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The Sampling Problem

Input: integrable function 𝑓: 𝑅𝑛 → 𝑅+, point 𝑥 s.t.

𝑓 𝑥 ≥ 𝛽, error parameter ε. 

Output:  Point y from a distribution within “distance” ε
of distribution with density proportional to f.

Examples:  𝑓 𝑥 = 1𝐾 𝑥 , 𝑓 𝑥 = 𝑒−𝑎 𝑥 1𝐾(𝑥)



The Sampling Problem

Problem: sample a point from the uniform distribution on a 
given convex set K or according to a logconcave density 𝑓.

 Oracle setting: membership for 𝐾 or value of function 𝑓.

 Polytope setting: 𝐾 = {𝐴𝑥 ≥ 𝑏}.

Why: 

 Compute volume, center of gravity, covariance matrix, …

 Robust/online/private optimization, model exploration, 
learning

 Provides a lens to understand convexity! 

 and optimization, and the model of computation



How to sample?   

Ball walk:

At x,   pick random y from 𝑥 + 𝛿𝐵𝑛
if y is in K, go to y

 The process is symmetric 

 So the stationary distribution is uniform

 Discrete time version of Brownian motion with 

reflection.



Hit-and-Run

[Boneh],[Smith]

At x,  pick a random chord L through x

go to a uniform random point y on L

 Random walk is symmetric,

 stationary distribution is uniform

 No need to have a step-size parameter 𝛿

 Coordinate Hit-and-Run: pick random axis direction



Dikin Walk

At x,  

pick random y from 𝐸𝑥 = {𝑦: 𝐴𝑥 𝑦 − 𝑥 ≤ 1}

if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦



Hamiltonian Monte Carlo
Hamiltonian: function of position and velocity. 

Each step is according to an ODE defined by the Hamiltonian:

𝑑𝑥

𝑑𝑡
=
𝜕𝐻 𝑥, 𝑣

𝜕𝑣

𝑑𝑣

𝑑𝑡
= −

𝜕𝐻 𝑥, 𝑣

𝜕𝑥

Ham walk:  To sample according to 𝑒−𝑓(𝑥), set 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 + log 2𝜋 𝑛𝑔 𝑥 + 𝑣𝑇𝑔 𝑥 −1𝑣

At current point 𝑥,

 Pick a random velocity 𝑣 according to a local distribution 𝑁(0, 𝑔 𝑥 −1)
defined by 𝑥 (in the Euclidean setting, this is a standard Gaussian).

 Move along the curve defined by Hamiltonian dynamics at (𝑥, 𝑣) for time 𝛿
or −𝛿, each with probability 0.5.



State of the art, in theory

General Gaussian Uniform Uniform

Logconcave in Convex Body in Convex Body        in Polytope

[Lovász-V’06] [Cousins-V’15] [Jia-Laddha-Lee-V’21]    [JLLV’21]

𝑛4 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑛3+𝑜(1) ⋅ 𝑛2 𝑚𝑛3.2

𝑛2+𝑜(1) ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑛2+𝑜(1) ⋅ 𝑛2 𝑚𝑛2.3 (warm start)

Ball walk /H-and-R    Ball walk Ball walk Ball walk

RHMC: 𝑚𝑛2/3 ⋅ 𝑚𝑛1.38

Weighted Dikin: 𝑛2 ⋅ 𝑚𝑛1.38

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.

Year/Authors                                        New ingredients                  Steps 

1989/Dyer-Frieze-Kannan                      Everything                           𝑛23

1990/Lovász-Simonovits Better isoperimetry 𝑛16

1990/Lovász Ball walk                             𝑛10

1991/Applegate-Kannan Logconcave sampling            𝑛10

1990/Dyer-Frieze Better error analysis             𝑛8

1993/Lovász-Simonovits Localization lemma               𝑛7

1997/Kannan-Lovász-Simonovits Speedy walk, isotropy            𝑛5

2003/Lovász-V. Annealing, hit-and-run           𝑛4

2015/Cousins-V. (well-rounded)             Gaussian Cooling                  𝑛3

2017/Lee-V. (polytopes) Hamiltonian Walk          𝑚𝑛2/3

2021/Jia-Lee-Laddha-V.                           Better Rounding                   𝑛3



Convergence depends on isoperimetry

 Technique [LS93]:  “conductance” of Markov chain is large. 

