The Manifold Joys of Sampling in High Dimension

Santosh S. Vempala
Algorithms and Randomness Center, Georgia Tech

The Sampling Problem

Input: integrable function $f: R^{n} \rightarrow R_{+}$, point x s.t. $f(x) \geq \beta$, error parameter ε.

Output: Point y from a distribution within "distance" ε of distribution with density proportional to f.

Examples: $f(x)=1_{K}(x), f(x)=e^{-a| | x \mid} 1_{K}(x)$

The Sampling Problem

Problem: sample a point from the uniform distribution on a given convex set K or according to a logconcave density f.

- Oracle setting: membership for K or value of function f.
- Polytope setting: $K=\{A x \geq b\}$.

Why:

- Compute volume, center of gravity, covariance matrix, ...
- Robust/online/private optimization, model exploration, learning
- Provides a lens to understand convexity!
- and optimization, and the model of computation

How to sample?

Ball walk:

At x , pick random y from $x+\delta B_{n}$
if y is in K, go to y

The process is symmetric

- So the stationary distribution is uniform
- Discrete time version of Brownian motion with reflection.

Hit-and-Run

[Boneh],[Smith]
At x , pick a random chord L through x go to a uniform random point y on L

- Random walk is symmetric,

- stationary distribution is uniform
- No need to have a step-size parameter δ
- Coordinate Hit-and-Run: pick random axis direction

Dikin Walk

At x ,
pick random y from $E_{x}=\left\{y:\left\|A_{x}(y-x)\right\| \leq 1\right\}$
if $x \in E_{y}$, go to y with prob. $\min 1, \frac{\operatorname{vol}\left(E_{x}\right)}{\operatorname{vol}\left(E_{y}\right)}$

Hamiltonian Monte Carlo

Hamiltonian: function of position and velocity.
Each step is according to an ODE defined by the Hamiltonian:

$$
\frac{d x}{d t}=\frac{\partial H(x, v)}{\partial v} \quad \frac{d v}{d t}=-\frac{\partial H(x, v)}{\partial x}
$$

Ham walk: To sample according to $e^{-f(x)}$, set

$$
H(x, v)=f(x)+\log \left((2 \pi)^{n} g(x)\right)+v^{T} g(x)^{-1} v
$$

At current point x,

- Pick a random velocity v according to a local distribution $N\left(0, g(x)^{-1}\right)$ defined by x (in the Euclidean setting, this is a standard Gaussian).
- Move along the curve defined by Hamiltonian dynamics at (x, v) for time δ or $-\delta$, each with probability 0.5 .

State of the art, in theory

Year/Authors	New ingredients	Steps
1989/Dyer-Frieze-Kannan	Everything	n^{23}
1990/Lovász-Simonovits	Better isoperimetry	n^{16}
1990/Lovász	Ball walk	n^{10}
1991/Applegate-Kannan	Logconcave sampling	n^{10}
1990/Dyer-Frieze	Better error analysis	n^{8}
1993/Lovász-Simonovits	Localization lemma	n^{7}
1997/Kannan-Lovász-Simonovits	Speedy walk, isotropy	n^{5}
2003/Lovász-V.	Annealing, hit-and-run	n^{4}
2015/Cousins-V. (well-rounded)	Gaussian Cooling	n^{3}
2017/Lee-V. (polytopes)	Hamiltonian Walk	$\mathrm{mn}^{2 / 3}$
202 I/Jia-Lee-Laddha-V.	Better Rounding	n^{3}

"In Theory today, Ball Walk is Best," i.e., fastest known polynomial-time algorithm.

Convergence depends on isoperimetry

- Technique [LS93]: "conductance" of Markov chain is large.
- (one-step overlap): Nearby points have overlapping one-step distributions
- (isoperimetry) Large subsets have large boundaries:

$$
\pi\left(S_{3}\right) \geq C \cdot d\left(S_{1}, S_{2}\right) \min \pi\left(S_{1}\right), \pi\left(S_{2}\right)
$$

Convergence of ball walk

Theorem [KLS97].The ball walk applied to a near-isotropic logconcave density p, from a warm start, converges in $O^{*}\left(n^{2} \psi_{p}^{2}\right)$ steps.

$$
\frac{1}{\psi_{p}}=\min _{S} \frac{p(\partial S)}{\min \left(p(S), p\left(S^{c}\right)\right)}
$$

"Cheeger constant of this Markov chain is determined by Cheeger constant of its stationary distribution"

Gaussian Cooling

Thm [Cousins-V' 15].The complexity of sampling/volume computation of any well-rounded convex body is $O^{*}\left(n^{3}\right)$ membership queries.

