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High-dimensional problems 

 

Input:  

 A set of points S in n-dimensional space 𝑅𝑛 

    or a distribution in 𝑅𝑛 

 A function f that maps points to real values (could be the 
indicator of a set) 

 

 What is the complexity of computational problems as the 
dimension grows? 

 

 Dimension = number of variables 

 Typically, size of input is a function of the dimension. 



Sampling 

 Generate  

 a uniform random point from a compact set S   

 or with density proportional to a function f. 

 

 Numerous applications in diverse areas: statistics, 

networking, biology, computer vision, privacy, 

operations research etc. 

 

 This talk: mathematical and algorithmic foundations 

of sampling and its applications. 

 

 



Problem 1: Optimization 

Input: function f: 𝑅𝑛 →  𝑅  specified by an oracle,  

     point x, error parameter ε .  

 

Output: point y such that   

 

  𝑓 𝑦 ≥ max𝑓 − 𝜖 



Problem 2: Integration 

Input: function f: 𝑅𝑛 → 𝑅+ specified by an oracle,  

           point x, error parameter ε .  

 

Output: number A such that: 

 
1 − 𝜖 ∫ 𝑓 ≤ 𝐴 ≤ (1 + 𝜖)∫ 𝑓 

 



Problem 3: Sampling 

Input: function f: 𝑅𝑛 →  𝑅 specified by an oracle,  

            point x, error parameter ε.  

 

Output: A point y from a distribution within distance 

ε  of distribution with density proportional to f. 

 



Problem 4: Rounding 

Input: function f: 𝑅𝑛 →  𝑅 specified by an oracle,  

     point x, error parameter ε. 

  

Output: An affine transformation that approximately 

“sandwiches” f between two concentric balls 

(ellipsoids). 



Problem 5: Learning 

Input: i.i.d. points with labels from an unknown 

distribution, error parameter ε. 

 

Output: A rule to correctly label 1- ε of the input 

distribution. 

 

(more general than integration)  



Talk Outline 

 Part I. Quick intro to high-dimensional geometry. 

 

 Part 2. Algorithms based on sampling. 

 

 Part 3. Sampling algorithms. 

 



High-dimensional Algorithms 

These problems are intractable in general, but 

 

P1. Optimization. Minimize f over set S. 

 

Ellipsoid algorithm  

[Yudin-Nemirovski;Shor;Khachiyan;GLS]  

S is a convex set and f is a convex function. 

 

P2. Integration. Find the integral of f. 

 

Dyer-Frieze-Kannan algorithm  

f is the indicator function of a convex set. 

 



Structure 

Q. What structure makes high-dimensional 

problems such as sampling computationally 

tractable? (i.e., solvable with polynomial complexity) 

 

 

 Convexity appears to be the frontier of 

polynomial-time solvability in many settings. 



Convexity 
(Indicator functions of) Convex sets: 
∀𝑥, 𝑦 ∈ 𝑅𝑛, 𝜆 ∈ 0,1 , 𝑥, 𝑦 ∈ 𝐾   𝜆𝑥 + 1 − 𝜆 𝑦 ⊆ 𝐾     

   

Concave functions: 

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝜆𝑓 𝑥 + 1 − 𝜆 𝑓 𝑦      

 

Logconcave functions:  

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝑓 𝑥 𝜆 𝑓 𝑦 1−𝜆     

 

Quasiconcave functions: 

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ min  𝑓 𝑥 , 𝑓 𝑦        

 

Star-shaped sets: 

∃𝑥 ∈ 𝑆 𝑠. 𝑡. ∀𝑦 ∈ 𝑆, 𝜆𝑥 + 1 − 𝜆 𝑦 ∈ 𝑆     

 



Structure I: Separation Oracle 

Q. How to specify a convex set? 

 

 

 

 

 

 

Either x is in K or some halfspace contains K but not x. 

 

LP, SDP, graph problems… 



Structure II: Volume distribution 

 Volume(unit cube) = 1 

 Volume(unit ball) ~ 
𝑐

𝑛

n

2
  drops exponentially with n. 

