
frames and upsamples the estimated flow back to input
resolution. Very fast because of deep network, near the
state-of-the-art in terms of end-point-error.

FlowNetSimple

e
-»---

Fischer et al. 2015. https://arxiv.org/abs/1504.06852



Deep optical flow, 2015

Synthetic Training data

—

Fischer et al. 2015. https://arxiv.org/abs/1504.06852



Deep optical flow, 2015

Results on Sintel

Ground truth EpicFlow FlowNetS FlowNetC

EPE: 0.27 EPE: 1.06 EPE: 0.91

EPE: 32.56 EPEZ ZO.Si EPE: 26.63
. (N
EPE: 24.98 EPENS%.33 o EPE: 46.68
- L
EPE: 0.33 EPE: 0.89 EPE: 0.71
[ . il
! |

Fischer et al. 2015. https://arxiv.org/abs/1504.06852



Wrap up: Optical flow

e Definition: optical flow is the apparent motion of brightness
patterns in the image

e |deally, optical flow would be the same as the motion field

e Have to be careful: apparent motion can be caused by lighting
changes without any actual motion

— Think of a uniform rotating sphere under fixed lighting vs. a
stationary sphere under moving illumination



Scene Flow: 3D scene motion
T

Toggl
® 99"
Participation
Mar 29, 2023 8:00:00 PM EST (GMT - 4:00) ¢*
May 31,2099 7:59:59 PM EST (GMT - 4:00) &

Argoverse 2.0 Self-Supervised Scene Flow # o

Add Tags or Domain ¢*

L eaderboard

Phase: Open Submission, Split: Test Split

- Baseline - Private - Verified [ Include private submissions

v

EPE
Angle Angle
Rank Participant 3-Way EPE/Background EPE/Foreground EPE/Foreground J 9
/Dynamic (1) Error/Background Error/For

loU (1) 4 A
¢ team (Al\;erage /Static (1) /static (1) /Static (1) /Dynami

Dynamic

1 (Deflow) 0.6289 0.0534 0.0029 0.1340 0.0232 0.0052 0.1920



Scene Flow: 3D scene motion

w s e e
e

DeFlow. Qingwen Zhang, Yi Yang, Heng Fang, Ruoyu Geng, and Patric Jensfelt. RPL lab @ KTH




* Sample quiz questions (new window)
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