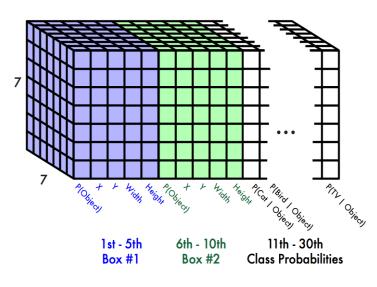
3D Point Processing

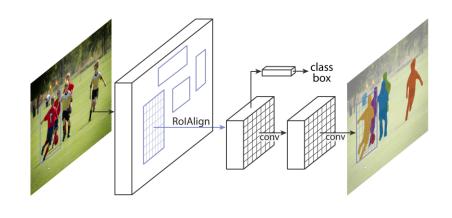
James Hays

Recap – Structured Output from Deep Networks

Convolutional Pose Machines and follow up works



YOLO, SSD, and "one stage" object detectors



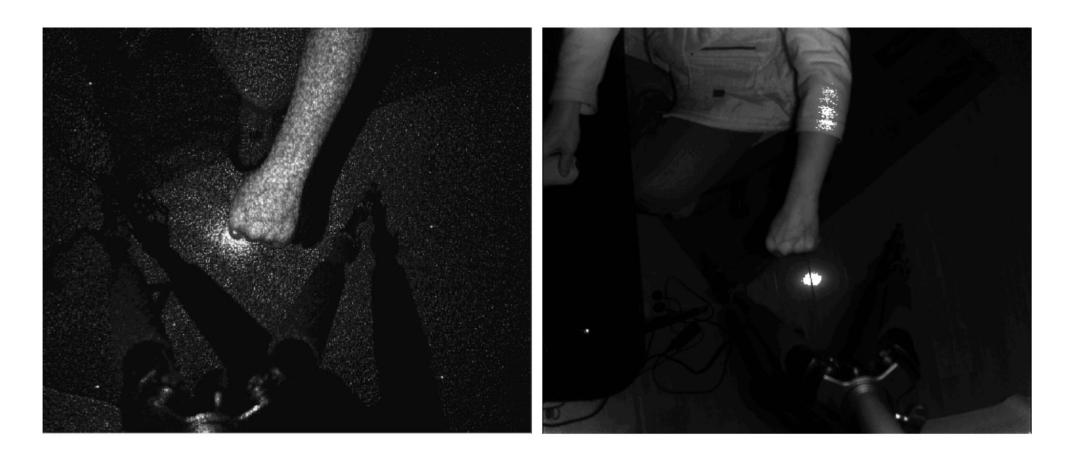
Mask R-CNN and "two stage" object detectors

A lot of machine learning tools, such as convolutional networks, don't naturally handle tasks with arbitrary numbers of outputs. These are a few clever methods, typical of the literature as a whole, to work around this.

Outline

- How do we measure 3D points?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

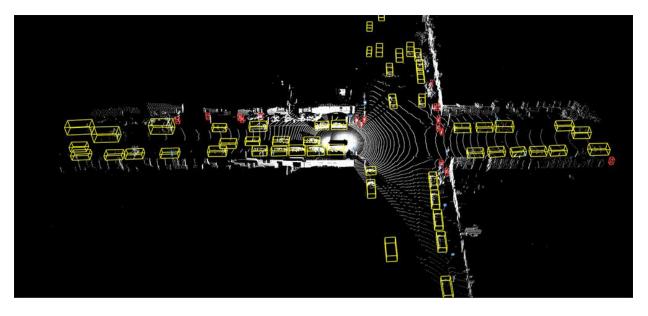
Kinect V1 and V2



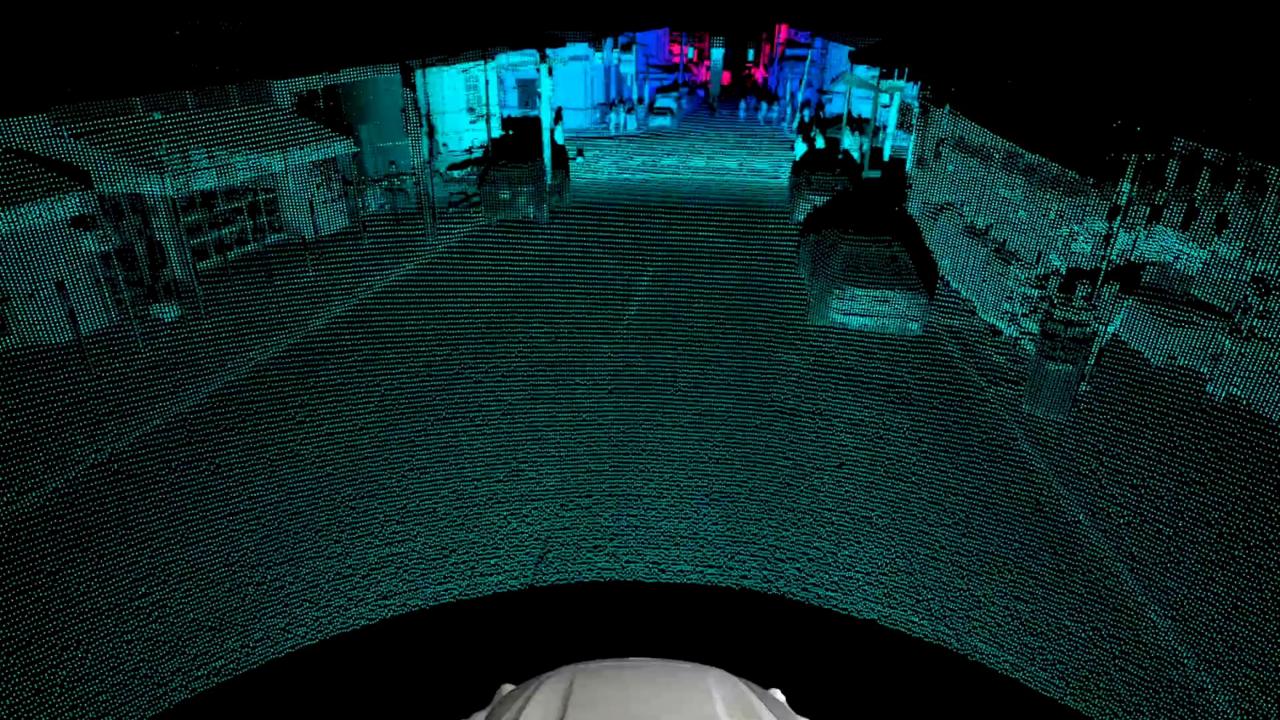
Infrared images of Kinect V1 structured light pattern and Kinect V2 time of flight pattern. Credit "Lightweight Algorithms for Depth Sensor Equipped Embedded Devices" by Henry Zhong

Lidar overview

Lidar overview



Source: Waymo Open Dataset



Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi*

Hao Su*

Kaichun Mo Leonidas J. Guibas

Big Data + Deep Representation Learning

Robot Perception

source: Scott J Grunewald

Augmented Reality



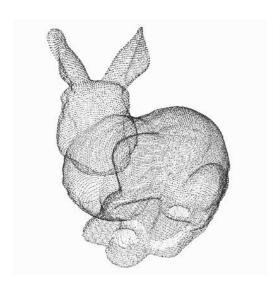
source: Google Tango

Shape Design

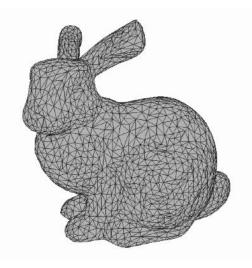
source: solidsolutions

Need for 3D Deep Learning!

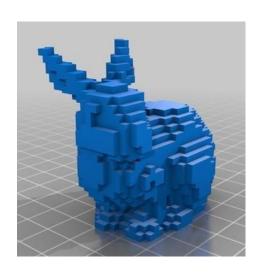
3D Representations



Point Cloud



Mesh



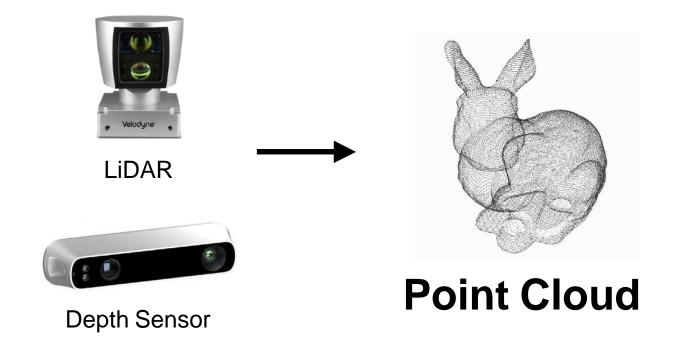
Volumetric

Projected View RGB(D)

- -

3D Representation: Point Cloud

Point cloud is close to raw sensor data



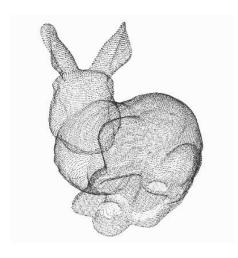
3D Representation: Point Cloud

Point cloud is close to raw sensor data

Point cloud is canonical

LiDAR

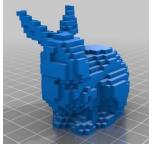
Depth Sensor



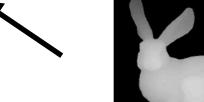
Point Cloud



Mesh



Volumetric



Depth Map

Previous Works

Most existing point cloud features are handcrafted towards specific tasks

Feature Name	Supports Texture / Color	Local / Global / Regional	Best Use Case
PFH	No	L	
FPFH	No	L	2.5D Scans (Pseudo single position range images)
VFH	No	G	Object detection with basic pose estimation
CVFH	No	R	Object detection with basic pose estimation, detection of partial objects
RIFT	Yes	L	Real world 3D-Scans with no mirror effects. RIFT is vulnerable against flipping.

Source: https://github.com/PointCloudLibrary/pcl/wiki/Overview-and-Comparison-of-Features

Previous Works

Point cloud is **converted to other representations** before it's fed to a deep neural network

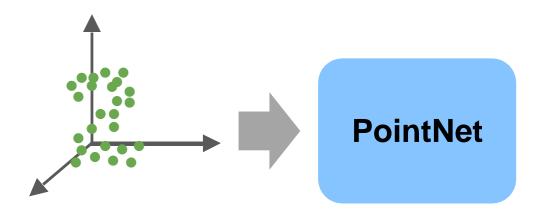
Conversion	Deep Net
Voxelization	3D CNN
Projection/Rendering	2D CNN
Feature extraction	Fully Connected

Research Question:

Can we achieve effective feature learning directly on point clouds?