 

 For any central hyperplane, most of the mass of a ball is 
within distance 1/ 𝑛 . 
 

 Most of the volume is near the boundary: 

vol( 1 − ε 𝐾) =  1 − ε 𝑛vol(𝐾) 
    So,  

vol 𝐾 − vol 1 − ε 𝐾 ≥ 1 − 𝑒−ε𝑛 vol(𝐾) 

 

 “Everything interesting for a convex body happens near 
its boundary” --- Imre Bárány. 



Brunn-Minkowski inequality 

A, B compact sets in 𝑅𝑛 

 

Thm. ∀𝜆 ∈ 0,1 ,  

vol 𝜆𝐴 + 1 − 𝜆 𝐵
1
𝑛 ≥ 𝜆vol 𝐴

1
𝑛 + 1 − 𝜆 vol 𝐵

1
𝑛. 

 

same as:  𝑣𝑜𝑙 𝐴 + 𝐵
1

𝑛 ≥ 𝑣𝑜𝑙 𝐴
1

𝑛 + 𝑣𝑜𝑙 𝐵
1

𝑛 

 



Logconcave functions 

 𝑓: 𝑅𝑛 → 𝑅+ is logconcave if for any 𝑥, 𝑦 ∈ 𝑅
𝑛, 

 
𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝑓 𝑥 𝜆𝑓 𝑦 1−𝜆 

 

 Examples: 

 Indicator functions of convex sets are logconcave 

 Gaussian density function 

 exponential function 

 

 Level sets of f, 𝐿𝑡 = 𝑥 ∶ 𝑓 𝑥 ≥ 𝑡 , are convex. 

 Many other useful geometric properties 

 

 



Prekopa-Leindler inequality 

 

Prekopa-Leindler:  𝑓, 𝑔, ℎ: 𝑅𝑛 → 𝑅+ 𝑠. 𝑡.  
 

ℎ 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝑓 𝑥 𝜆𝑔 𝑦 1−𝜆 
then  

  ∫ℎ ≥  ∫ 𝑓
𝜆
∫𝑔
1−𝜆
.  

 

Functional version of [B-M], equivalent to it.  



Properties of logconcave functions 
 

For two logconcave functions f and g 

 Their sum might not be logconcave 

 

But the following are:  

 Product    

 Minimum  

 Convolution  

ℎ 𝑥 =  𝑓 𝑦 𝑔 𝑥 − 𝑦 𝑑𝑦

𝑅𝑛

 

 Any marginal: 

ℎ 𝑥1, 𝑥2, … , 𝑥𝑘 =  𝑓 𝑥 𝑑𝑥𝑘+1𝑑𝑥𝑘+2…𝑑𝑥𝑛
𝑅𝑛−𝑘

 

 

 



Isotropic position 

 Let x be a random point from a convex body K 

 Set E(x)=0. Consider the covariance matrix  
𝐴 = 𝐸 𝑥𝑥𝑇 ,  𝐴𝑖𝑗 = 𝐸(𝑥𝑖𝑥𝑗) 

 𝐴 = 𝐵2 for some n x n matrix B.  

 

 Let 𝐾′ = 𝐵−1𝐾 = 𝐵−1𝑥 ∶ 𝑥 ∈ 𝐾 .   

 

 For a random point y from K’, 

𝐸 𝑦 = 0, 𝐸 𝑦𝑦𝑇 = 𝐼𝑛. 

 K’ is in isotropic position. 

 

 



Isotropic position and sandwiching 

 For any convex body K (in fact any set/distribution with 

bounded second moments), we can apply an affine 

transformation so that for a random point x from K :  

 

𝐸 𝑥 = 0, 𝐸 𝑥𝑥𝑇 = 𝐼𝑛. 

 

 Thus K “looks like a ball” up to second moments. 

 

 How close is it really to a ball? Can it be sandwiched 

between two balls of comparable radii? 

 Yes! 

 

 



Structure III: Sandwiching 

Thm (John). Any convex body K has an ellipsoid E s.t.     

       𝐸 ⊆ 𝐾 ⊆ 𝑛𝐸. 
 

 

The maximum volume ellipsoid contained in K can be used. 