 (one-step overlap): Nearby points have overlapping one-step 

distributions

 (isoperimetry) Large subsets have large boundaries:

𝜋 𝑆3 ≥ 𝐶 ⋅ 𝑑 𝑆1, 𝑆2 min𝜋 𝑆1 , 𝜋 𝑆2



Convergence of ball walk

Theorem [KLS97]. The ball walk applied to a near-isotropic

logconcave density 𝑝, from a warm start, converges in 

𝑂∗ 𝑛2𝜓𝑝
2 steps.  

“Cheeger constant of this Markov chain is determined by 

Cheeger constant of its stationary distribution”

1

𝜓𝑝
= min

𝑆

𝑝(𝜕𝑆)

min(𝑝 𝑆 , 𝑝 𝑆𝑐 )



Gaussian Cooling

Thm [Cousins-V’15]. The complexity of sampling/volume 
computation of any well-rounded convex body is 𝑂∗(𝑛3)
membership queries.

 Well-rounded: 𝐾 contains a unit ball and 

𝐸 𝑥 − ҧ𝑥 2 = ෨𝑂 𝑛

 Most of K lies in a ball of radius ෨𝑂 𝑛
 No warm start assumption

 [LV03]: can put K in near-isotropic position in 𝑛4.

 Isotropic position (𝐸 𝑥 = 0; 𝐸 𝑥𝑥⊤ = 𝐼) ⇒ well-rounded 

 LV rounding + CV algorithm → 𝑛4 sampling for any 𝐾.



Rounding and KLS?

 Can we round faster than 𝑛4 ?

Thm [Jia-Laddha-Lee-V’21].  Any convex body can be brought 

into near-isotropic position using ෨𝑂 𝑛3𝜓𝑛
2 membership queries.

Cor.  Sampling/Volume of any convex body in 𝑂∗ 𝑛3𝜓𝑛
2 .

 𝑛2𝜓𝑛
2 for subsequent samples, since we will have a warm start 

in an isotropic body.



Sampling
Ball Walk, with membership oracle 

At x,   pick random y from 𝑥 + 𝛿𝐵𝑛
if y is in K, go to y

Thm [KLS97]. 

𝑛5 queries for first sample, 𝑛3 queries for later samples.

KLS conjecture ⇒ 𝑛2 for later samples (“warm start” and “isotropic density”)

Thm [Jia-Laddha-LV21] 

𝑛3 for first sample.

Thm. [Klartag-Lehec22] KLS true up to polylog. 

⇒ 𝑛2 for later samples.

Q. Best possible?



Rounding and Integration (Volume)
Thm. [DFK89]

Volume of a convex body in 𝑛23 oracle calls.

Thm. [LV06]

Integration of a logconcave function in 𝑛4 oracle calls.

Thm. [Cousins-V.15]

Volume of well-rounded convex body in 𝑛3.

Rounding problem: 

Find affine transformation s.t.𝑦 = 𝐴𝑥 has 𝐸 𝑦 = 0, 𝐸 𝑦𝑦⊤ ≃ 𝐼.

Thm. [JLLV21]

Rounding in 𝑛3.

Q. Is quadratic the best possible?



Why “so” slow?

 Bottleneck: Step size, i.e., can only take small steps to 

maintain polytime, roughly 1/ 𝑛. 

 If larger, most steps are wasted, i.e., go outside the body, 

even in a hypercube. 

 How about bigger steps deeper inside, smaller steps near 

boundary? 

 Can we use the “local” geometry?



Hessian manifold: a subset of ℝ𝑛 with inner product 

𝑢, 𝑣 𝑥 = 𝑢𝑇 𝛻2𝜙 𝑥 𝑣 for convex 𝜙. 

For a polytope 𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖 ∀𝑖 ,

we use the log barrier function:

𝜙 𝑥 = σ𝑖=1
𝑚 log

1

𝑠𝑖 𝑥

▪ 𝑠𝑖 𝑥 = 𝑎𝑖
𝑇𝑥 − 𝑏𝑖 is the distance from 𝑥 to constraint 𝑖

▪ 𝜙 blows up when 𝑥 is close to the boundary

▪ Distances “stretch” near the boundary

Polytope → Hessian manifold



Local geometry from Convex Barriers
 Smooth, self-concordant, convex barrier function 𝜙:𝑃 → 𝑅+