Our Work: PointNet

End-to-end learning for scattered, unordered point data



Our Work: PointNet

End-to-end learning for scattered, unordered point data

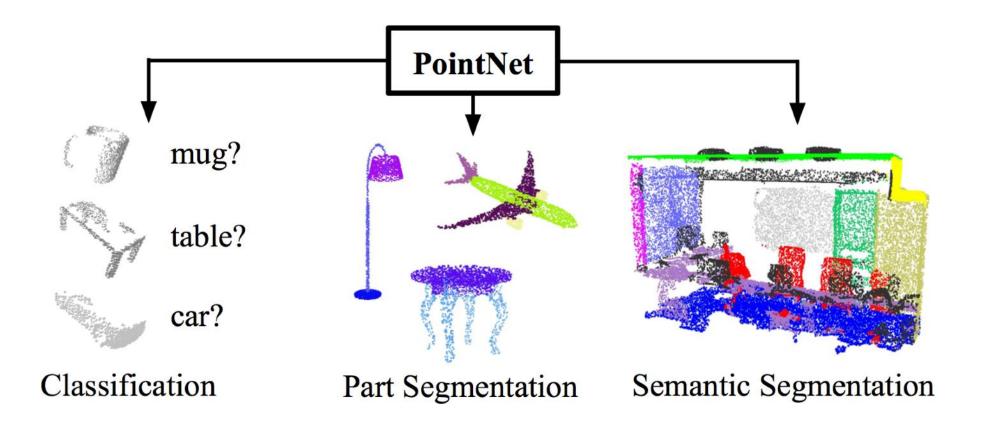
Unified framework for various tasks

...

Our Work: PointNet

End-to-end learning for scattered, unordered point data

Unified framework for various tasks



Challenges

Unordered point set as input

Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

Challenges

Unordered point set as input

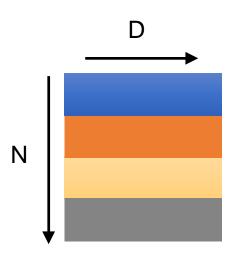
Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

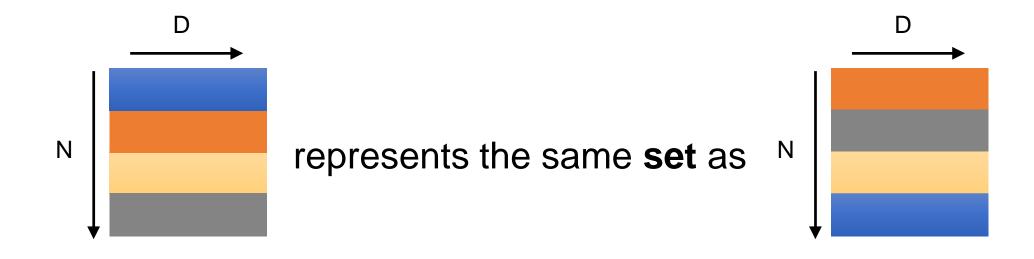
Unordered Input

Point cloud: N <u>orderless</u> points, each represented by a D dim vector



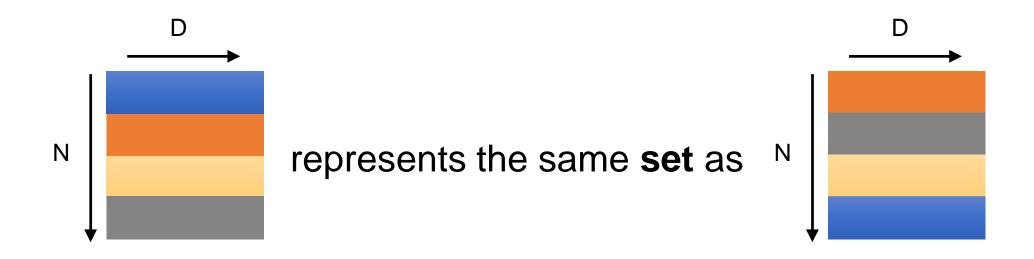
Unordered Input

Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Unordered Input

Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Model needs to be invariant to N! permutations

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, ..., x_n) = \max\{x_1, x_2, ..., x_n\}$$
$$f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, ..., x_n) = \max\{x_1, x_2, ..., x_n\}$$
$$f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$$

. . .

How can we construct a family of symmetric functions by neural networks?

$$f(x_1, x_2, ..., x_n) = \gamma^o g(h(x_1), ..., h(x_n))$$
 is symmetric if g is symmetric

$$f(x_1, x_2, ..., x_n) = \gamma^o g(h(x_1), ..., h(x_n))$$
 is symmetric if g is symmetric

$$h$$

$$(1,2,3) \longrightarrow$$

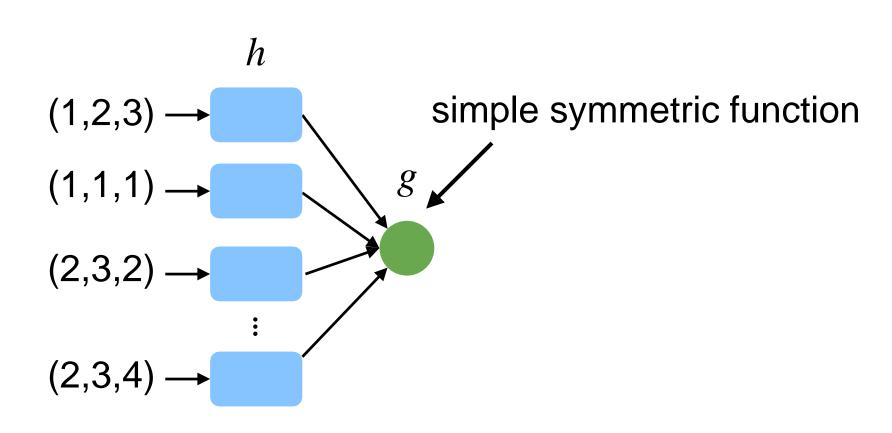
$$(1,1,1) \longrightarrow$$

$$(2,3,2) \longrightarrow$$

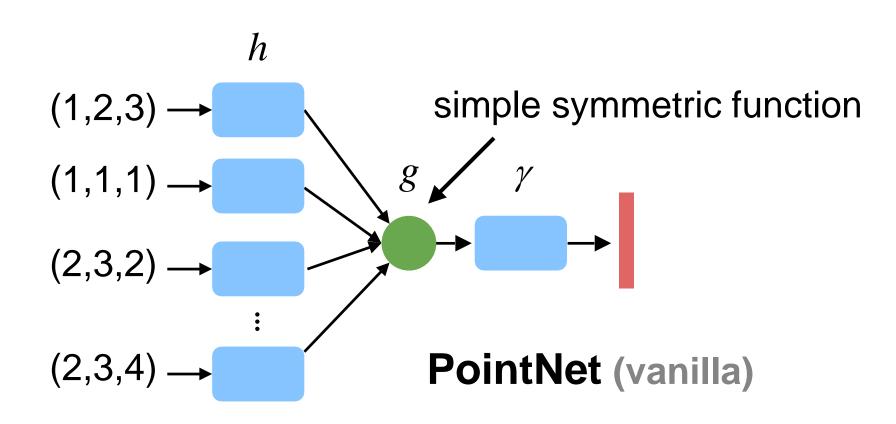
$$\vdots$$

$$(2,3,4) \longrightarrow$$

$$f(x_1, x_2, ..., x_n) = \gamma^o g(h(x_1), ..., h(x_n))$$
 is symmetric if g is symmetric

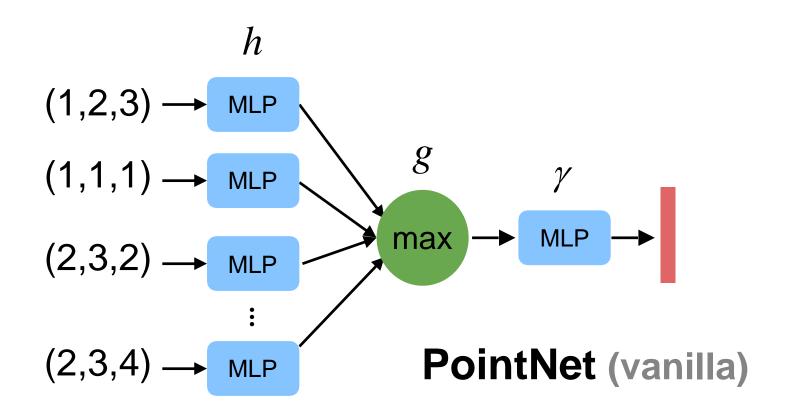


$$f(x_1, x_2, ..., x_n) = \gamma^o g(h(x_1), ..., h(x_n))$$
 is symmetric if g is symmetric



Basic PointNet Architecture

Empirically, we use multi-layer perceptron (MLP) and max pooling:



Challenges

Unordered point set as input

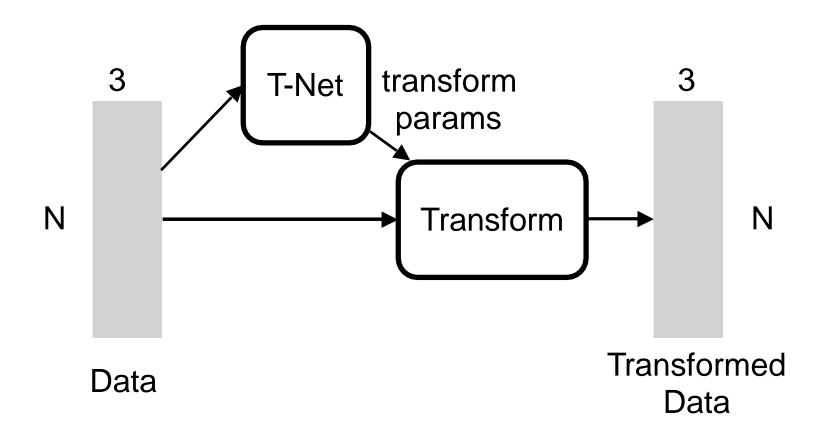
Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

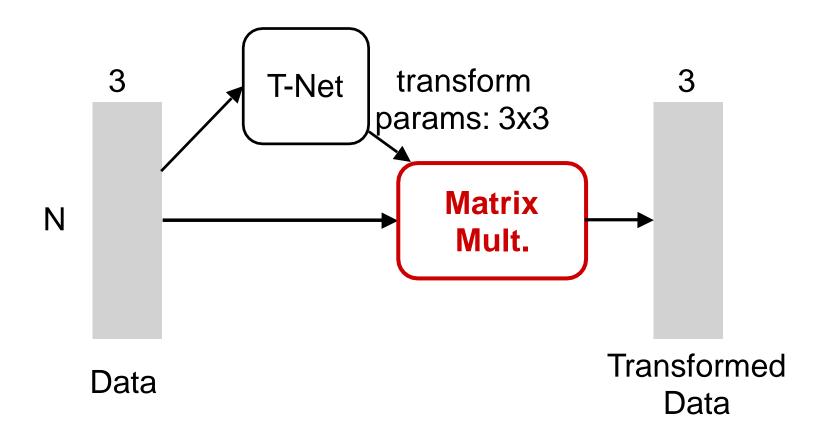
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

