The Manifold Joys of Sampling in High Dimension

Santosh S. Vempala Algorithms and Randomness Center, Georgia Tech The Sampling Problem

Input: integrable function $f: \mathbb{R}^n \to \mathbb{R}_+$, point x s.t. $f(x) \ge \beta$, error parameter ε .

Output: Point y from a distribution within "distance" ε of distribution with density proportional to f.

Examples: $f(x) = 1_K(x)$, $f(x) = e^{-a||x||} 1_K(x)$

Problem: sample a point from the uniform distribution on a given convex set K or according to a logconcave density f.

- Oracle setting: membership for K or value of function f.
- Polytope setting: $K = \{Ax \ge b\}$.

Why:

- Compute volume, center of gravity, covariance matrix, ...
- Robust/online/private optimization, model exploration, learning
- Provides a lens to understand convexity!
- and optimization, and the model of computation

How to sample?

Ball walk:

At x, pick random y from $x + \delta B_n$ if y is in K, go to y

- The process is symmetric
- So the stationary distribution is uniform
- Discrete time version of Brownian motion with reflection.

Hit-and-Run

[Boneh],[Smith]

At x, pick a random chord L through x

go to a uniform random point y on L

- Random walk is symmetric,
- stationary distribution is uniform
- No need to have a step-size parameter δ
- Coordinate Hit-and-Run: pick random axis direction

Dikin Walk

At x, pick random y from $E_x = \{y: ||A_x(y - x)|| \le 1\}$ if $x \in E_y$, go to y with prob. min 1, $\frac{\operatorname{vol}(E_x)}{\operatorname{vol}(E_y)}$

Hamiltonian Monte Carlo

Hamiltonian: function of position and velocity.

Each step is according to an ODE defined by the Hamiltonian:

$$\frac{dx}{dt} = \frac{\partial H(x,v)}{\partial v} \qquad \frac{dv}{dt} = -\frac{\partial H(x,v)}{\partial x}$$

Ham walk: To sample according to $e^{-f(x)}$, set

$$H(x,v) = f(x) + \log((2\pi)^n g(x)) + v^T g(x)^{-1} v$$

At current point x,

- Pick a random velocity v according to a local distribution $N(0, g(x)^{-1})$ defined by x (in the Euclidean setting, this is a standard Gaussian).
- Move along the curve defined by Hamiltonian dynamics at (x, v) for time δ or $-\delta$, each with probability 0.5.

State of the art, in theory

Year/Authors	New ingredients	Steps
1989/Dyer-Frieze-Kannan	Everything	n ²³
1990/Lovász-Simonovits	Better isoperimetry	n^{16}
1990/Lovász	Ball walk	n^{10}
1991/Applegate-Kannan	Logconcave sampling	n^{10}
1990/Dyer-Frieze	Better error analysis	n^8
1993/Lovász-Simonovits	Localization lemma	n^7
1997/Kannan-Lovász-Simonovits	Speedy walk, isotropy	n^5
2003/Lovász-V.	Annealing, hit-and-run	n^4
2015/Cousins-V. (well-rounded)	Gaussian Cooling	n^3
2017/Lee-V. (polytopes)	Hamiltonian Walk	$mn^{2/3}$
2021/Jia-Lee-Laddha-V.	Better Rounding	n^3

"In Theory today, Ball Walk is Best," i.e., fastest known polynomial-time algorithm.

Convergence depends on isoperimetry

- Technique [LS93]: "conductance" of Markov chain is large.
 - (one-step overlap): Nearby points have overlapping one-step distributions
 - (isoperimetry) Large subsets have large boundaries: $\pi(S_3) \ge C \cdot d(S_1, S_2) \min \pi(S_1), \pi(S_2)$

Convergence of ball walk

Theorem [KLS97]. The ball walk applied to a near-isotropic logconcave density p, from a warm start, converges in $O^*(n^2\psi_p^2)$ steps.

$$\frac{1}{\psi_p} = \min_{S} \frac{p(\partial S)}{\min(p(S), p(S^c))}$$

"Cheeger constant of this Markov chain is determined by Cheeger constant of its stationary distribution" Gaussian Cooling

Thm [Cousins-V'15]. The complexity of sampling/volume computation of any well-rounded convex body is $O^*(n^3)$ membership queries.

- Well-rounded: *K* contains a unit ball and $E(||x \bar{x}||^2) = \tilde{O}(n)$
- Most of K lies in a ball of radius $\tilde{O}(\sqrt{n})$
- No warm start assumption
- [LV03]: can put K in near-isotropic position in n^4 .
- ▶ Isotropic position $(E(x) = 0; E(xx^T) = I) \Rightarrow$ well-rounded
- LV rounding + CV algorithm $\rightarrow n^4$ sampling for any K.