- Well-rounded: K contains a unit ball and

$$
E\left(\|x-\bar{x}\|^{2}\right)=\tilde{O}(n)
$$

- Most of K lies in a ball of radius $\tilde{O}(\sqrt{n})$
- No warm start assumption
- [LV03]: can put K in near-isotropic position in n^{4}.
- Isotropic position $\left(E(x)=0 ; E\left(x x^{\top}\right)=I\right) \Rightarrow$ well-rounded
- LV rounding +CV algorithm $\rightarrow n^{4}$ sampling for any K.

Rounding and KLS?

- Can we round faster than n^{4} ?

Thm [Jia-Laddha-Lee-V'2I]. Any convex body can be brought into near-isotropic position using $\tilde{O}\left(n^{3} \psi_{n}^{2}\right)$ membership queries.

Cor. Sampling/Volume of any convex body in $O^{*}\left(n^{3} \psi_{n}^{2}\right)$.

- $n^{2} \psi_{n}^{2}$ for subsequent samples, since we will have a warm start in an isotropic body.

Sampling

Ball Walk, with membership oracle

$$
\begin{array}{ll}
\text { At } x, & \text { pick random } y \text { from } x+\delta B_{n} \\
\text { if } y \text { is in } K, \text { go to } y
\end{array}
$$

Thm [KLS97].
n^{5} queries for first sample, n^{3} queries for later samples.
KLS conjecture $\Rightarrow n^{2}$ for later samples ("warm start" and "isotropic density")
Thm [Jia-Laddha-LV2I]
n^{3} for first sample.

Thm. [Klartag-Lehec22] KLS true up to polylog.
$\Rightarrow n^{2}$ for later samples.
Q. Best possible?

Rounding and Integration (Volume)

Thm. [DFK89]
Volume of a convex body in n^{23} oracle calls.
Thm. [LV06]
Integration of a logconcave function in n^{4} oracle calls.
Thm. [Cousins-V.I5]
Volume of well-rounded convex body in n^{3}.

Rounding problem:
Find affine transformation s.t. $y=A x$ has $E(y)=0, E\left(y y^{\top}\right) \simeq I$.
Thm. [JLLV2I]
Rounding in n^{3}.
Q. Is quadratic the best possible?

Why "so" slow?

- Bottleneck: Step size, i.e., can only take small steps to maintain polytime, roughly $1 / \sqrt{n}$.
- If larger, most steps are wasted, i.e., go outside the body, even in a hypercube.
- How about bigger steps deeper inside, smaller steps near boundary?
- Can we use the "local" geometry?

Polytope \rightarrow Hessian manifold

Hessian manifold: a subset of \mathbb{R}^{n} with inner product $\langle u, v\rangle_{x}=u^{T}\left(\nabla^{2} \phi(x)\right) v$ for convex ϕ.

For a polytope $\left\{a_{i}^{T} x \geq b_{i} \forall i\right\}$,
we use the log barrier function:

$$
\phi(x)=\sum_{i=1}^{m} \log \left(\frac{1}{s_{i}(x)}\right)
$$

- $s_{i}(x)=a_{i}^{T} x-b_{i}$ is the distance from x to constraint i
- ϕ blows up when x is close to the boundary
- Distances "stretch" near the boundary