 Blows up near the boundary

 Classical example for 𝑥𝑖 ≥ 0: 𝜙 𝑥 = −σ𝑖 log 𝑥𝑖

 ∇2𝜙 𝑥 = 𝐷𝑖𝑎𝑔
1

𝑥𝑖
2

 The ellipsoid 𝐸(𝑥) defined by ∇2𝜙 satisfies:

𝐸 𝑥 ⊆ 𝐾 ∩ (2𝑥 − 𝐾) ⊆ 𝜈𝐸(𝑥)



Interior-Point Method
 [Nesterov-Nemirovski94, following Dikin, Karmarkar,…]

 Instead of minimizing 𝑐⊤𝑥, consider 𝑐⊤𝑥 + 𝑡 ⋅ 𝜙(𝑥) where
 Easier to minimize smooth convex functions (Newton iteration)

 Gradually reduce 𝑡:

𝑡 ← 𝑡 1 −
1

𝜈
 where 𝜈 is the symmetry parameter

 #iterations: 𝜈

 Sequence of optimal points, the central path, is strictly interior

 𝜙 needs to be self-concordant, i.e., Hessian 𝐻 𝑥 = ∇2𝜙 𝑥
changes slowly:

𝐻(𝑥)−1/2𝐷𝐻 𝑥 [ℎ]𝐻(𝑥)−1/2 ≤ 2ℎ𝑇𝐻 𝑥 ℎ

(when 𝐻 𝑥 = 𝐼, then this is 𝐷𝐻 𝑥 ℎ ≤ 2 ℎ 2 )



Interior-Point Method 2.0

 Has led to improvements in the past decade for 

Combinatorial Optimization and Linear Programming!

 Universal barrier: 𝜈 = 𝑛 + 1, time: 𝑝𝑜𝑙𝑦(𝑛)

 Entropic barrier: 𝜈 = 𝑛, time: 𝑝𝑜𝑙𝑦(𝑛)

 Log barrier: 𝜈 = 𝑚, fast

 Thm. [LS14] Weighted log barrier: 𝜈 = ෨𝑂(𝑛), fast!

 Implies 𝑛 iterations to solve a linear program with one linear 

system per iteration



Sampling with an adaptive step size
 Use the ellipsoid defined by the Hessian of a convex function!

 Hessian 𝐻 = ∇2𝜙 defines a local metric: 𝑣 𝑥
2 = 𝑣⊤𝐻 𝑥 𝑣.

 Dikin walk:  At x,  
 pick random y from 𝐸𝑥 = 𝑦: 𝐴𝑥 𝑦 − 𝑥 ≤ 1

 if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦

 For log barrier, 𝐴𝑥 = 𝐷𝑖𝑎𝑔
1

𝑠𝑖 𝑥
𝐴

 Each row is scaled by distance to boundary

 𝐻 𝑥 = 𝐴𝑥
⊤𝐴𝑥

Thm. [K-Narayanan12]

Dikin walk with log barrier mixes in 𝑚𝑛 steps, 𝑚𝑛𝜔−1 per step.



Weighted Dikin walk

 Dikin walk:  At x,  

 pick random y from 𝐸𝑥 = 𝑦: 𝐻 𝑥 1/2 𝑦 − 𝑥 ≤ 1

 if 𝑥 ∈ 𝐸𝑦, go to 𝑦 with prob. min 1,
vol 𝐸𝑥

vol 𝐸𝑦

Thm. [K-Narayanan12]

Mixes in 𝑚𝑛 steps, 𝑚𝑛𝜔−1 per step.

Thm. [Laddha-LV20]

Mixes in 𝑛𝜈 steps for any strongly self-concordant barrier.

 Log barrier: 𝑚𝑛 steps, 𝑛𝑛𝑧 𝐴 + 𝑛2 per step.

 Weighted log barrier: 𝑛2 steps,  𝑚𝑛𝜔−1 per step. 

 Strongly self-concordant: 

𝐻 𝑥 −1/2𝐷𝐻 𝑥 ℎ 𝐻 𝑥 −1/2
𝐹
= 𝑂 ℎ𝑇𝐻 𝑥 ℎ



Isoperimetry
 Isoperimetry is in a non-Euclidean metric: For any partition of a 

convex body 𝐾 into subsets 𝑆1, 𝑆2, 𝑆3, 

𝑝 𝑆3 ≥ 𝑑𝐾 𝑆1, 𝑆2 𝑝 𝑆1 𝑝(𝑆2)

Cross-ratio distance:

𝑑𝐾 𝑢, 𝑣 =
𝑢−𝑣 𝑥−𝑦

𝑥−𝑢 𝑣−𝑦

Hilbert distance:  

𝑑𝐻 𝑢, 𝑣 = log(1 + 𝑑𝐾(𝑢, 𝑣))
is a metric.