Rounding and KLS?

• Can we round faster than n^4 ?

Thm [Jia-Laddha-Lee-V'21]. Any convex body can be brought into near-isotropic position using $\tilde{O}(n^3\psi_n^2)$ membership queries.

Cor. Sampling/Volume of any convex body in $O^*(n^3\psi_n^2)$.

> $n^2 \psi_n^2$ for subsequent samples, since we will have a warm start in an isotropic body.

Sampling

Ball Walk, with membership oracle

At x, pick random y from $x + \delta B_n$ if y is in K, go to y

Thm [KLS97].

 n^5 queries for first sample, n^3 queries for later samples.

KLS conjecture $\Rightarrow n^2$ for later samples ("warm start" and "isotropic density")

Thm [Jia-Laddha-LV21] n^3 for first sample.

Thm. [Klartag-Lehec22] KLS true up to polylog. $\Rightarrow n^2$ for later samples.

Q. Best possible?

Rounding and Integration (Volume)

Thm. [DFK89] Volume of a convex body in n^{23} oracle calls. Thm. [LV06] Integration of a logconcave function in n^4 oracle calls.

Thm. [Cousins-V.15] Volume of well-rounded convex body in n^3 .

Rounding problem: Find affine transformation s.t. y = Ax has $E(y) = 0, E(yy^{T}) \simeq I$.

Thm. [JLLV21] Rounding in n^3 .

Q. Is quadratic the best possible?

Why "so" slow?

- Bottleneck: Step size, i.e., can only take small steps to maintain polytime, roughly $1/\sqrt{n}$.
- If larger, most steps are wasted, i.e., go outside the body, even in a hypercube.
- How about bigger steps deeper inside, smaller steps near boundary?

Can we use the "local" geometry?

Polytope \rightarrow Hessian manifold

Hessian manifold: a subset of \mathbb{R}^n with inner product

 $\langle u, v \rangle_x = u^T (\nabla^2 \phi(x)) v$ for convex ϕ .

For a polytope $\{a_i^T x \ge b_i \ \forall i\}$,

we use the log barrier function:

$$\phi(x) = \sum_{i=1}^{m} \log\left(\frac{1}{s_i(x)}\right)$$

- $s_i(x) = a_i^T x b_i$ is the distance from x to constraint i
- ϕ blows up when x is close to the boundary
- Distances "stretch" near the boundary

Local geometry from Convex Barriers

- Smooth, self-concordant, convex barrier function $\phi: P \to R_+$
 - Blows up near the boundary
 - Classical example for $x_i \ge 0$: $\phi(x) = -\sum_i \log x_i$
 - $\nabla^2 \phi(x) = Diag\left(\frac{1}{x_i^2}\right)$
 - The ellipsoid E(x) defined by $\nabla^2 \phi$ satisfies:

 $E(x) \subseteq K \cap (2x - K) \subseteq \sqrt{\nu}E(x)$

Interior-Point Method

- [Nesterov-Nemirovski94, following Dikin, Karmarkar,...]
- Instead of minimizing $c^{\top}x$, consider $c^{\top}x + t \cdot \phi(x)$ where
 - Easier to minimize smooth convex functions (Newton iteration)
 - Gradually reduce *t*:

$$t \leftarrow t\left(1 - \frac{1}{\sqrt{\nu}}\right)$$

- where ν is the symmetry parameter
- #iterations: $\sqrt{\nu}$
- Sequence of optimal points, the central path, is strictly interior
- ϕ needs to be self-concordant, i.e., Hessian $H(x) = \nabla^2 \phi(x)$ changes slowly: $\|H(x)^{-1/2}DH(x)[h]H(x)^{-1/2}\| \le 2h^T H(x)h$

(when H(x) = I, then this is $||DH(x)[h]|| \le 2||h||^2$)

Interior-Point Method 2.0

- Has led to improvements in the past decade for Combinatorial Optimization and Linear Programming!
 - Universal barrier: v = n + 1, time: poly(n)
 - Entropic barrier: v = n, time: poly(n)
 - Log barrier: $\nu = m$, fast
- Thm. [LSI4] Weighted log barrier: $v = \tilde{O}(n)$, fast!
 - Implies \sqrt{n} iterations to solve a linear program with one linear system per iteration