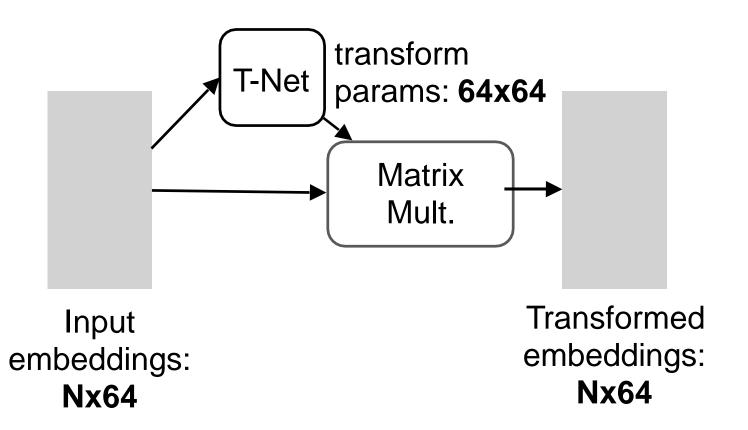


Input Alignment by Transformer Network

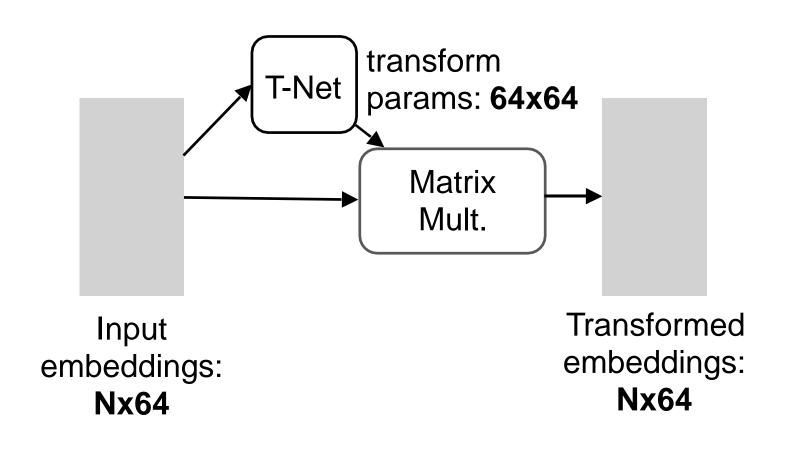
The transformation is just matrix multiplication!



Embedding Space Alignment



Embedding Space Alignment

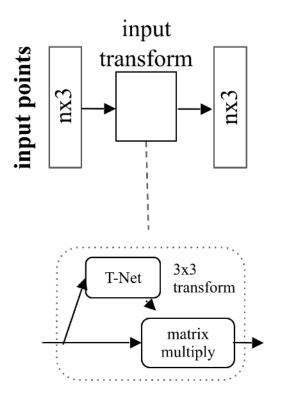


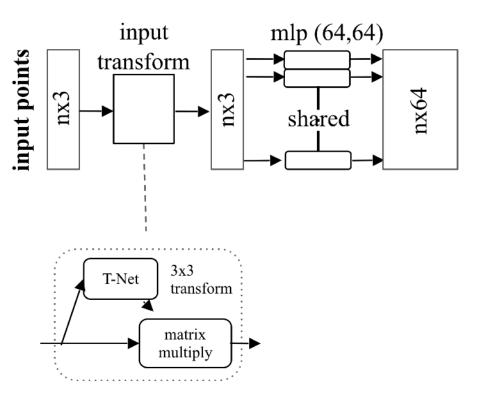
Regularization:

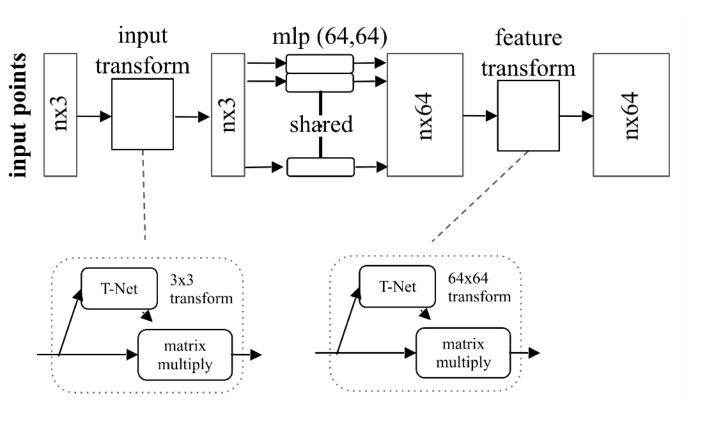
Transform matrix A 64x64 close to orthogonal:

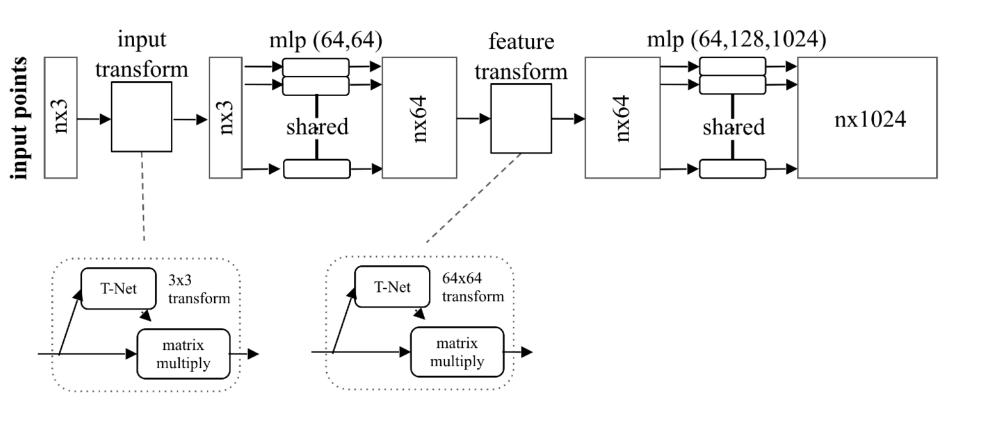
$$L_{reg} = ||I - AA^T||_F^2$$

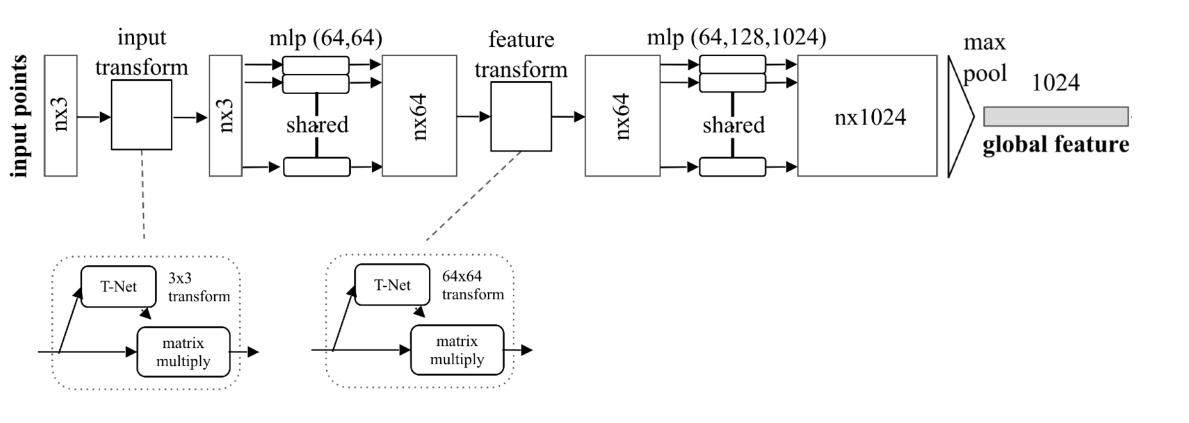
input points

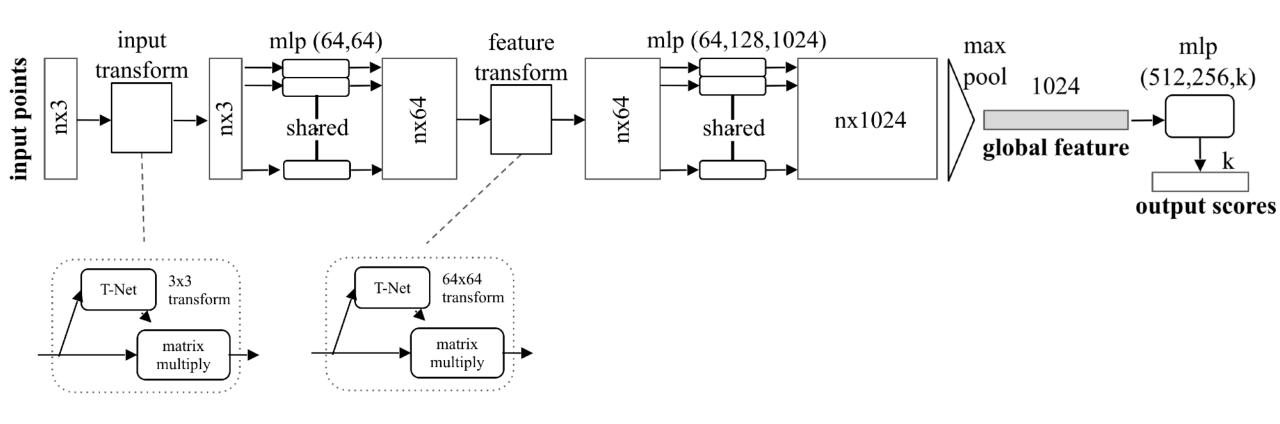




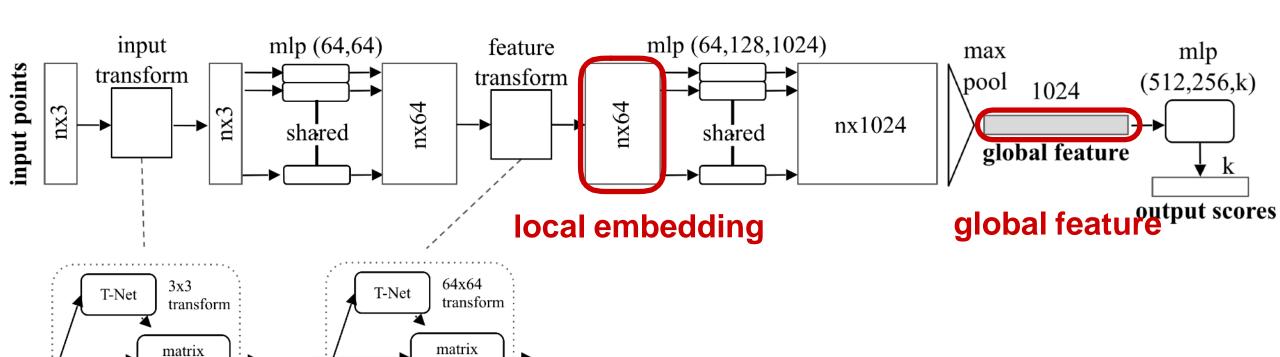








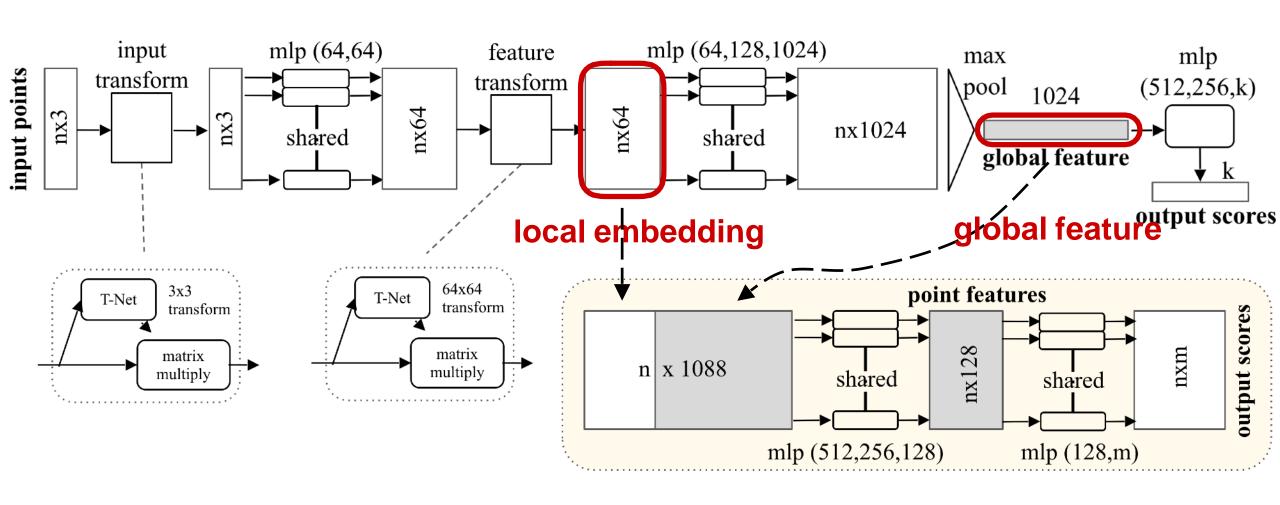
Extension to PointNet Segmentation Network



multiply

multiply

Extension to PointNet Segmentation Network

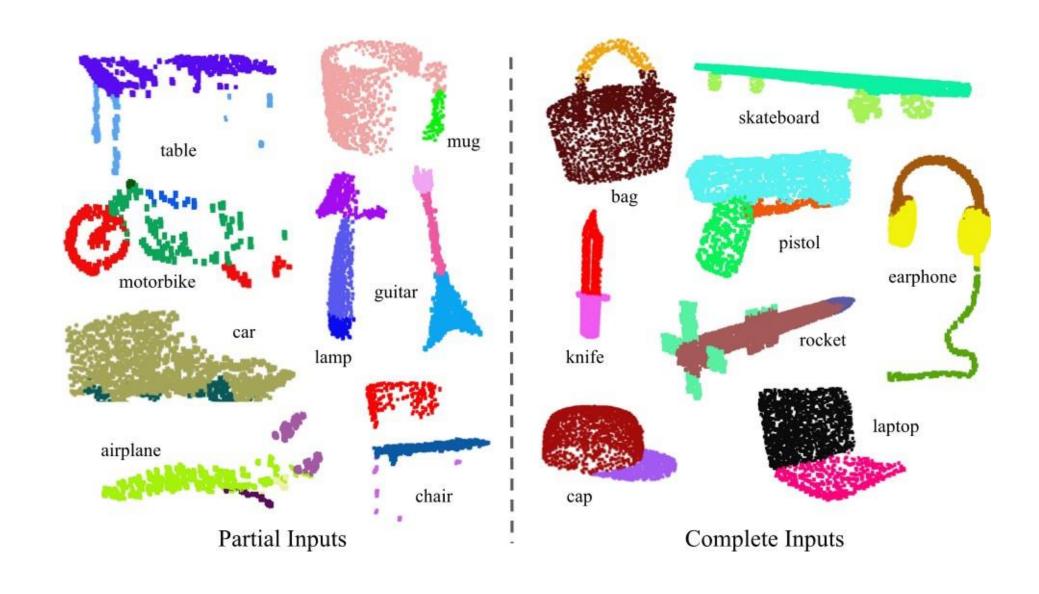


Results

Results on Object Classification

-		input	#views	accuracy	accuracy		
				avg. class	overall		
_	SPH [12]	mesh	-	68.2			
_	3DShapeNets [29]	volume	1	77.3	84.7		
3D CNNs	VoxNet [18]	volume	12	83.0	85.9		
	Subvolume [19]	volume	20	86.0	89.2		
_	LFD [29]	image	10	75.5	-		
	MVCNN [24]	image	80	90.1	-		
_	Ours baseline	point	-	72.6	77.4		
_	Ours PointNet	point	1	86.2	89.2		

Results on Object Part Segmentation

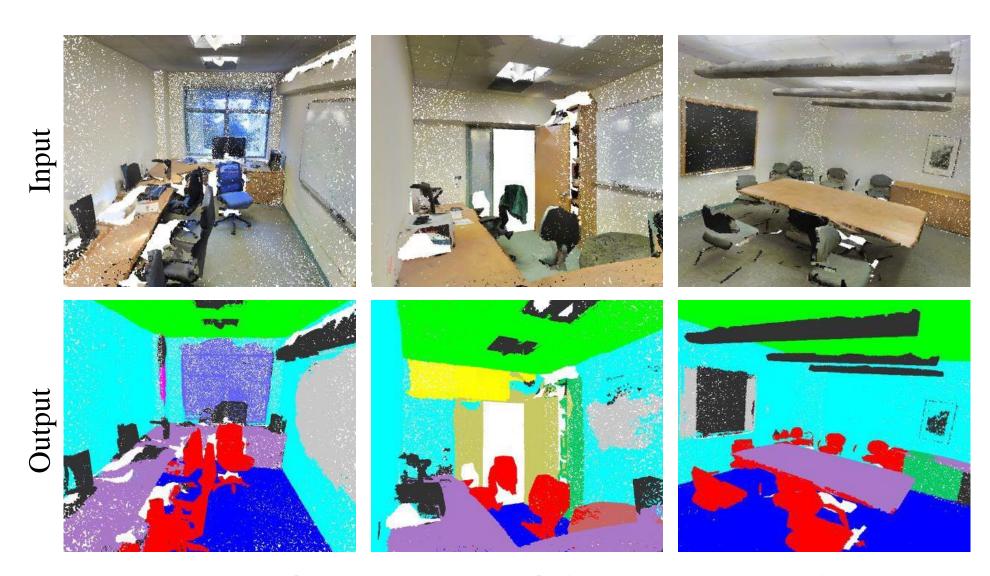


Results on Object Part Segmentation

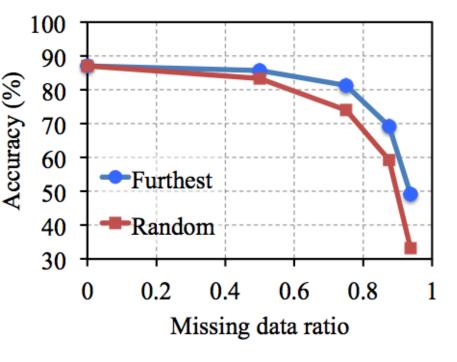
	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
				-			phone			•				-		board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [28]	-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
Yi [30]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6
· · · · · · · · · · · · · · · · · · ·																	

dataset: ShapeNetPart; metric: mean IoU (%)

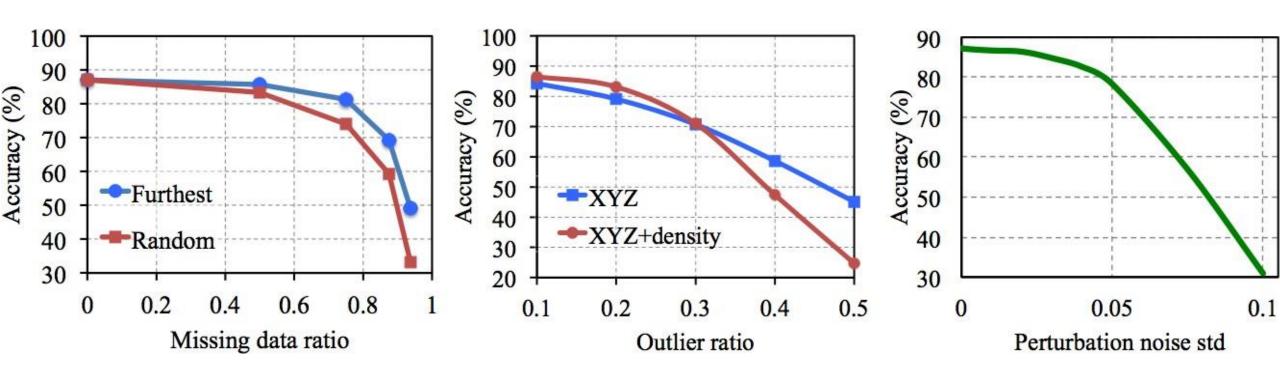
Results on Semantic Scene Parsing

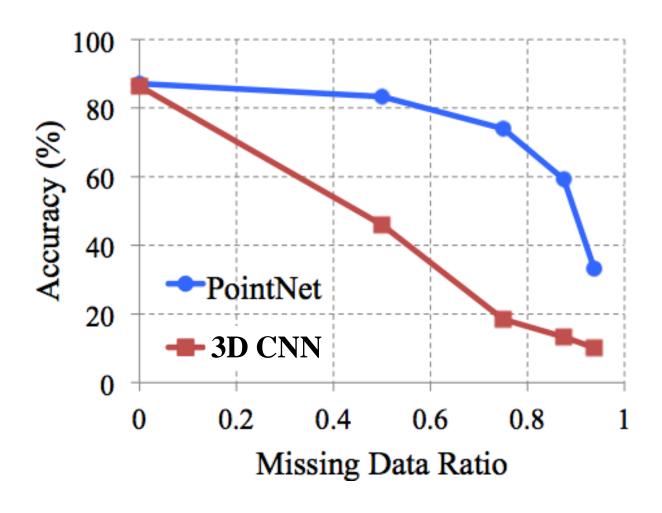


dataset: Stanford 2D-3D-S (Matterport scans)

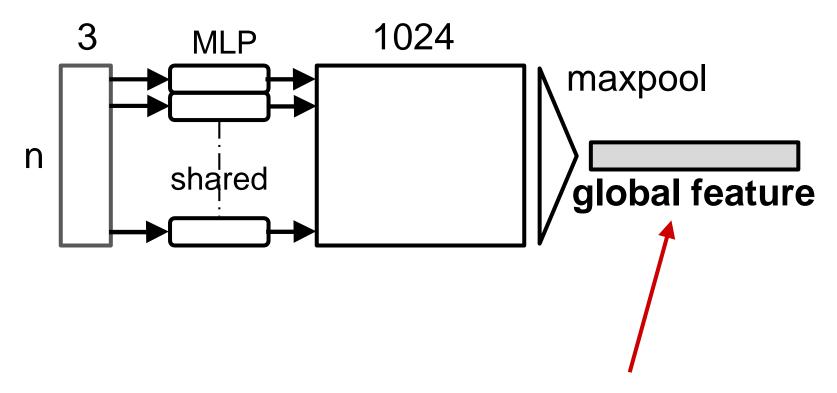


Less than 2% accuracy drop with 50% missing data





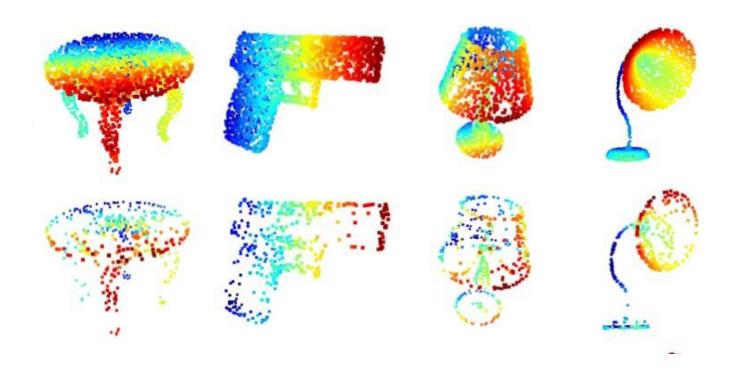
Why is PointNet so robust to missing data?