Local geometry from Convex Barriers

- Smooth, self-concordant, convex barrier function $\phi: P \rightarrow R_{+}$
- Blows up near the boundary
- Classical example for $x_{i} \geq 0: \phi(x)=-\sum_{i} \log x_{i}$
- $\nabla^{2} \phi(x)=\operatorname{Diag}\left(\frac{1}{x_{i}^{2}}\right)$
- The ellipsoid $E(x)$ defined by $\nabla^{2} \phi$ satisfies:

$$
E(x) \subseteq K \cap(2 x-K) \subseteq \sqrt{v} E(x)
$$

Interior-Point Method

- [Nesterov-Nemirovski94, following Dikin, Karmarkar,...]
- Instead of minimizing $c^{\top} x$, consider $c^{\top} x+t \cdot \phi(x)$ where
- Easier to minimize smooth convex functions (Newton iteration)
- Gradually reduce t :

$$
t \leftarrow t\left(1-\frac{1}{\sqrt{v}}\right)
$$

- where v is the symmetry parameter
- \#iterations: \sqrt{v}
- Sequence of optimal points, the central path, is strictly interior
- ϕ needs to be self-concordant, i.e., Hessian $H(x)=\nabla^{2} \phi(x)$ changes slowly:

$$
\left\|H(x)^{-1 / 2} D H(x)[h] H(x)^{-1 / 2}\right\| \leq 2 h^{T} H(x) h
$$

(when $H(x)=I$, then this is $\|D H(x)[h]\| \leq 2\|h\|^{2}$)

Interior-Point Method 2.0

- Has led to improvements in the past decade for Combinatorial Optimization and Linear Programming!
- Universal barrier: $v=n+1$, time: $\operatorname{poly}(n)$
- Entropic barrier: $v=n$, time: $\operatorname{poly}(n)$
- Log barrier: $v=m$, fast
- Thm. [LSI4] Weighted log barrier: $v=\tilde{O}(n)$, fast!
- Implies \sqrt{n} iterations to solve a linear program with one linear system per iteration

Sampling with an adaptive step size

- Use the ellipsoid defined by the Hessian of a convex function!
- Hessian $H=\nabla^{2} \phi$ defines a local metric: $\|v\|_{x}^{2}=v^{\top} H(x) v$.
- Dikin walk: At x ,
- pick random y from $E_{x}=\left\{y:\left\|A_{x}(y-x)\right\| \leq 1\right\}$
- if $x \in E_{y}$, go to y with prob. $\min \left\{1, \frac{\operatorname{vol}\left(E_{x}\right)}{\operatorname{vol}\left(E_{y}\right)}\right\}$
- For log barrier, $A_{x}=\operatorname{Diag}\left(\frac{1}{s_{i}(x)}\right) A$
- Each row is scaled by distance to boundary
- $H(x)=A_{x}^{\top} A_{x}$

Thm. [K-Narayanan I2]
Dikin walk with log barrier mixes in $m n$ steps, $m n^{\omega-1}$ per step.

Weighted Dikin walk

- Dikin walk: At x,
- pick random y from $E_{x}=\left\{y:\left\|H(x)^{1 / 2}(y-x)\right\| \leq 1\right\}$
- if $x \in E_{y}$, go to y with prob. min $1, \frac{\operatorname{vol}\left(E_{x}\right)}{\operatorname{vol}\left(E_{y}\right)}$

Thm. [K-Narayanan I2]
Mixes in $m n$ steps, $m n^{\omega-1}$ per step.

Thm. [Laddha-LV20]
Mixes in $n v$ steps for any strongly self-concordant barrier.

- Log barrier: $m n$ steps, $n n z(A)+n^{2}$ per step.
- Weighted log barrier: n^{2} steps, $m n^{\omega-1}$ per step.
- Strongly self-concordant:

$$
\left\|H(x)^{-1 / 2} D H(x)[h] H(x)^{-1 / 2}\right\|_{F}=O\left(h^{T} H(x) h\right)
$$

Isoperimetry

- Isoperimetry is in a non-Euclidean metric: For any partition of a convex body K into subsets S_{1}, S_{2}, S_{3},

$$
p\left(S_{3}\right) \geq d_{K}\left(S_{1}, S_{2}\right) p\left(S_{1}\right) p\left(S_{2}\right)
$$

Cross-ratio distance:

$$
d_{K}(u, v)=\frac{\|u-v\|\|x-y\|}{\|x-u\|\|v-y\|}
$$

Hilbert distance:

$$
d_{H}(u, v)=\log \left(1+d_{K}(u, v)\right)
$$

 is a metric.
Q. Does weighted Dikin mix in n steps? ($m n$ is tight for log barrier)

- Aside: KLS conjecture \Rightarrow strong self-concordance for Universal and Entropic barriers ();

The rejection probability bounds step size

- How to take a larger step?
- Can we avoid the Metropolis filter?
- Let's use a deterministic "drift" instead.

