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Review: last lecture on stereo matching

???

Textureless regions are 
non-distinct; high 
ambiguity for matches.
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Review: last lecture on stereo matching

• Fight back against 

ambiguity by considering 

matches jointly with a 

preference for smooth 

disparities

• Scanline stereo uses 

dynamic programming to 

optimize each scanline (1d 

smoothness)

• Graph cut formulations 

include 2d smoothness 

• Semi-global matches is a 

greedy optimization that 

considers 2d smoothness. 

Fast but still pretty accurate.
Dissimilarity Values

Enter each vector of

match scores as a 

column in the DSI



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Review: last lecture on stereo matching

• Or simply remove the ambiguity by projecting structured light 

patterns onto the scene

• Simplifies the correspondence problem

• Replaces one camera in the stereo system with a projector
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Computer Vision

 Motion and Optical Flow

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others…
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Video

• A video is a sequence of frames captured over time

• Now our image data is a function of space 

(x, y) and time (t)
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Motion and perceptual organization

Gestalt psychology 

(Max Wertheimer, 

1880-1943)
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Motion and perceptual organization

• Sometimes, motion is the only cue

Gestalt psychology 

(Max Wertheimer, 

1880-1943)



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Motion and perceptual organization

• Sometimes, motion is the only cue



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Motion and perceptual organization

• Sometimes, motion is the only cue



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Motion and perceptual organization

• Sometimes, motion is the only cue
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Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.
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Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.
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Motion and perceptual organization

Experimental study of apparent behavior. 

Fritz Heider & Marianne Simmel. 1944 
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Motion estimation: Optical flow

Optical flow is the apparent motion of objects or surfaces

The term “scene flow” is used to describe 3d motion estimation
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Motion field + camera motion

Zoom out Zoom in Pan right to left

26
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Problem definition:  optical flow

How to estimate pixel motion from image I(x,y,t) to I(x,y,t+1) ?

• Solve pixel correspondence problem

– given a pixel in I(x,y,t), look for nearby pixels of the same color in I(x,y,t+1)

Key assumptions

• color constancy:  a point in I(x,y,t) looks the same in I(x,y,t+1)

– For grayscale images, this is brightness constancy

• small motion:  points do not move very far

This is called the optical flow problem

( , , )I x y t ( , , 1)I x y t +
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Optical flow constraints (grayscale images)

• Let’s look at these constraints more closely

• brightness constancy constraint  (equation)

• small motion:  (u and v are less than 1 pixel, or smooth) 

Taylor series expansion of the spatial changes of I:

( , , )I x y t ( , , 1)I x y t +

( , , ) ( , , 1)I x y t I x u y v t= + + +
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Taylor Series Reminder

By No machine-readable author provided. Riojajar~commonswiki assumed (based on copyright 

claims). - No machine-readable source provided. Own work assumed (based on copyright 

claims)., Public Domain, https://commons.wikimedia.org/w/index.php?curid=825819

The sine function (blue) is closely 

approximated by its Taylor polynomial of 

degree 7 (pink) for a full period centered 

at the origin.
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Optical flow constraints (grayscale images)

• Let’s look at these constraints more closely

• brightness constancy constraint  (equation)

• small motion:  (u and v are less than 1 pixel, or smooth) 

Taylor series expansion of the spatial changes of I:

( , , )I x y t ( , , 1)I x y t +

( , ) ( , ) [higher order terms]
I I

I x u y v I x y u v
x y

 
+ + = + + +

 

( , )
I I

I x y u v
x y

 
 + +

 

( , , ) ( , , 1)I x y t I x u y v t= + + +
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0 ( , , 1) ( , , )

( , , 1) ( , , )x y

I x u y v t I x y t

I x y t I u I v I x y t

= + + + −

 + + + −

Optical flow equation
• Combining these two equations

(Short hand: 𝐼𝑥 =
𝜕𝐼

𝜕𝑥
 

for t or t+1)
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0 ( , , 1) ( , , )