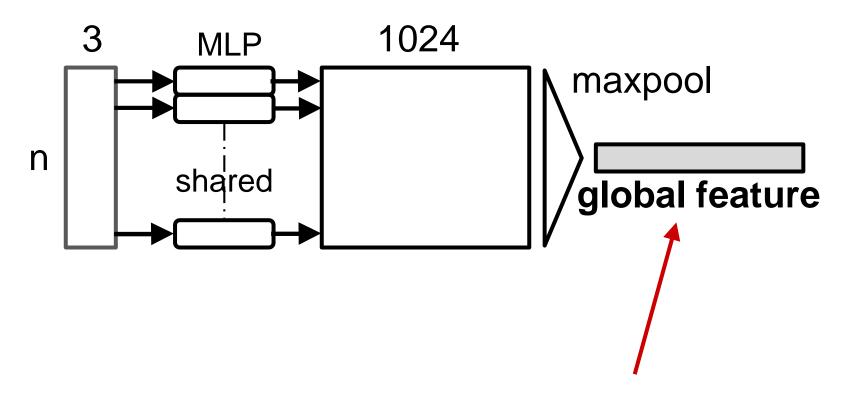


Which input points are contributing to the global feature? (critical points)

Original Shape:

Critical Point Sets:



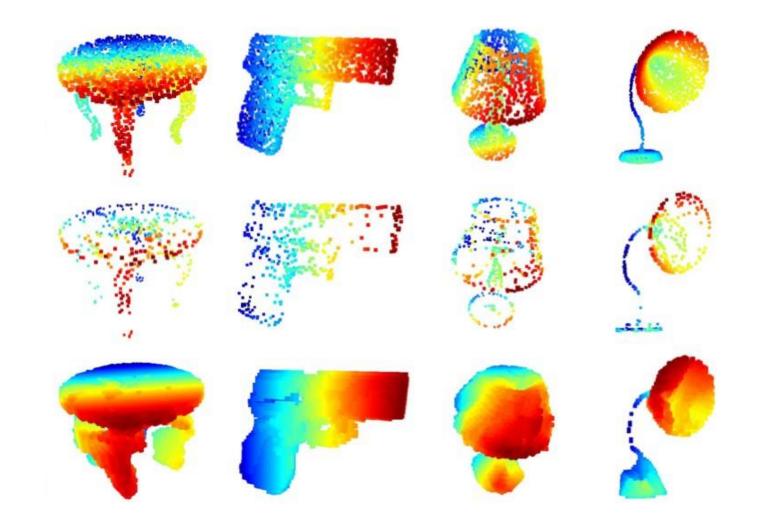


Which points won't affect the global feature?

Original Shape:

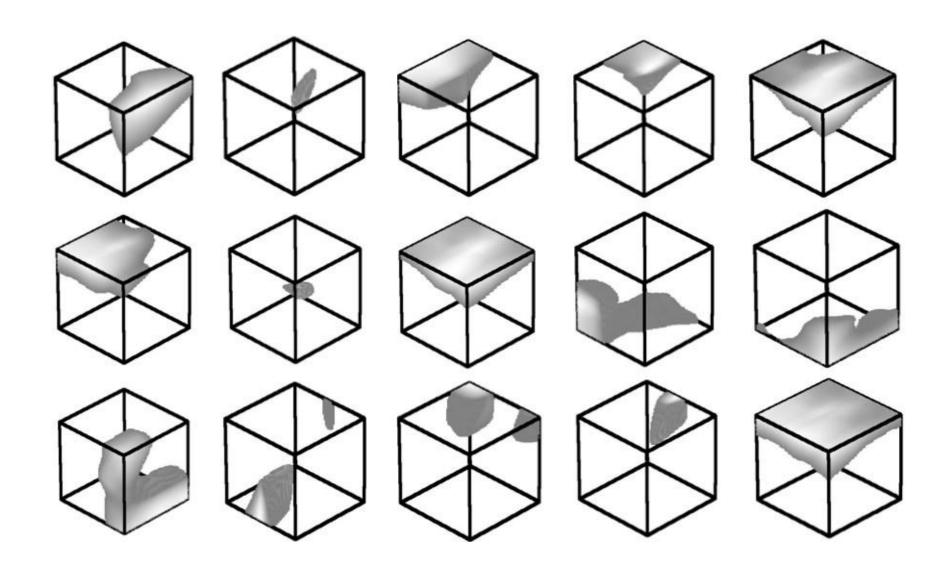
Critical Point Set:

Upper bound set:



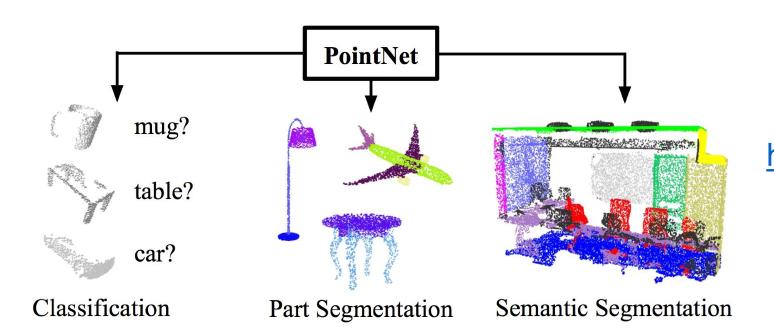
Original Shape Original Shape: **Critical Point Set:** Upper bound Set:

Visualizing Point Functions



Conclusion

- PointNet is a novel deep neural network that directly consumes point cloud.
- A unified approach to various 3D recognition tasks.
- Rich theoretical analysis and experimental results.



Code & Data Available! http://stanford.edu/~rqi/pointnet

Speed and Model Size

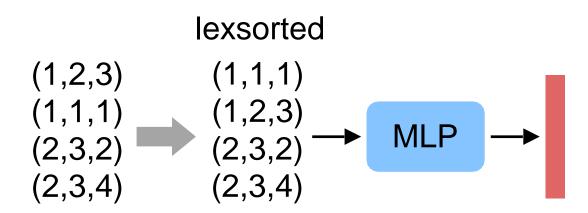
	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [16]	16.6M	3633M
MVCNN [20]	60.0M	62057M

Inference time 11.6ms, 25.3ms GTX1080, batch size 8

Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

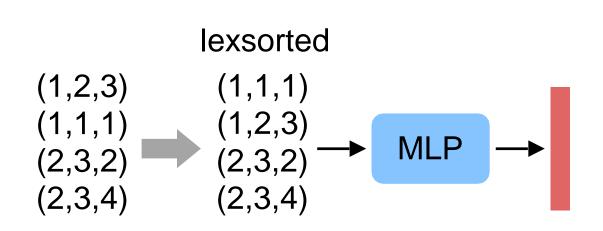
Unfortunately, there is no canonical order in high dim space.



Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

Unfortunately, there is no canonical order in high dim space.



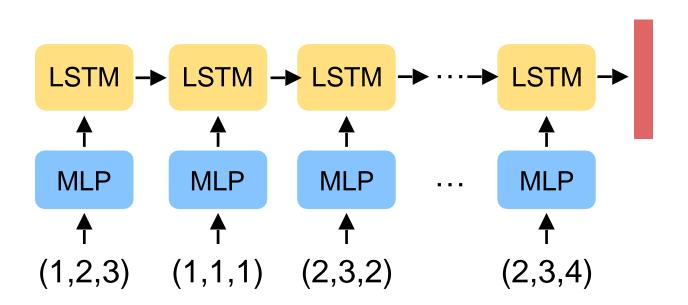
Multi-Layer Perceptron (ModelNet shape classification)

	Accuracy
Unordered Input	12%
Lexsorted Input	40%
PointNet (vanilla)	87%

Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

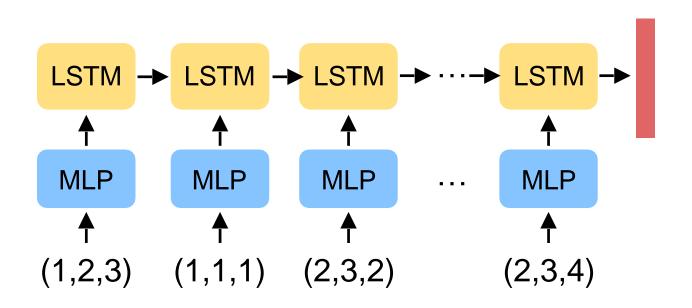
However, RNN forgets and order matters.



Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

However, RNN forgets and order matters.