Riemannian Hamiltonian Montian Carlian

Hamiltonian: function of position and velocity.
Each step is according to an ODE defined by the Hamiltonian:

$$
\frac{d x}{d t}=\frac{\partial H(x, v)}{\partial v} \quad \frac{d v}{d t}=-\frac{\partial H(x, v)}{\partial x}
$$

Ham walk: To sample according to $e^{-f(x)}$, set

$$
H(x, v)=f(x)+\frac{1}{2} \log \left((2 \pi)^{n} \operatorname{det} g(x)\right)+\frac{1}{2} v^{T} g(x)^{-1} v
$$

At current point x,

- Pick a random velocity v according to a local distribution $N\left(0, g(x)^{-1}\right)$ defined by x (in the Euclidean setting, this is a standard Gaussian).
- Move along the curve defined by Hamiltonian dynamics at (x, v) for time δ or $-\delta$, each with probability 0.5 .

Convergence of RHMC

Thm [Lee-V.I7]:With log barrier, RHMC mixes in $\tilde{O}\left(m n^{2 / 3}\right)$ steps.

- Subquadratic!

Thm [Lee-V. I7]: For log barrier on [0,1] ${ }^{n}$, RHMC mixes in $\tilde{O}(1)$ steps.

- Previous algorithms such as ball walk, hit-and-run and Dikin walk take $\Omega(n)$ steps for $[0,1]^{n}$.
- Each step is the solution of a linear system, so $m n^{\omega-1}$

Q: Can we use dynamic data structures to reduce the per-step cost?
Q: What is the best metric to use that is still computable?
Q: What is the right KLS conjecture in the Hessian manifold setting?

Constrained RHMC

Typical problems often have equality constraints $A x=b$.

- Pick the metric g in the subspace:
$H(x, v)=f(x)+\frac{1}{2}\|v\|_{g(x)^{\dagger}}^{2}+\frac{1}{2} \log \operatorname{pdet} g(x)$.
$H(x, v)=f(x)+\frac{1}{2} v^{\top} X\left(I-X A^{\top}\left(A X^{2} A^{\top}\right)^{-1} A X\right) X v-\sum_{i} \log x_{i}+\frac{1}{2} \log \operatorname{det}\left(A X^{2} A^{\top}\right)$
CRHMC Algo:
- Sample $v \sim e^{-H(x, v)}$ (conditional on x)
- $(x, v) \leftarrow T(x, v)\left(T\right.$ preserves the density $\left.e^{-H(x, v)}\right)$

The map $T(x, v)$ is given by an ODE (solved at $t=1$)

$$
\frac{d x}{d t}=\frac{d H}{d v}, \quad \frac{d v}{d t}=-\frac{d H}{d x}, \quad x(0)=x, v(0)=v
$$

State of the art, in theory

General Logconcave [Lovász-V'06]	Gaussian in Convex Body [Cousins-V'I5]	Uniform in Convex Body [Jia-Laddha-Lee-V'2I]	Uniform in Polytope [JLLV'2I]
$n^{4} \cdot n^{2}$	$n^{3} \cdot n^{2}$	$n^{3} \cdot n^{2}$	$m n^{3.2}$
$n^{2} \cdot n^{2}$	$n^{2} \cdot n^{2}$	$n^{2} \cdot n^{2}$	$m n^{2.3}($ warm start $)$
Ball walk /H-and-R	Ball walk	Ball walk	Ball walk
RHMC:			$m n^{2 / 3} \cdot m n^{1.38}$
Weighted Dikin:			$n^{2} \cdot m n^{1.38}$

"In Theory today, Ball Walk is Best," i.e., fastest known polynomial-time algorithm.

State of the art, in practice: CRHMC*

- Ronan Fleming gave us the latest, largest metabolic model.
- 670,114 reactions and 585,662 Metab̄olites
- Zero'th-order methods take foreve
 Blood Brain Barrie
Brain
 Adrenal Gland
Kidney
Urinary Bladder
Gall
- Existing first-order packages simply can't move at all.
- CRHMC takes <1 hr per sample
- Can also sample polytopes in netlib (notoriously degenerate)

[^0]

You can try it!