 

Thm (KLS95).  For a convex body K in isotropic position,   

 

 

 

 Also a factor n sandwiching, but with a different ellipsoid.  

 As we will see, isotropic sandwiching (rounding) is 
algorithmically efficient while the classical approach is 
not. 



Part 2: Algorithmic Applications 

 

Given a blackbox for sampling, we can get efficient 

algorithms for:  

 

 Rounding 

 Convex Optimization 

 Volume Computation/Integration 



Rounding via Sampling 

1. Sample m random points from K;  

2. Compute sample mean z and sample covariance matrix A. 

3. Compute B = A−
1

2.  
 

Applying B to K achieves near-isotropic position. 

 

Thm. For isotropic K, C(𝜖).n random points suffice to get 

𝐸 𝐴 − 𝐼
2
≤ 𝜖.  

  

[Adamczak et al;Srivastava-Vershynin; improving on Bourgain;Rudelson]    

 

I.e., for any unit vector v,     1 + 𝜖 ≤ 𝐸 𝑣𝑇𝑥 2 ≤ 1 + 𝜖. 

         



Convex Optimization/Feasibility 
 

Input: Separation oracle for a convex body K,  guarantee that if K 
is nonempty, it contains a ball of radius r and is contained in the 
ball of radius R centered the origin.  

 

Output: A point x in K.    

 

 We can reduce to the feasibility problem for (quasi-)concave 
functions via a binary search.  

 𝐾 ≔ 𝐾 ∩ 𝑥 ∶ 𝑓 𝑥 ≤ 𝑡  

 

Complexity: #oracle calls and #arithmetic operations.  

 

To be efficient, complexity of an algorithm should be bounded by 
poly(n, log(R/r)).   



How to choose oracle queries? 

K 



Convex feasibility via sampling  

[Bertsimas-V. 02] 

 

1. Let z=0, P = −𝑅, 𝑅 𝑛. 

2. Does 𝑧 ∈ 𝐾?  If yes, output K.  

3. If no, let H = 𝑥 ∶ 𝑎𝑇𝑥 ≤ 𝑎𝑇𝑧  be a halfspace 

containing K. 

4. Let 𝑃 ≔ 𝑃 ∩ 𝐻.  

5. Sample 𝑥1, 𝑥2, … , 𝑥𝑚 uniformly from P. 

6. Let 𝑧 ≔
1

𝑚
 𝑥𝑖 . Go to Step 2.  



Centroid algorithm 

 [Levin ‘65]. Use centroid of surviving set as query 

point in each iteration. 

 

 #iterations = O(nlog(R/r)).  

 Best possible. 

 

 Problem: how to find centroid? 

 #P-hard! [Rademacher 2007] 



Why would centroid work? 

 

Does not cut volume in half. 

 

But it does cut by a constant fraction. 

 

Thm. [Grunbaum ‘60]. For any halfspace H containing 

the centroid of a convex body K,  

vol K ∩ H ≥
1

e
vol K . 



Convex optimization via Sampling 

 

 How many iterations for the sampling-based 

algorithm? 

 

 If we use only 1 random sample in each iteration, 

then the number of iterations could be exponential! 

 

 Do poly(n) samples suffice? 



Robust Grunbaum: cuts near centroid are 

also balanced 

 

Lemma [BV02]. For any convex body K and halfspace 

H containing the average of m random points from K, 

 

E(vol K ∩ H ) ≥
1

e
−
n

m
vol K . 



Optimization via Sampling 

Thm. Convex feasibility can be solved using O(n log R/r) 

oracle calls.   

 

Also achieved by Vaidya’s algorithm; Ellipsoid takes 𝑛2. 

 

With sampling, one can solve convex optimization using 

only a membership oracle and a starting point in K.  

 



Volume/Integration 

 

Given convex body K, find a number A s.t. 

 
1 − 𝜖 vol 𝐾 ≤ 𝐴 ≤ 1 + 𝜖 vol 𝐾  

 

Given function 𝑓, find A s.t. 