LSTM Network

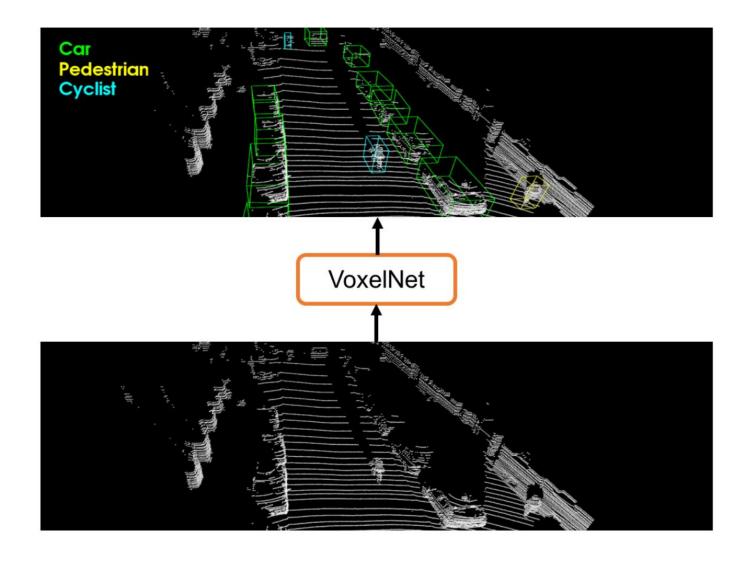
(ModelNet shape classification)

	Accuracy
LSTM	75%
PointNet (vanilla)	87%

Outline

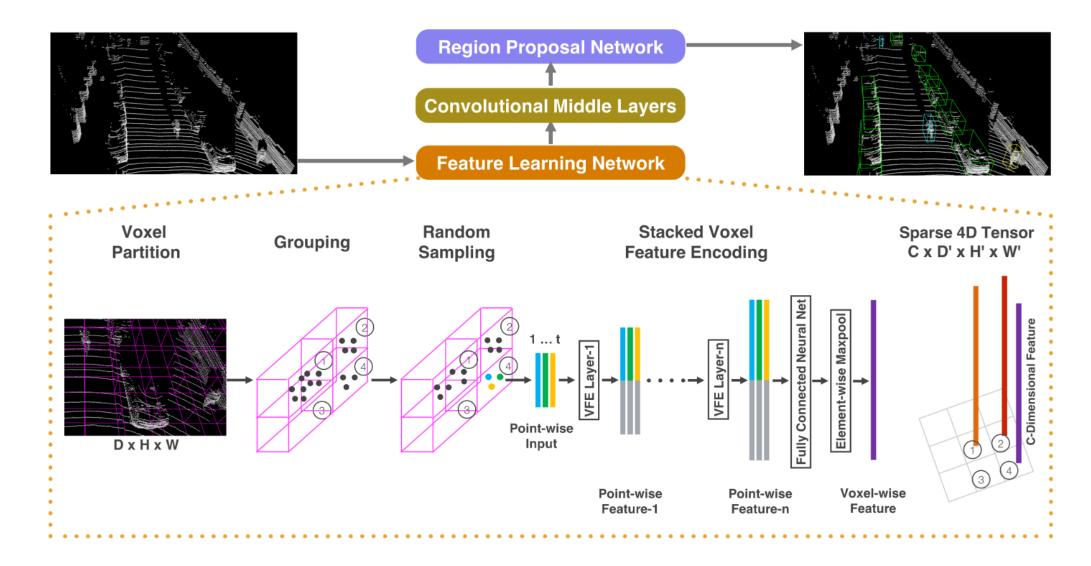
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

VoxelNet

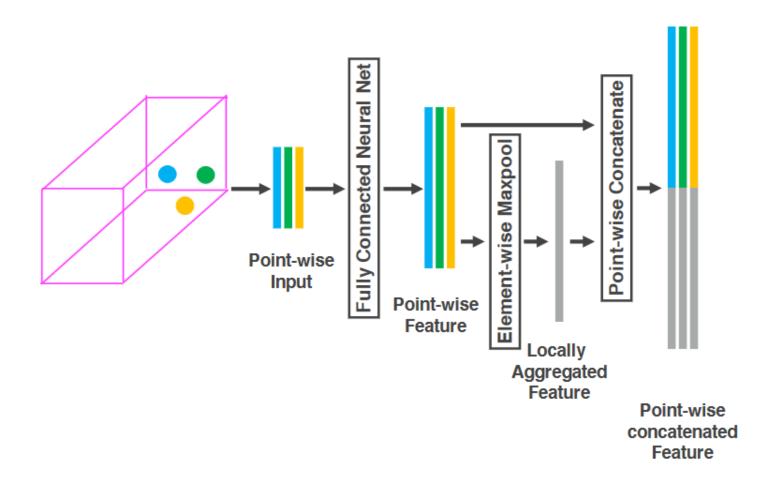


VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection Yin Zhou and Oncel Tuzel. CVPR 2018

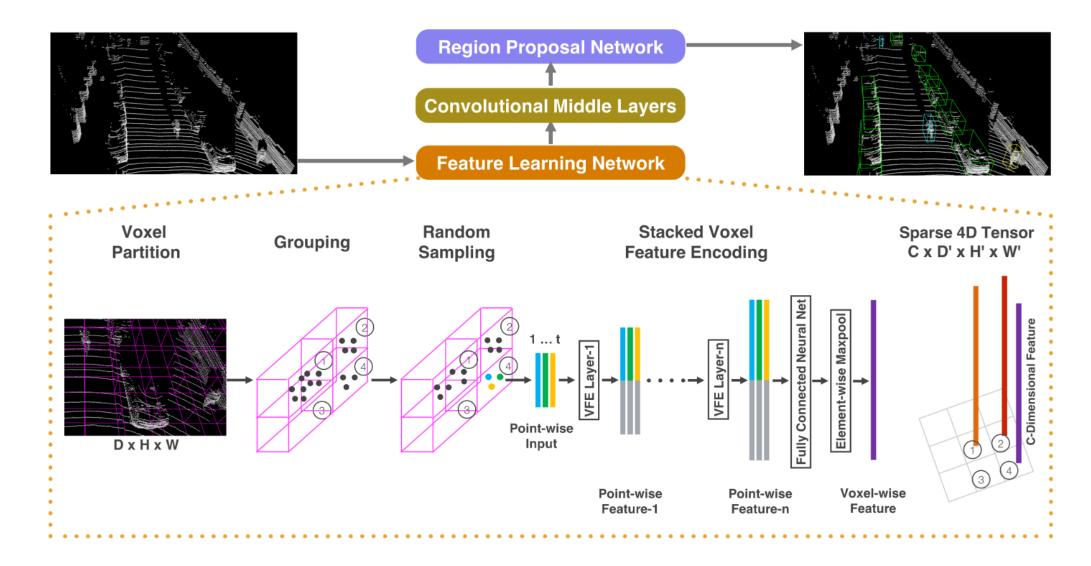
VoxelNet Overview



VoxelNet Voxel encoding looks a lot like PointNet



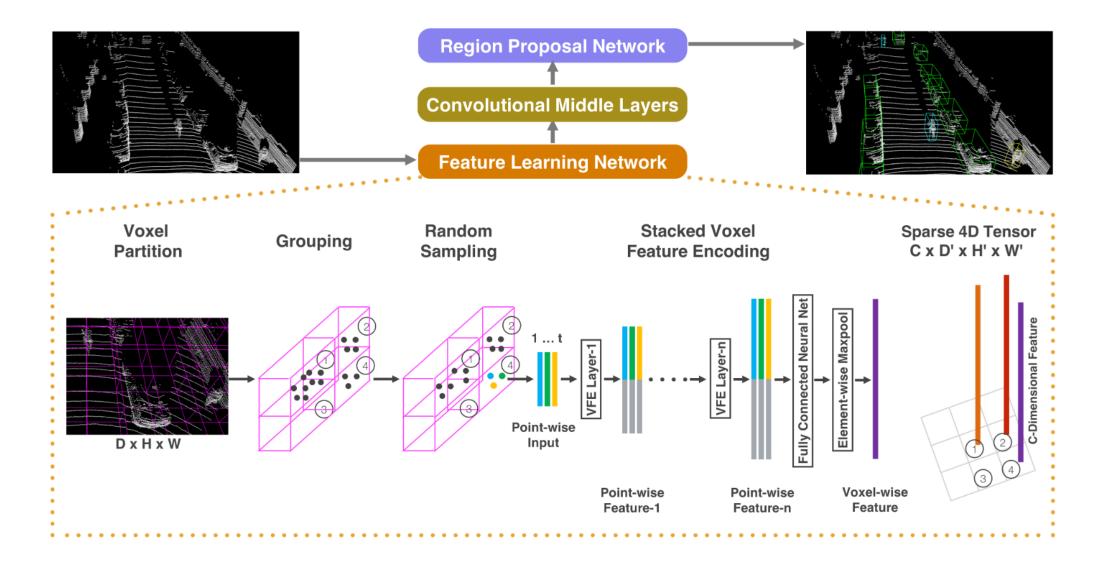
VoxelNet Overview



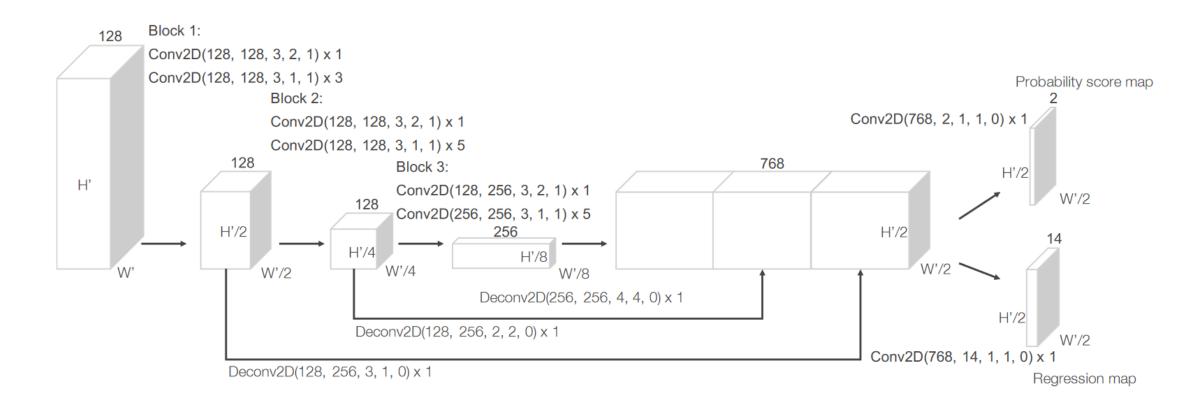
VoxelNet "Convolutional Middle Layers"

- For car detection, divide the world into 10 x 400 x 352 voxels, corresponding to voxels that are 40 cm tall and 20 cm in width/length.
- Uses 3D convolutions instead of 2D as we've seen before.
- The Z / height dimension gets downsampled away after many layers

VoxelNet Overview



VoxelNet Region Proposal Network



$$(x_c^g, y_c^g, z_c^g, l^g, w^g, h^g, \theta^g)$$

VoxelNet qualitative results

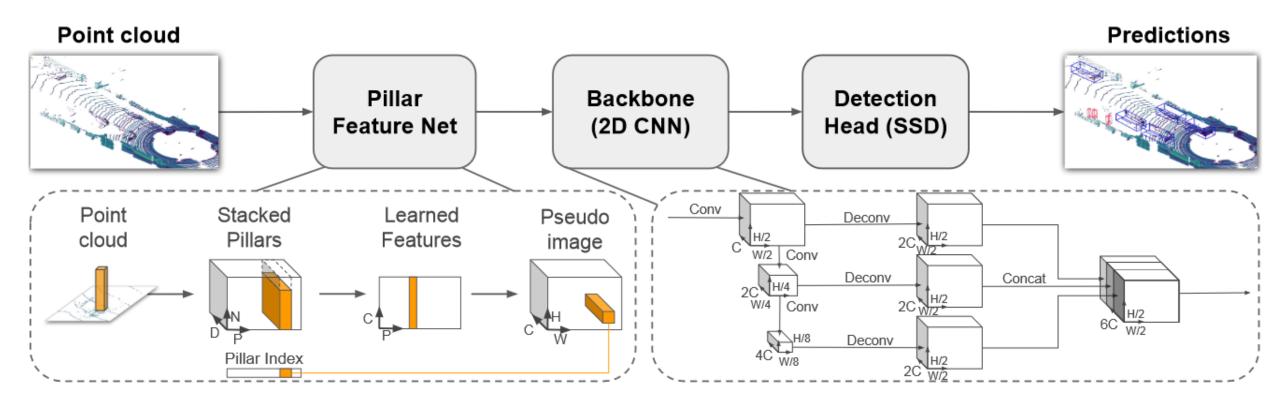
VoxelNet quantitative results

Method	Modality	Car			Pedestrian			Cyclist		
Wichiod		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
Mono3D [3]	Mono	2.53	2.31	2.31	N/A	N/A	N/A	N/A	N/A	N/A
3DOP [4]	Stereo	6.55	5.07	4.10	N/A	N/A	N/A	N/A	N/A	N/A
VeloFCN [22]	LiDAR	15.20	13.66	15.98	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV) [5]	LiDAR	71.19	56.60	55.30	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV+RGB) [5]	LiDAR+Mono	71.29	62.68	56.56	N/A	N/A	N/A	N/A	N/A	N/A
HC-baseline	LiDAR	71.73	59.75	55.69	43.95	40.18	37.48	55.35	36.07	34.15
VoxelNet	LiDAR	81.97	65.46	62.85	57.86	53.42	48.87	67.17	47.65	45.11