Q. Does weighted Dikin mix in 𝑛 steps? (𝑚𝑛 is tight for log barrier)

 Aside: KLS conjecture ⇒ strong self-concordance for Universal and 
Entropic barriers ☺



The rejection probability bounds step size

 How to take a larger step?

 Can we avoid the Metropolis filter?

 Let’s use a deterministic “drift” instead.



Riemannian Hamiltonian Montian Carlian

Hamiltonian: function of position and velocity. 

Each step is according to an ODE defined by the Hamiltonian:

𝑑𝑥

𝑑𝑡
=
𝜕𝐻 𝑥, 𝑣

𝜕𝑣

𝑑𝑣

𝑑𝑡
= −

𝜕𝐻 𝑥, 𝑣

𝜕𝑥

Ham walk:  To sample according to 𝑒−𝑓(𝑥), set 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 +
1

2
log 2𝜋 𝑛 det 𝑔 𝑥 +

1

2
𝑣𝑇𝑔 𝑥 −1𝑣

At current point 𝑥,

 Pick a random velocity 𝑣 according to a local distribution 𝑁(0, 𝑔 𝑥 −1)
defined by 𝑥 (in the Euclidean setting, this is a standard Gaussian).

 Move along the curve defined by Hamiltonian dynamics at (𝑥, 𝑣) for time 𝛿
or −𝛿, each with probability 0.5.



Convergence of RHMC
Thm [Lee-V.17]: With log barrier, RHMC mixes in ෨𝑂 𝑚𝑛2/3 steps.

 Subquadratic! 

Thm [Lee-V.17]: For log barrier on 0,1 𝑛, RHMC mixes in ෨𝑂(1) steps.

 Previous algorithms such as ball walk, hit-and-run and Dikin walk take Ω(𝑛)
steps for 0,1 𝑛.

 Each step is the solution of a linear system, so 𝑚𝑛𝜔−1

Q: Can we use dynamic data structures to reduce the per-step cost?

Q:  What is the best metric to use that is still computable?

Q:  What is the right KLS conjecture in the Hessian manifold setting?



Constrained RHMC

 Typical problems often have equality constraints 𝐴𝑥 = 𝑏.

 Pick the metric 𝑔 in the subspace: 

𝐻 𝑥, 𝑣 = 𝑓 𝑥 +
1

2
||𝑣||

𝑔 𝑥 †
2 +

1

2
log pdet𝑔(𝑥).

CRHMC Algo:

 Sample 𝑣~𝑒−𝐻(𝑥,𝑣) (conditional on 𝑥)

 𝑥, 𝑣 ← 𝑇(𝑥, 𝑣) (𝑇 preserves the density 𝑒−𝐻(𝑥,𝑣))

The map 𝑇(𝑥, 𝑣) is given by an ODE (solved at 𝑡 = 1)
𝑑𝑥

𝑑𝑡
=
𝑑𝐻

𝑑𝑣
,

𝑑𝑣

𝑑𝑡
= −

𝑑𝐻

𝑑𝑥
, 𝑥 0 = 𝑥, 𝑣 0 = 𝑣.



State of the art, in theory

General Gaussian Uniform Uniform

Logconcave in Convex Body in Convex Body        in Polytope

[Lovász-V’06] [Cousins-V’15] [Jia-Laddha-Lee-V’21]    [JLLV’21]

𝑛4 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑛3 ⋅ 𝑛2 𝑚𝑛3.2

𝑛2 ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑛2 ⋅ 𝑛2 𝑚𝑛2.3 (warm start)

Ball walk /H-and-R    Ball walk Ball walk Ball walk

RHMC: 𝑚𝑛2/3 ⋅ 𝑚𝑛1.38

Weighted Dikin: 𝑛2 ⋅ 𝑚𝑛1.38

“In Theory today, Ball Walk is Best,” i.e., fastest known polynomial-time algorithm.



State of the art, in practice: CRHMC* 

 Ronan Fleming gave us the latest, largest metabolic model.

 670,114 reactions and 585,662 Metabolites

 Zero’th-order methods take forever

 Existing first-order packages 

simply can’t move at all.