( , , 1) ( , , )

[ ( , , 1) ( , , )]

,

x y

x y

t x y

t

I x u y v t I x y t

I x y t I u I v I x y t

I x y t I x y t I u I v

I I u I v

I I u v

= + + + −

 + + + −

 + − + +

 + +

 +    

Optical flow equation
• Combining these two equations

In the limit as u and v go to zero, this becomes exact

Brightness constancy constraint equation

0x y tI u I v I+ + =

0 ,tI I u v= +    

(Short hand: 𝐼𝑥 =
𝜕𝐼

𝜕𝑥
 

for t or t+1)
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How does this make sense?

• What do the static image gradients have to do with motion 

estimation?

Brightness constancy constraint equation

0x y tI u I v I+ + =

If I told you 

It is -5 

Ix is 2.5

Iy is 0

What was 

the pixel 

shift (u,v)?



The brightness constancy constraint

• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 

gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 

so does (u+u’, v+v’ ) if 

•One equation (this is a scalar equation!), two unknowns (u,v)

  0'v'uI
T

=

Can we use this equation to recover image motion (u,v) at 

each pixel?

0x y tI u I v I+ + =0 ,tI I u v= +     or
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Aperture problem
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Aperture problem
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Aperture problem
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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Solving the  ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint 

•     Assume the pixel’s neighbors have the same (u,v)
• If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In 

Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674–679, 1981.



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

• Least squares problem:

Solving the  ambiguity…
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Matching patches across images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to 
track?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues 1 and  2 of ATA should not be too small

• ATA should be well-conditioned

–   1/  2 should not be too large ( 1 = larger eigenvalue)

Criteria for Harris corner detector 
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Low texture region

– gradients have small magnitude

– small 1, small 2
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Edge

– large gradients, all the same

– large 1, small 2
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High textured region

– gradients are different, large magnitudes

– large 1, large 2



The aperture problem resolved

Actual motion



The aperture problem resolved

Perceived motion
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Revisiting the small motion assumption

• Is this motion small enough?

• Probably not—it’s much larger than one pixel 

• How might we solve this problem?



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because 

images can have many pixels with the same intensity.

I.e., how do we know which ‘correspondence’ is correct? 

nearest match is correct 

(no aliasing)

nearest match is incorrect 

(aliasing)

To overcome aliasing: coarse-to-fine estimation.

actual shift

estimated shift



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Reduce the resolution!
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image 2image 1

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image 1 Gaussian pyramid of image 2

image 2image 1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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State-of-the-art optical flow in 2009

Start with something similar to Lucas-Kanade

 + gradient constancy

 + energy minimization with smoothing term

 + region matching

 + keypoint matching (long-range)

Large displacement optical flow, Brox et al., CVPR 2009

Region-based +Pixel-based +Keypoint-based

http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
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State-of-the-art optical flow in 2015

Deep convolutional network which accepts a pair of input 

frames and upsamples the estimated flow back to input 

resolution. Very fast because of deep network, near the 

state-of-the-art in terms of end-point-error.

Fischer et al. 2015. https://arxiv.org/abs/1504.06852
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Deep optical flow, 2015

Synthetic Training data

Fischer et al. 2015. https://arxiv.org/abs/1504.06852
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Deep optical flow, 2015

Results on Sintel

Fischer et al. 2015. https://arxiv.org/abs/1504.06852



Wrap up: Optical flow

• Definition: optical flow is the apparent motion of brightness 
patterns in the image

• Ideally, optical flow would be the same as the motion field

• Have to be careful: apparent motion can be caused by lighting 
changes without any actual motion

– Think of a uniform rotating sphere under fixed lighting vs. a 
stationary sphere under moving illumination



Scene Flow: 3D scene motion



Scene Flow: 3D scene motion

DeFlow. Qingwen Zhang, Yi Yang, Heng Fang, Ruoyu Geng, and Patric Jensfelt. RPL lab @ KTH 



• Sample quiz questions (new window)
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