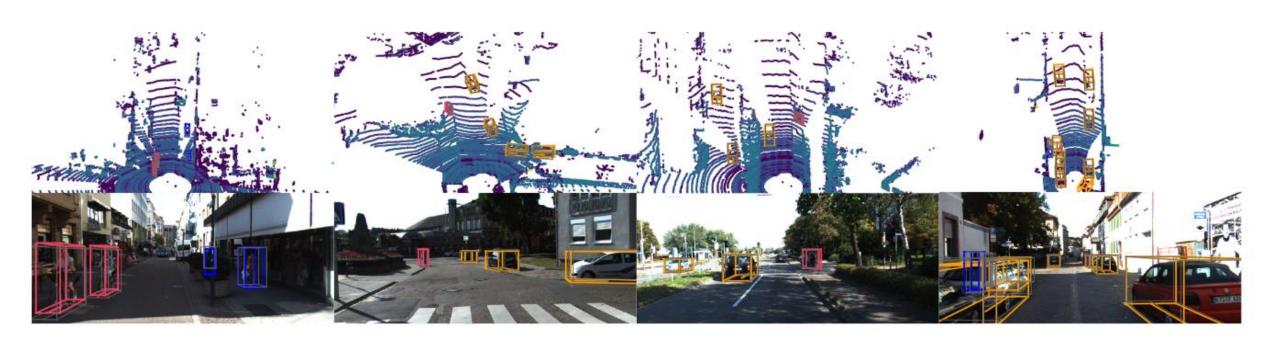
Evaluation on KITTI according to 3D IoU

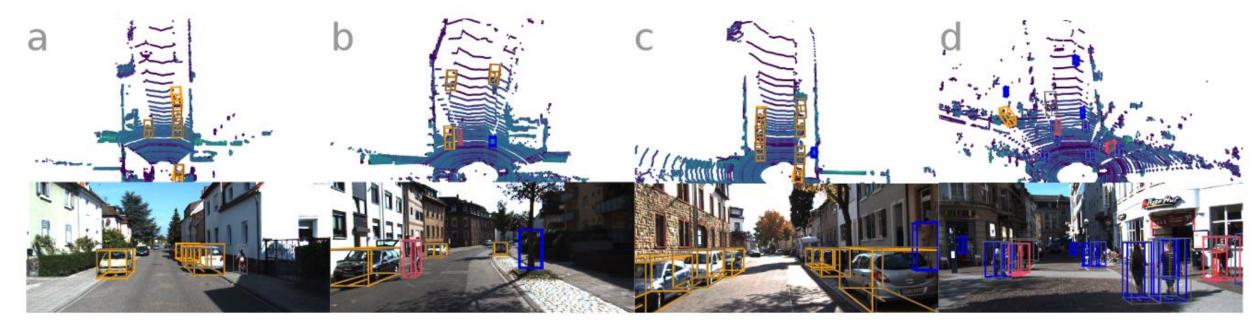
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

PointPillars



PointPillars: Fast Encoders for Object Detection from Point Clouds Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, Oscar Beijbom. CVPR 2019





- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

What You See Is What You Get Exploiting Visibility for 3D Object Detection

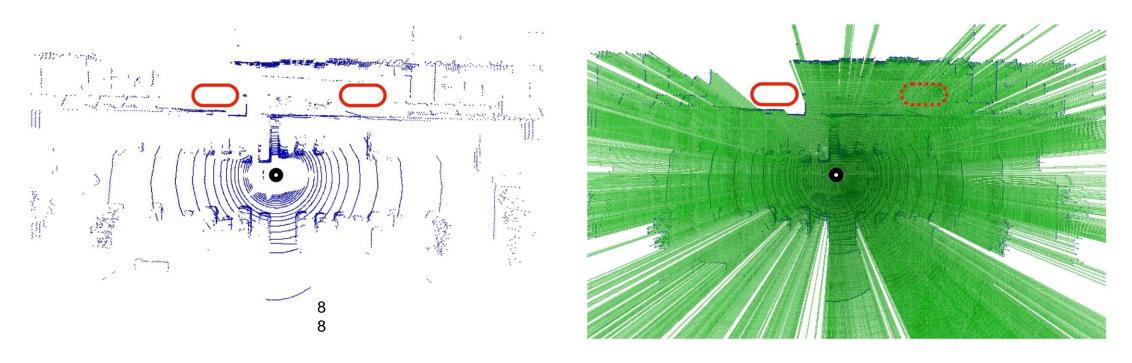
Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan

Carnegie Mellon University

Argo Al

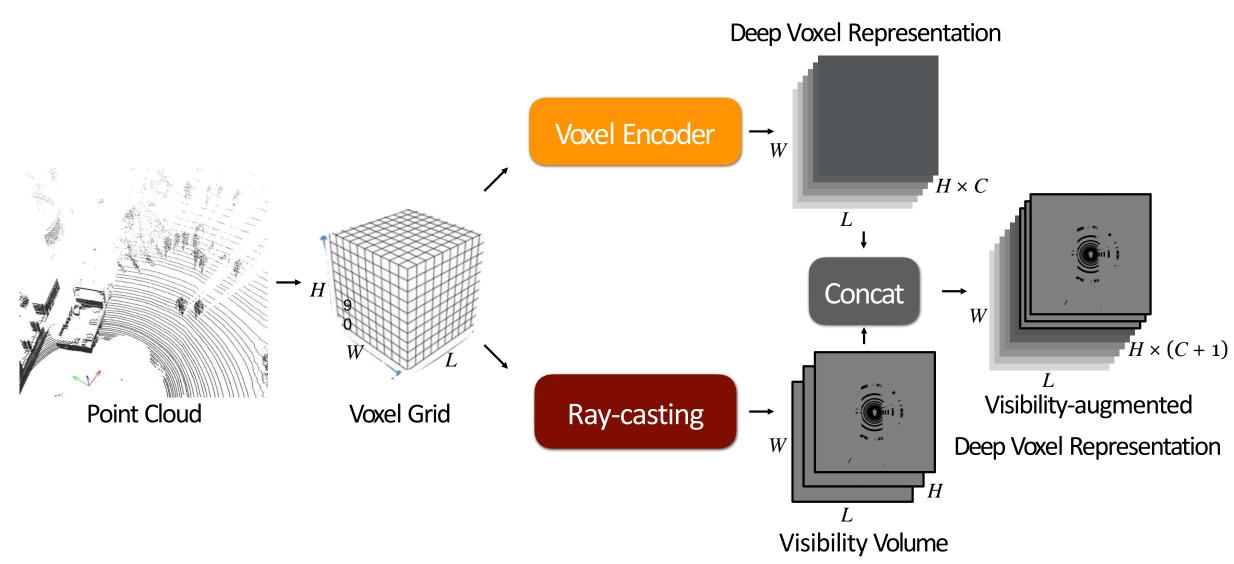
CVPR 2020

What is a good representation for LiDAR data?

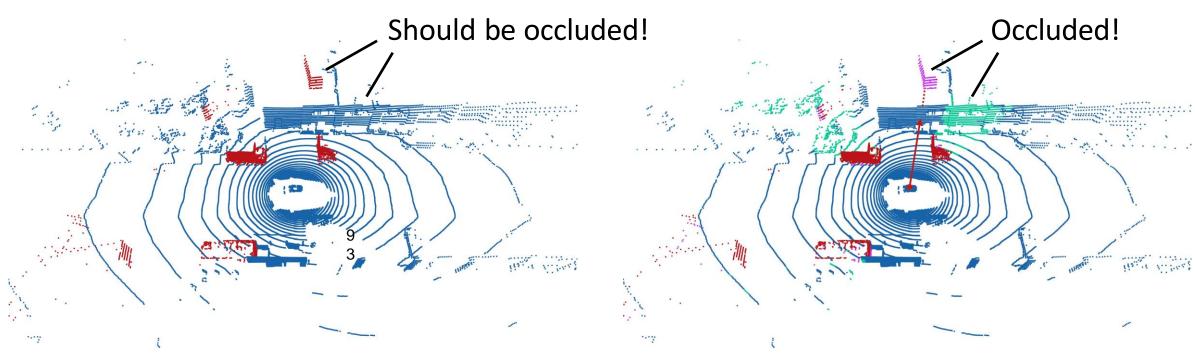


- LiDAR data provides more than just point measurements
- Rays emanating from the sensor to each 3D point must pass through free space
- Representing LiDAR data as (x, y, z)s fundamentally destroys such freespace information