 CRHMC takes <1 hr

per sample

 Can also sample polytopes 

in netlib (notoriously degenerate)

*: pronounced CRuHMCh



You can try it!

 https://github.com/ConstrainedSampler/PolytopeSampler

Matlab

 With Yunbum Kook, Yin Tat Lee, Ruoqi Shen (2022)

 Now in COBRA, the leading system biology analysis tool 

(Ronan Fleming, Ines Thiele et al.)

https://github.com/ConstrainedSampler/PolytopeSamplerMatlab


Earlier packages for Volume/Sampling 

 Cousins-V’ (circa 2013)

 MATLAB (“A Practical Volume Algorithm”, Math. Prog. C 2016) 

 incorporated in COBRA (with R. Fleming, H. Haroldsdottir)

 Computes volume using a membership oracle

 Goes up to 1000 full-dimensional polytopes on laptop in < 1hr.

 https://www.mathworks.com/matlabcentral/fileexchange/43596

-volume-and-sampling

 VolEsti (Fisikopoulos et al.)

 C++ (Emris-Fisikopoulos, ACM Trans. on Math. Software 2018)

 Reported better run times for some benchmarks

 https://github.com/GeomScale/volume_approximation

https://www.mathworks.com/matlabcentral/fileexchange/43596-volume-and-sampling
https://github.com/GeomScale/volume_approximation


Continuous Algorithms

OPT: 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 (GD)

Sampling: 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 + 2𝑑𝐵𝑡 (LD)

 Langevin Diffusion converges to distribution with density 

proportional to 𝑒−𝑓(𝑥)

Thm. [Jordan-Kinderlehrer-Otto98; Wibisono18] 

Sampling by LD is optimization in the space of measures 

with Wasserstein metric and objective relative entropy to 

target 𝑒−𝑓. 



Can we sample faster?

 Brownian motion SDE: 

𝑑𝑥𝑡 = 𝜇 𝑥𝑡, 𝑡 𝑑𝑡 + 2𝐴 𝑥𝑡, 𝑡 𝑑𝑊𝑡

 Each point 𝑥 ∈ 𝐾 has its own local scaling (metric) given by 𝐴(𝑥𝑡 , 𝑡).

Thm. [Fokker-Planck] Diffusion equation of above SDE is 

𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 = −

𝑖

𝑛
𝜕

𝜕𝑥𝑖
𝜇 𝑥, 𝑡 𝑝 𝑥, 𝑡 +

1

2


𝑖

𝑛



𝑗

𝑛
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[2𝐴𝑖𝑗 𝑥, 𝑡 𝑝 𝑥, 𝑡 ]

 When 𝜇 = 0, 𝐴 = 𝐼, this is the heat equation: 
𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 =

1

2
Δ𝑝(𝑥, 𝑡).

 For any metric, SDE gives diffusion equation.  

 Using 𝜇 𝑥 = −𝐷𝑓(𝑥) gives stationary 𝑝 𝑥 = 𝑒−𝑓(𝑥). 



 Rate of convergence?    

 𝑑𝑋𝑡 = −∇𝑓 𝑋𝑡 𝑑𝑡 + 2𝑑𝐵𝑡

Thm. [Bakry-Gentil-Ledoux14]    𝐻𝜈 𝜌𝑡 ≤ 𝑒−2𝛼𝑡𝐻𝜈(𝜌0)

Here 𝛼 is the Log-Sobolev constant of 𝑒−𝐹 wrt the metric.

𝐻𝜈 𝜌 = 𝐸𝜌 log
𝜌

𝜈
≤

1

2𝛼
𝐸𝜌 log

𝜌

𝜈

2

=
1

2𝛼
𝐼𝜈(𝜌)

 Proof notes that 
𝑑𝜌

𝑑𝑡
= −∇𝜌𝐻𝜈(𝜌) and LSI is “gradient 

domination.

 How about an algorithm? 

Sampling by Diffusion: Isoperimetry suffices 



Diffusion→Algorithm: Isoperimetry suffices

 Unadjusted Langevin Algorithm:  

𝑋𝑘+1 = 𝑋𝑘 − ℎ∇𝑓 𝑋𝑘 + 2ℎ 𝑍 where 𝑍 ∼ 𝑁(0, 𝐼)

Thm.[V.-Wibisono19] Assuming 𝑓 is 𝐿-smooth ( ∇𝑓 ≤ 𝐿), 

𝐻𝜈 𝜌𝑘 ≤ 𝑒−ℎ𝛼𝑘𝐻𝜈 𝜌0 +
8𝐿2𝑛

𝛼
ℎ.