1 − 𝜖  𝑓
𝑅𝑛
≤ 𝐴 ≤ 1 + 𝜖  𝑓

𝑅𝑛
 



Volume via Rounding 

 Using the John ellipsoid or the Inertial ellipsoid 

 

 E ⊆ K ⊆ 𝑛E    vol E ≤ vol K ≤ nn vol E . 

 

 Polytime algorithm, 𝑛𝑂 𝑛  approximation to 
volume  

 

 Can we do better? 



Complexity of Volume Estimation 

 

Thm [E86, BF87]. For any deterministic algorithm that uses 

at most 𝑛𝑎 membership calls to the oracle for a convex 

body K and computes two numbers A and B such that 

A ≤ vol K ≤ B, there is some convex body for which the 

ratio B/A is at least 

𝑐𝑛

𝑎 log 𝑛 

n
2

 

where c is an absolute constant. 



Complexity of Volume Estimation 

Thm [BF]. For deterministic algorithms: 

  

   # oracle calls  approximation factor 

 

 

 

 

 

 

 

Thm [Dadush-V.12].  

Matching upper bound of 1 + 𝜖 𝑛 in time 
1

𝜖

𝑂 𝑛
poly(𝑛). 



Volume computation/Integration 

 

[DFK89]. Polynomial-time randomized algorithm that 

estimates volume with probability at least 1 − 𝛿 in time 

poly(n, 
1

𝜖
, log

1

𝛿
).    

 

[Applegate-K91]. Polytime randomized algorithm to 

estimate integral of any (Lipshitz) logconcave function. 

 



Volume by Random Sampling 

 Pick random samples from ball/cube containing K.  

 Compute fraction c of sample in K. 

 Output c.vol(outer ball). 

 

 

 

 

 

 

 Need too many samples 

 

 



Volume via Sampling 

𝐵 ⊆ 𝐾 ⊆ 𝑅𝐵. 
  

Let  𝐾𝑖 = 𝐾 ∩ 2
𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅. 

 
 
 
 
 
 

vol K = vol B .
vol(K1)

vol(K0)

vol(K2)

vol(K1)
…
vol(Km)

vol(Km−1)
. 

 
Estimate each ratio with random samples. 



Volume via Sampling 

 𝐾𝑖 = 𝐾 ∩ 2
𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅. 

 

vol K = vol B .
vol(K1)

vol(K0)

vol(K2)

vol(K1)
…
vol(Km)

vol(Km−1)
. 

 

 

Claim. vol Ki+1 ≤ 2. vol Ki . 
  

Total #samples  = 𝑚.
𝑚

𝜖2
= 𝑂∗ 𝑛2 .  



Simulated Annealing [LV03, Kalai-V.04] 
 

To estimate ∫𝑓 consider a sequence 𝑓0, 𝑓1, 𝑓2, … , 𝑓 = 𝑓𝑚 
with ∫ 𝑓0 being easy, e.g., constant function over ball. 

  

Then,   ∫ 𝑓 = ∫ 𝑓0.
∫ 𝑓1

∫ 𝑓0
.
∫ 𝑓2

∫ 𝑓1
…
∫ 𝑓𝑚

∫ 𝑓𝑚−1
.  

 

Each ratio can be estimated by sampling: 

 
1. Sample X with density proportional to 𝑓𝑖 

2. Compute 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
 

 

Then, 𝐸 𝑌 = ∫
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
. 
𝑓𝑖 𝑋

∫ 𝑓𝑖 𝑋
𝑑𝑋 =

∫ 𝑓𝑖+1

∫ 𝑓𝑖
. 

 

 

 

 

 

 

 

 



Annealing [LV06] 

 Define: 𝑓𝑖 𝑋 = 𝑒
−𝑎𝑖 𝑋  

 

  𝑎0 = 2𝑅,    𝑎𝑖+1 = 𝑎𝑖 1 −
1

𝑛
,   𝑎𝑚 =

𝜖

2𝑅
 

  

  𝑉𝑎𝑟 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
< 8 𝐸 𝑌 2. 

  

  𝑚 ~ 𝑛 log(2𝑅/𝜖) 
 #samples = 𝑂∗ 𝑛 . 