A Simple Approach to Augment Visibility



Visibility-aware LiDAR Synthesis

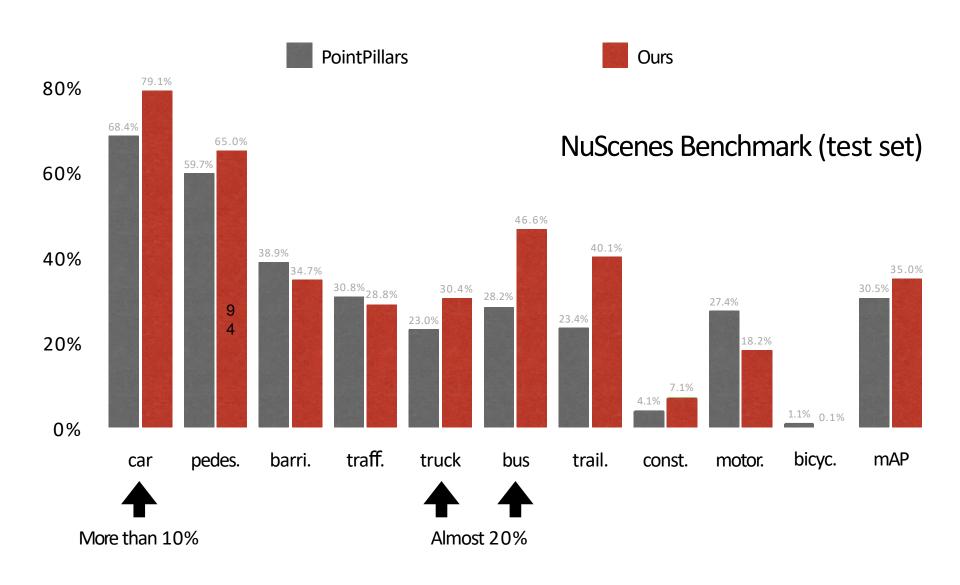


Naive Object Augmentation

PointPillars, Lang et al., CVPR'19 SECOND, Yan et al., Sensors'18

Visibility-aware Object Augmentation

Improve PointPillars by 4.5% in overall mAP



- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

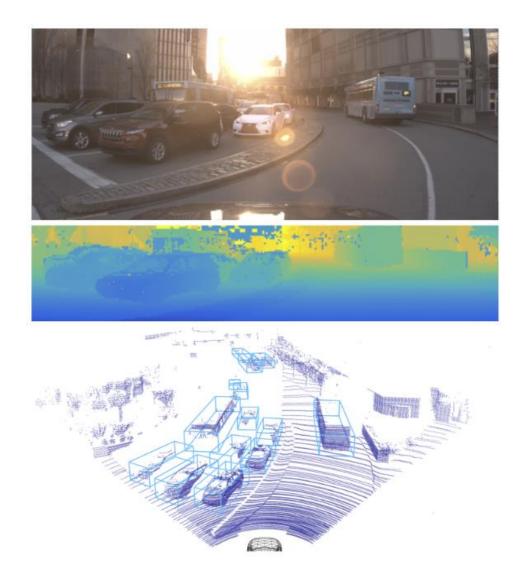


Table 4: BEV Object Detection Performance on KITTI

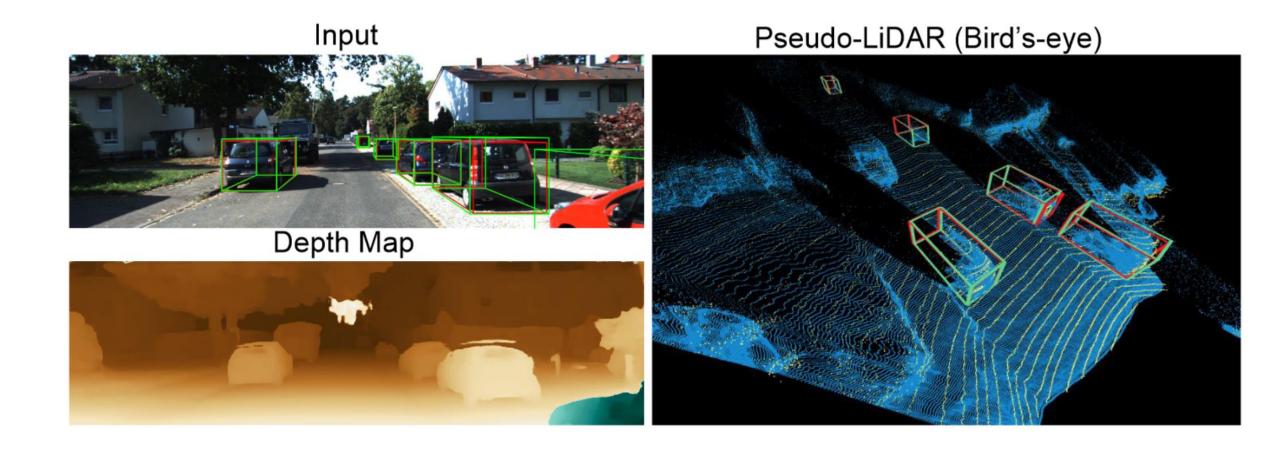
Method	Input	Vehicle $AP_{0.7}$				
Method	Input	Easy	Moderate	Hard		
LaserNet (Ours)	LiDAR	78.25	73.77	66.47		
PIXOR 28	LiDAR	81.70	77.05	72.95		
PIXOR++ 27	LiDAR	89.38	83.70	77.97		
VoxelNet 30	LiDAR	89.35	79.26	77.39		
MV3D 5	LiDAR+RGB	86.02	76.90	68.49		
AVOD [15]	LiDAR+RGB	88.53	83.79	77.90		
F-PointNet 22	LiDAR+RGB	88.70	84.00	75.33		
ContFuse [17]	LiDAR+RGB	88.81	85.83	77.33		

Table 3: Runtime Performance on KITTI

Method	Forward Pass (ms)	Total (ms)
LaserNet (Ours)	12	30
PIXOR 28	35	62
PIXOR++ 27	35	62
VoxelNet 30	190	225
MV3D 30	-	360
AVOD [15]	80	100
F-PointNet [22]	-	170
ContFuse [17]	60	-

LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving Gregory P. Meyer*, Ankit Laddha*, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington Uber Advanced Technologies Group. CVPR 2019

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing



Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger. CVPR 2019

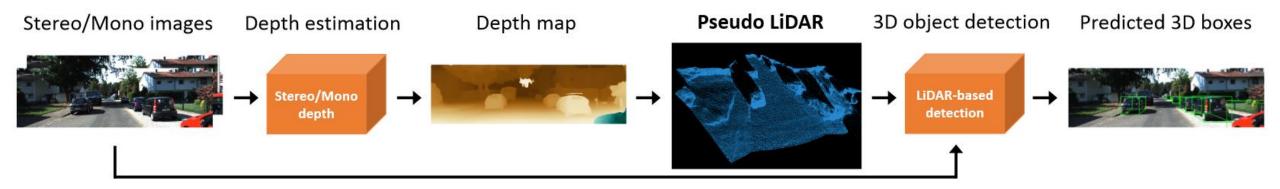
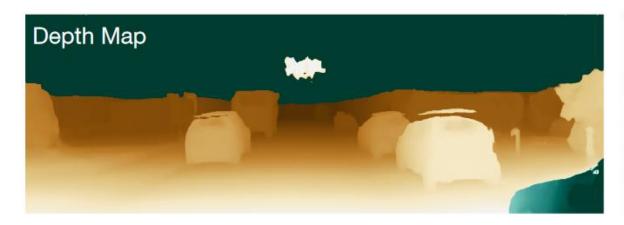
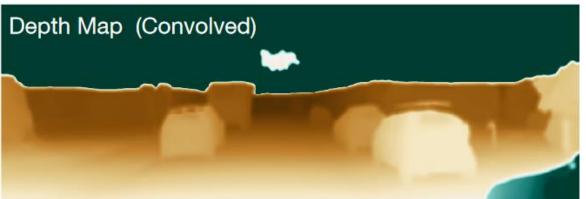
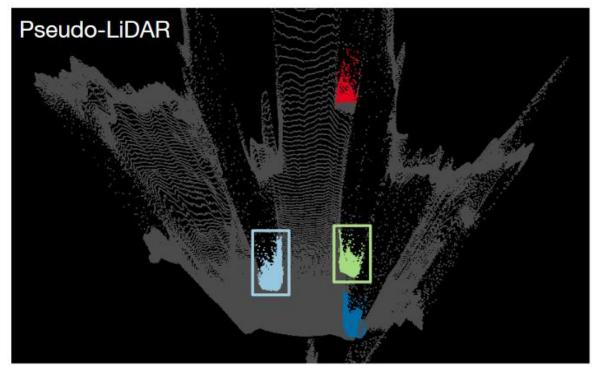


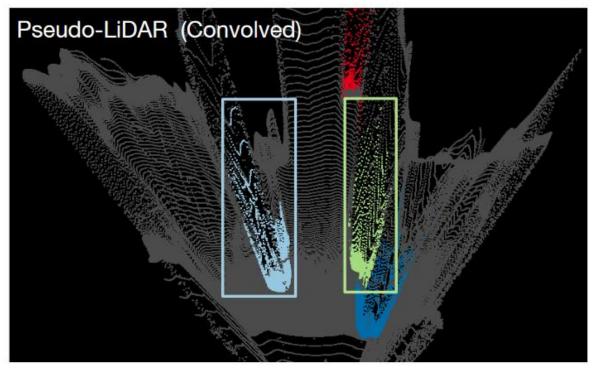
Table 1: 3D object detection results on the KITTI validation set. We report AP_{BEV} / AP_{3D} (in %) of the **car** category, corresponding to average precision of the bird's-eye view and 3D object box detection. Mono stands for monocular. Our methods with *pseudo-LiDAR* estimated by PSMNET* [3] (stereo) or DORN [10] (monocular) are in blue. Methods with LiDAR are in gray. Best viewed in color.

			IoU = 0.5		IoU = 0.7			
Detection algorithm	Input signal	Easy	Moderate	Hard	Easy	Moderate	Hard	
Mono3D [4]	Mono	30.5 / 25.2	22.4 / 18.2	19.2 / 15.5	5.2 / 2.5	5.2 / 2.3	4.1 / 2.3	
MLF-MONO [33]	Mono	55.0 / 47.9	36.7 / 29.5	31.3 / 26.4	22.0 / 10.5	13.6 / 5.7	11.6 / 5.4	
AVOD	Mono	61.2 / 57.0	45.4 / 42.8	38.3 / 36.3	33.7 / 19.5	24.6 / 17.2	20.1 / 16.2	
F-POINTNET	Mono	70.8 / 66.3	49.4 / 42.3	42.7 / 38.5	40.6 / 28.2	26.3 / 18.5	22.9 / 16.4	
3DOP [5]	Stereo	55.0 / 46.0	41.3 / 34.6	34.6 / 30.1	12.6 / 6.6	9.5 / 5.1	7.6 / 4.1	
MLF-STEREO [33]	Stereo	-	53.7 / 47.4	_	-	19.5 / 9.8	_	
AVOD	Stereo	89.0 / 88.5	77.5 / 76.4	68.7 / 61.2	74.9 / 61.9	56.8 / 45.3	49.0 / 39.0	
F-POINTNET	Stereo	89.8 / 89.5	77.6 / 75.5	68.2 / 66.3	72.8 / 59.4	51.8 / 39.8	44.0 / 33.5	
AVOD [17]	LiDAR + Mono	90.5 / 90.5	89.4 / 89.2	88.5 / 88.2	89.4 / 82.8	86.5 / 73.5	79.3 / 67.1	
F-POINTNET [25]	LiDAR + Mono	96.2 / 96.1	89.7 / 89.3	86.8 / 86.2	88.1 / 82.6	82.2 / 68.8	74.0 / 62.0	









Summary

- Popular CNN backbones aren't a direct fit for 3D point processing tasks.
- It's not clear how to use deep learning on 3D data
 - Use a truly permutation invariant representation (PointNet)
 - Render multiple 2D views of the 3D data
 - Use a voxel representation (VoxelNet)
 - Use a bird's a view representation (PointPillars)
 - Create a range image (LaserNet)
- These alternate representations might be applicable more broadly, e.g. reasoning about depth estimates might be easier in bird's eye view (PseudoLidar)