So, with ℎ = 𝛼𝛿/𝑛𝐿2, 

after 𝑘 =
𝑛𝐿2

𝛿
log(

2𝐻𝜈 𝜌0

𝛿
) steps, we have 𝐻𝜈 𝜌𝑘 ≤ 𝛿.

 Note: no convexity assumption; dependence on dimension is linear. 

 An active field, with many results based on smoothness parameters 
for interesting classes of functions.



 What about using local geometry?

Riemannian Langevin Diffusion

 In Euclidean coordinates:

𝑑𝑋𝑡 = 𝐷 ⋅ 𝑔 𝑋𝑡
−1 − 𝑔 𝑋𝑡

−1𝐷𝑓 𝑋𝑡 𝑑𝑡 + 2𝑔 𝑥 −1𝑑𝐵𝑡

 In manifold local coordinates:

𝑑𝑋𝑡 = ∇ ⋅ 𝑔 𝑋𝑡
−1 − ∇𝐹 𝑋𝑡 𝑑𝑡 + 2𝑔 𝑥 −1𝑑𝐵𝑡

 where ∇ is the manifold derivative, 𝐹(𝑥) = 𝑓(𝑥) +
1

2
log det 𝑔(𝑥)

 Convergence in KL-divergence under log-Sobolev inequality wrt manifold 
measure holds

In progress: Riemannian Langevin Algorithm  

 discretization of RLD [Erdogdu-Li21,  Ahn-Chewi21, Gatmiry-V.22]

Manifold Diffusion → Algorithm



The Story of Isoperimetry
KLS conjecture: Cheeger constant (expansion) of isotropic logconcave density 
is Ω 1 , or 

𝜓 = inf
𝜈 𝑆 ≤

1
2

𝜈𝑛 𝑆

𝜈𝑛−1 𝜕𝑆
= 𝑂 1 .

[KLS95] 𝑛

[Guedon-Milman] 𝑛1/3

[LV17] 𝑛1/4

[Chen20] 2 log 𝑛 log log 𝑛

[Klartag-Lehec22] log5 𝑛

…

Thm.[KLS97]. Sampling in 𝑛2𝜓2.

Thm.[JLLV21]. Rounding in 𝑛3𝜓2.

Thm.[CV15]. Volume of well-rounded body in 𝑛3.



Isoperimetry: the next decade
 How true is the KLS conjecture? Does it matter?

 Dimension-independent bound would be so nice

 Implies dimension-independent bounds for many other well-known, existing conjectures in 
convex geometry: Slicing, Thin-Shell, Central Limit, Concentration, Entropy Jump etc.

 But here’s a concrete TCS reason: 

KLS ⇒ Certifiable sub-Gaussianity [Kothari-Steinhardt17]

 If KLS is true, then there is an SoS proof of moment inequalities for any logconcave density. 

 This implies results on robustly clustering Gaussians can be generalized to robustly 
clustering logconcave densities! 

 Getting a constant is critical for polytime, with the SoS approach.

Q. Are they equivalent?! 

Almost: certifiable sub-Gaussianity ⇒ thin-shell ⇒ KLS is O log𝑛 .  



Isoperimetry: the next decade

 Q. What is the right KLS conjecture on Hessian 
manifolds?

An attempt: there is a subset defined by a hyperplane that is 
within 𝑂(1) of the minimum isoperimetry subset. 

 A decomposition conjecture for convex bodies (⇒ KLS).

Conj: For any isotropic convex body,

any decomposition of it into cylinders,

a constant fraction of the cylinders

must be of length 𝑂(1).

Cylinder: cross section is convex and has small diameter



Open Problems: Probability

Q2. When to stop? How to check convergence to 
stationarity on the fly? Does it suffice to check that the 
measures of all halfspaces have converged?

 Note: poly(n) sample can estimate all halfspace measures

 Ben Cousin’s uniformity test: 

Check if time spent in scaling (1 − 𝛼)𝐾 is (1 − 𝛼)𝑛.



Randomness

 Can we estimate the volume of an explicit polytope in 

deterministic polynomial time?

𝐴𝑥 ≤ 𝑏



Thank you!
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