Sampling with an adaptive step size

- Use the ellipsoid defined by the Hessian of a convex function!
- Hessian $H = \nabla^2 \phi$ defines a local metric: $\|v\|_x^2 = v^T H(x)v$.
- Dikin walk: At x,
 - pick random y from $E_x = \{y: ||A_x(y-x)|| \le 1\}$
 - if $x \in E_y$, go to y with prob. min $\left\{1, \frac{\operatorname{vol}(E_x)}{\operatorname{vol}(E_y)}\right\}$

For log barrier,
$$A_x = Diag\left(\frac{1}{s_i(x)}\right)A$$

Each row is scaled by distance to boundary

 $H(x) = A_x^{\mathsf{T}} A_x$

Thm. [K-Narayanan 12]

Dikin walk with log barrier mixes in mn steps, $mn^{\omega-1}$ per step.

Weighted Dikin walk

- Dikin walk: At x,
 - pick random y from $E_x = \{y: ||H(x)^{1/2}(y-x)|| \le 1\}$
 - if $x \in E_y$, go to y with prob. min 1, $\frac{\operatorname{vol}(E_x)}{\operatorname{vol}(E_y)}$

Thm. [K-Narayanan I2] Mixes in mn steps, $mn^{\omega-1}$ per step.

Thm. [Laddha-LV20]

Mixes in nv steps for any strongly self-concordant barrier.

- Log barrier: mn steps, $nnz(A) + n^2$ per step.
- Weighted log barrier: n^2 steps, $mn^{\omega-1}$ per step.
- Strongly self-concordant:

 $\left\| H(x)^{-1/2} DH(x)[h] H(x)^{-1/2} \right\|_{F} = O(h^{T} H(x)h)$

Isoperimetry

▶ Isoperimetry is in a non-Euclidean metric: For any partition of a convex body K into subsets S_1, S_2, S_3 , $p(S_3) \ge d_K(S_1, S_2)p(S_1)p(S_2)$

Q. Does weighted Dikin mix in n steps? (mn is tight for log barrier)

 Aside: KLS conjecture ⇒ strong self-concordance for Universal and Entropic barriers ☺ The rejection probability bounds step size

- How to take a larger step?
- Can we avoid the Metropolis filter?
- Let's use a deterministic "drift" instead.

Riemannian Hamiltonian Montian Carlian

Hamiltonian: function of position and velocity.

Each step is according to an ODE defined by the Hamiltonian:

$$\frac{dx}{dt} = \frac{\partial H(x,v)}{\partial v} \qquad \frac{dv}{dt} = -\frac{\partial H(x,v)}{\partial x}$$

Ham walk: To sample according to $e^{-f(x)}$, set

$$H(x,v) = f(x) + \frac{1}{2}\log((2\pi)^n \det g(x)) + \frac{1}{2}v^T g(x)^{-1}v$$

At current point *x*,

- Pick a random velocity v according to a local distribution $N(0, g(x)^{-1})$ defined by x (in the Euclidean setting, this is a standard Gaussian).
- Move along the curve defined by Hamiltonian dynamics at (x, v) for time δ or $-\delta$, each with probability 0.5.

Convergence of RHMC

Thm [Lee-V.17]: With log barrier, RHMC mixes in $\tilde{O}(mn^{2/3})$ steps.

• Subquadratic!

Thm [Lee-V.17]: For log barrier on $[0,1]^n$, RHMC mixes in $\tilde{O}(1)$ steps.

- Previous algorithms such as ball walk, hit-and-run and Dikin walk take $\Omega(n)$ steps for $[0,1]^n$.
- Each step is the solution of a linear system, so $mn^{\omega-1}$
- Q: Can we use dynamic data structures to reduce the per-step cost?
- Q: What is the best metric to use that is still computable?

Q: What is the right KLS conjecture in the Hessian manifold setting?

Constrained RHMC

- Typical problems often have equality constraints Ax = b.
- Pick the metric g in the subspace:

$$H(x,v) = f(x) + \frac{1}{2} ||v||_{g(x)^{\dagger}}^{2} + \frac{1}{2} \log \operatorname{pdet} g(x).$$
$$H(x,v) = f(x) + \frac{1}{2} v^{\top} X (I - XA^{\top} (AX^{2}A^{\top})^{-1}AX) Xv - \sum_{i} \log x_{i} + \frac{1}{2} \log \det(AX^{2}A^{\top})$$

CRHMC Algo:

- Sample $v \sim e^{-H(x,v)}$ (conditional on x)
- $(x, v) \leftarrow T(x, v)$ (*T* preserves the density $e^{-H(x,v)}$)