- https://github.com/ConstrainedSampler/PolytopeSampler Matlab
- With Yunbum Kook, Yin Tat Lee, Ruoqi Shen (2022)
- Now in COBRA, the leading system biology analysis tool (Ronan Fleming, Ines Thiele et al.)

Earlier packages for Volume/Sampling

- Cousins-V' (circa 2013)
- MATLAB ("A Practical Volume Algorithm", Math. Prog. C 2016)
- incorporated in COBRA (with R. Fleming, H. Haroldsdottir)
- Computes volume using a membership oracle
- Goes up to 1000 full-dimensional polytopes on laptop in < Ihr.
- https://www.mathworks.com/matlabcentral/fileexchange/43596 -volume-and-sampling
- VoIEsti (Fisikopoulos et al.)
- C++ (Emris-Fisikopoulos,ACM Trans. on Math. Software 2018)
- Reported better run times for some benchmarks
- https://github.com/GeomScale/volume_approximation

Continuous Algorithms

OPT:
Sampling:
$d X_{t}=-\nabla f\left(X_{t}\right) d t$

$$
\begin{equation*}
d X_{t}=-\nabla f\left(X_{t}\right) d t+\sqrt{2} d B_{t} \tag{LD}
\end{equation*}
$$

- Langevin Diffusion converges to distribution with density proportional to $e^{-f(x)}$

Thm. [Jordan-Kinderlehrer-Otto98;Wibisonol8]
Sampling by LD is optimization in the space of measures with Wasserstein metric and objective relative entropy to target e^{-f}.

Can we sample faster?

- Brownian motion SDE:

$$
d x_{t}=\mu\left(x_{t}, t\right) d t+\sqrt{2 A\left(x_{t}, t\right)} d W_{t}
$$

- Each point $x \in K$ has its own local scaling (metric) given by $A\left(x_{t}, t\right)$.

Thm. [Fokker-Planck] Diffusion equation of above SDE is

$$
\frac{\partial}{\partial t} p(x, t)=-\sum_{i}^{n} \frac{\partial}{\partial x_{i}}[\mu(x, t) p(x, t)]+\frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[2 A_{i j}(x, t) p(x, t)\right]
$$

, When $\mu=0, A=I$, this is the heat equation: $\frac{\partial}{\partial t} p(x, t)=\frac{1}{2} \Delta p(x, t)$.

- For any metric, SDE gives diffusion equation.
- Using $\mu(x)=-D f(x)$ gives stationary $p(x)=e^{-f(x)}$.

Sampling by Diffusion: Isoperimetry suffices

- Rate of convergence?
- $d X_{t}=-\nabla f\left(X_{t}\right) d t+\sqrt{2} d B_{t}$

Thm. [Bakry-Gentil-LedouxI4] $\quad H_{v}\left(\rho_{t}\right) \leq e^{-2 \alpha t} H_{v}\left(\rho_{0}\right)$
Here α is the Log-Sobolev constant of e^{-F} wrt the metric.

$$
H_{v}(\rho)=E_{\rho}\left(\log \frac{\rho}{v}\right) \leq \frac{1}{2 \alpha} E_{\rho}\left(\left\|\log \frac{\rho}{v}\right\|^{2}\right)=\frac{1}{2 \alpha} I_{v}(\rho)
$$

- Proof notes that $\frac{d \rho}{d t}=-\nabla_{\rho} H_{v}(\rho)$ and LSI is "gradient domination.
- How about an algorithm?

Diffusion \rightarrow Algorithm: Isoperimetry suffices

- Unadjusted Langevin Algorithm:

$$
X_{k+1}=X_{k}-h \nabla f\left(X_{k}\right)+\sqrt{2 h} Z \quad \text { where } Z \sim N(0, I)
$$

Thm.[V.-Wibisonol9] Assuming f is L-smooth $(\|\nabla f\| \leq L)$,

$$
H_{v}\left(\rho_{k}\right) \leq e^{-h \alpha k} H_{v}\left(\rho_{0}\right)+\frac{8 L^{2} n}{\alpha} h
$$

So, with $h=\alpha \delta / n L^{2}$,
after $k=\frac{n L^{2}}{\delta} \log \left(\frac{2 H_{v}\left(\rho_{0}\right)}{\delta}\right)$ steps, we have $H_{v}\left(\rho_{k}\right) \leq \delta$.