The map
$$T(x, v)$$
 is given by an ODE (solved at $t = 1$)
 $\frac{dx}{dt} = \frac{dH}{dv}, \quad \frac{dv}{dt} = -\frac{dH}{dx}, \quad x(0) = x, v(0) = v.$

State of the art, in theory

General Logconcave	Gaussian in Convex Body	Uniform in Convex Body	Uniform in Polytope
[Lovász-V'06]	[Cousins-V'15]	[Jia-Laddha-Lee-V'21]	[JLLV'21]
$n^4 \cdot n^2$	$n^3 \cdot n^2$	$n^3 \cdot n^2$	$mn^{3.2}$
$n^2 \cdot n^2$	$n^2 \cdot n^2$	$n^2 \cdot n^2$	$mn^{2.3}$ (warm start)
Ball walk /H-and-R	Ball walk	Ball walk	Ball walk
RHMC:			$mn^{2/3} \cdot mn^{1.38}$
Weighted Dikin:			$n^2 \cdot mn^{1.50}$

"In Theory today, Ball Walk is Best," i.e., fastest known polynomial-time algorithm.

State of the art, in practice: CRHMC*

- Ronan Fleming gave us the latest, largest metabolic model.
- 670,114 reactions and 585,662 Metal olites
- Zero'th-order methods take forever
- Existing first-order packages simply can't move at all.
- CRHMC takes <1 hr
 per sample
- Can also sample polytopes ⁵/₂
 in netlib (notoriously degenerate)
- *: pronounced CRuHMCh

You can try it!

- https://github.com/ConstrainedSampler/PolytopeSampler Matlab
- With Yunbum Kook, Yin Tat Lee, Ruoqi Shen (2022)
- Now in COBRA, the leading system biology analysis tool (Ronan Fleming, Ines Thiele et al.)

Earlier packages for Volume/Sampling

- Cousins-V' (circa 2013)
 - MATLAB ("A Practical Volume Algorithm", Math. Prog. C 2016)
 - incorporated in COBRA (with R. Fleming, H. Haroldsdottir)
 - Computes volume using a membership oracle
 - Goes up to 1000 full-dimensional polytopes on laptop in < 1 hr.
 - https://www.mathworks.com/matlabcentral/fileexchange/43596 -volume-and-sampling
- VolEsti (Fisikopoulos et al.)
 - C++ (Emris-Fisikopoulos, ACM Trans. on Math. Software 2018)
 - Reported better run times for some benchmarks
 - https://github.com/GeomScale/volume_approximation

Continuous Algorithms

OPT: $dX_t = -\nabla f(X_t)dt$ (GD) Sampling: $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$ (LD)

• Langevin Diffusion converges to distribution with density proportional to $e^{-f(x)}$

Thm. [Jordan-Kinderlehrer-Otto98; Wibisono18] Sampling by LD is optimization in the space of measures with Wasserstein metric and objective relative entropy to target e^{-f} .

Can we sample faster?

Brownian motion SDE:

$$dx_t = \mu(x_t, t)dt + \sqrt{2A(x_t, t)}dW_t$$

• Each point $x \in K$ has its own local scaling (metric) given by $A(x_t, t)$.

Thm. [Fokker-Planck] Diffusion equation of above SDE is

$$\frac{\partial}{\partial t}p(x,t) = -\sum_{i}^{n} \frac{\partial}{\partial x_{i}} \left[\mu(x,t)p(x,t)\right] + \frac{1}{2}\sum_{i}^{n} \sum_{j}^{n} \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \left[2A_{ij}(x,t)p(x,t)\right]$$

When $\mu = 0, A = I$, this is the heat equation: $\frac{\partial}{\partial t}p(x, t) = \frac{1}{2}\Delta p(x, t)$.

- For any metric, SDE gives diffusion equation.
- Using $\mu(x) = -Df(x)$ gives stationary $p(x) = e^{-f(x)}$.

Sampling by Diffusion: Isoperimetry sufficesRate of convergence?

 $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$

Thm. [Bakry-Gentil-Ledoux 14] $H_{\nu}(\rho_t) \leq e^{-2\alpha t} H_{\nu}(\rho_0)$

Here α is the Log-Sobolev constant of e^{-F} wrt the metric. $H_{\nu}(\rho) = E_{\rho}\left(\log\frac{\rho}{\nu}\right) \leq \frac{1}{2\alpha}E_{\rho}\left(\left\|\log\frac{\rho}{\nu}\right\|^{2}\right) = \frac{1}{2\alpha}I_{\nu}(\rho)$

Proof notes that $\frac{d\rho}{dt} = -\nabla_{\rho}H_{\nu}(\rho)$ and LSI is "gradient domination.