- Note: no convexity assumption; dependence on dimension is linear.
- An active field, with many results based on smoothness parameters for interesting classes of functions.

Manifold Diffusion \rightarrow Algorithm

- What about using local geometry?

Riemannian Langevin Diffusion

- In Euclidean coordinates:

$$
d X_{t}=\left(D \cdot g\left(X_{t}\right)^{-1}-g\left(X_{t}\right)^{-1} D f\left(X_{t}\right)\right) d t+\sqrt{2 g(x)^{-1}} d B_{t}
$$

- In manifold local coordinates:

$$
d X_{t}=\left(\nabla \cdot g\left(X_{t}\right)^{-1}-\nabla F\left(X_{t}\right)\right) d t+\sqrt{2 g(x)^{-1}} d B_{t}
$$

- where ∇ is the manifold derivative, $F(x)=f(x)+\frac{1}{2} \log \operatorname{det} g(x)$
- Convergence in KL-divergence under log-Sobolev inequality wrt manifold measure holds

In progress: Riemannian Langevin Algorithm

- discretization of RLD [Erdogdu-Li2I, Ahn-Chewi2I, Gatmiry-V.22]

The Story of Isoperimetry

KLS conjecture: Cheeger constant (expansion) of isotropic logconcave density is $\Omega(1)$, or

$$
\psi=\inf _{v(S) \leq \frac{1}{2}} \frac{v_{n}(S)}{v_{n-1}(\partial S)}=O(1)
$$

[KLS95]
[Guedon-Milman]

$$
\sqrt{n}
$$

$$
n^{1 / 3}
$$

[LVI7]

$$
n^{1 / 4}
$$

[Chen20]
[Klartag-Lehec22]

$$
\log ^{5} n
$$

$$
2^{\sqrt{\log n \log \log n}}
$$

Thm.[KLS97]. Sampling in $n^{2} \psi^{2}$.
Thm.[JLLV2I]. Rounding in $n^{3} \psi^{2}$.
Thm.[CVI5].Volume of well-rounded body in n^{3}.

Isoperimetry: the next decade

- How true is the KLS conjecture? Does it matter?
- Dimension-independent bound would be so nice

- Implies dimension-independent bounds for many other well-known, existing conjectures in convex geometry: Slicing, Thin-Shell, Central Limit, Concentration, Entropy Jump etc.
- But here's a concrete TCS reason:

KLS \Rightarrow Certifiable sub-Gaussianity [Kothari-Steinhardtl7]

- If KLS is true, then there is an SoS proof of moment inequalities for any logconcave density.
- This implies results on robustly clustering Gaussians can be generalized to robustly clustering logconcave densities!
- Getting a constant is critical for polytime, with the SoS approach.
Q.Are they equivalent?!

Almost: certifiable sub-Gaussianity \Rightarrow thin-shell \Rightarrow KLS is $0(\log n)$.

Isoperimetry: the next decade

- Q.What is the right KLS conjecture on Hessian manifolds?
An attempt: there is a subset defined by a hyperplane that is within $O(1)$ of the minimum isoperimetry subset.
- A decomposition conjecture for convex bodies (\Rightarrow KLS).

Conj: For any isotropic convex body, any decomposition of it into cylinders, a constant fraction of the cylinders must be of length $O(1)$.

Cylinder: cross section is convex and has small diameter

Open Problems: Probability

Q2.When to stop? How to check convergence to stationarity on the fly? Does it suffice to check that the measures of all halfspaces have converged?

- Note: poly(n) sample can estimate all halfspace measures
- Ben Cousin's uniformity test:

Check if time spent in scaling $(1-\alpha) K$ is $(1-\alpha)^{n}$.

Randomness

- Can we estimate the volume of an explicit polytope in deterministic polynomial time?

Thank you!

and:
Ravi Kannan
Laci Lovász
Adam Kalai
Ronan Fleming
Ben Cousins
Yin Tat Lee
He Jia
Aditi Laddha
Ruoqi Shen
Yunbum Kook
Khashayar Gatmiry

[^0]: *: pronounced CRuHMCh