How about an algorithm?

Diffusion -> Algorithm: Isoperimetry suffices

• Unadjusted Langevin Algorithm: $X_{k+1} = X_k - h \nabla f(X_k) + \sqrt{2h} Z$ where $Z \sim N(0, I)$

Thm.[V.-Wibisono19] Assuming f is L-smooth ($\|\nabla f\| \le L$), $H_{\nu}(\rho_k) \le e^{-h\alpha k} H_{\nu}(\rho_0) + \frac{8L^2 n}{\alpha} h.$

So, with
$$h = \alpha \delta / nL^2$$
,
after $k = \frac{nL^2}{\delta} \log(\frac{2H_{\nu}(\rho_0)}{\delta})$ steps, we have $H_{\nu}(\rho_k) \le \delta$.

Note: no convexity assumption; dependence on dimension is linear.
An active field, with many results based on smoothness parameters for interesting classes of functions.

Manifold Diffusion \rightarrow Algorithm

What about using local geometry?

Riemannian Langevin Diffusion

In Euclidean coordinates:

 $dX_t = \left(D \cdot g(X_t)^{-1} - g(X_t)^{-1} Df(X_t) \right) dt + \sqrt{2g(x)^{-1}} dB_t$

In manifold local coordinates:

$$dX_t = \left(\nabla \cdot g(X_t)^{-1} - \nabla F(X_t)\right)dt + \sqrt{2g(x)^{-1}}dB_t$$

- ▶ where ∇ is the manifold derivative, $F(x) = f(x) + \frac{1}{2}\log \det g(x)$
- Convergence in KL-divergence under log-Sobolev inequality wrt manifold measure holds

In progress: Riemannian Langevin Algorithm

discretization of RLD [Erdogdu-Li21, Ahn-Chewi21, Gatmiry-V.22]

The Story of Isoperimetry

KLS conjecture: Cheeger constant (expansion) of isotropic logconcave density is $\Omega(1)$, or

$$\psi = \inf_{\nu(S) \le \frac{1}{2}} \frac{\nu_n(S)}{\nu_{n-1}(\partial S)} = O(1),$$

[KLS95]	\sqrt{n}
[Guedon-Milman]	$n^{1/3}$
[LV17]	$n^{1/4}$
[Chen20]	$2^{\sqrt{\log n} \log \log n}$
[Klartag-Lehec22]	$\log^5 n$

Thm.[KLS97]. Sampling in $n^2\psi^2$. Thm.[JLLV21]. Rounding in $n^3\psi^2$. Thm.[CV15].Volume of well-rounded body in n^3 .

. . .

Isoperimetry: the next decade

How true is the KLS conjecture? Does it matter?

Dimension-independent bound would be so nice

- Implies dimension-independent bounds for many other well-known, existing conjectures in convex geometry: Slicing, Thin-Shell, Central Limit, Concentration, Entropy Jump etc.
- But here's a concrete TCS reason:

 $KLS \Rightarrow Certifiable sub-Gaussianity [Kothari-Steinhardt17]$

- If KLS is true, then there is an SoS proof of moment inequalities for any logconcave density.
- This implies results on robustly clustering Gaussians can be generalized to robustly clustering logconcave densities!
- Getting a constant is critical for polytime, with the SoS approach.

Q.Are they equivalent?!

Almost: certifiable sub-Gaussianity \Rightarrow thin-shell \Rightarrow KLS is $O(\log n)$.

Isoperimetry: the next decade

Q.What is the right KLS conjecture on Hessian manifolds?

An attempt: there is a subset defined by a hyperplane that is within O(1) of the minimum isoperimetry subset.

A decomposition conjecture for convex bodies (\Rightarrow KLS). Conj: For any isotropic convex body, any decomposition of it into cylinders, a constant fraction of the cylinders must be of length O(1).

Cylinder: cross section is convex and has small diameter

Open Problems: Probability

Q2. When to stop? How to check convergence to stationarity on the fly? Does it suffice to check that the measures of all halfspaces have converged?

Note: poly(n) sample can estimate all halfspace measures

Ben Cousin's uniformity test:

Check if time spent in scaling $(1 - \alpha)K$ is $(1 - \alpha)^n$.

Randomness

Can we estimate the volume of an explicit polytope in deterministic polynomial time?

Thank you!

and: Ravi Kannan Laci Lovász Adam Kalai **Ronan Fleming Ben Cousins** Yin Tat Lee He Jia Aditi Laddha Ruoqi Shen Yunbum Kook Khashayar Gatmiry