 

 Although expectation of Y can be large (exponential 
even), need only a few samples to estimate it! 

 



Volume Computation: an ongoing adventure 

    Power    New aspects 

Dyer-Frieze-Kannan 89 23    everything 

Lovász-Simonovits 90  16    localization  

Applegate-K 90     10    logconcave integration 

L 90                              10    ball walk 

DF 91                           8    error analysis 

LS 93            7    multiple improvements 

KLS 97      5    speedy walk, isotropy 

LV 03,04         4           annealing, wt. isoper. 

LV 06           4           integration, local analysis 

 

Cousins-V. 13      3    Gaussian volume 



Optimization via Annealing 

 
 We can minimize a quasiconvex function f over a convex set S 

given only by a membership oracle and a starting point in S. 
[KV04, LV06]. 

 

 Almost the same algorithm, in reverse: to find max f, define 

  

  𝑓𝑖 𝑋 = 𝑓 𝑋
𝑎𝑖    𝑖 = 1,… ,𝑚.     𝑎0 = 𝜖, 𝑎𝑚 = M. 

 

 A sequence of functions starting at nearly uniform and getting 
more and more concentrated near points of near-optimal 
objective value. 

 

 Parallelizable: Cloud implementation by Mahoney et al [2013]. 



Annealing 

Integration 
 𝑓𝑖 𝑋 = 𝑓(𝑋)

𝑎𝑖 , 𝑋 ∈ 𝐾 

 𝑎0 =
𝜖

2𝑅
,  𝑎𝑚 = 1 

  𝑎𝑖+1= 𝑎𝑖 1 +
1

𝑛
  

 Sample with density 

prop. to 𝑓𝑖 𝑋 . 

 Estimate 

𝑊𝑖 ~ ∫ 𝑓𝑖+1(𝑋)/∫ 𝑓𝑖 𝑋   

 Output 𝑊 = 𝑊1𝑊2…𝑊𝑚. 

 

Optimization 
• 𝑓𝑖 𝑋 = 𝑓(𝑋)

𝑎𝑖 , 𝑋 ∈ 𝐾 

• 𝑎0 =
𝜖

2𝑅
, 𝑎𝑚 =

2𝑛

𝜖
 

•  𝑎𝑖+1= 𝑎𝑖 1 +
1

𝑛
  

• Sample with density 
prop. to 𝑓𝑖 𝑋 . 

 

 

• Output X with max f(X). 

 



Part 3. Sampling Algorithms 

 

Ball walk: 

At x,   

 -pick random y from 𝑥 + 𝛿𝐵𝑛 

 -if y is in K, go to y 

 

 

Hit-and-Run: 

 At x,  

 -pick a random chord L through x 

 -go to a random point y on L 



Markov chains 

 State space K  

 set of measurable subsets that form a 𝜎-algebra, i.e., 

closed under finite unions and intersections 

 A next step distribution 𝑃𝑢 .  associated with each 

point u in the state space. 

 A starting point.  

 

 𝑤0, 𝑤1, … , 𝑤𝑘 , … s.t.  

𝑃 𝑤𝑘 ∈ 𝐴   𝑤0, 𝑤1, … , 𝑤𝑘−1) = 𝑃(𝑤𝑘 ∈ 𝐴 | 𝑤𝑘−1)  



Convergence 

 

Stationary distribution Q,  ergodic “flow” is: 

Φ 𝐴 =  𝑃𝑢 𝐾\A 𝑑𝑄(𝑢)
𝐴

 

For any subset 𝐴, we have Φ 𝐴 = Φ(𝐾\A) 

Conductance: 

𝜙 𝐴 =
∫ 𝑃𝑢 𝐾\A 𝑑𝑄(𝑢)𝐴

min𝑄 𝐴 , 𝑄 𝐾\A   
       𝜙 = inf

𝐴
 𝜙(𝐴) 

 

 Rate of convergence is bounded by 
1

𝜙2
   [LS93, JS86]. 



Conductance 
Arbitrary measurable subset S. 

 

 

 

 

 

 

 

How large is the conditional escape probability from S? 

 

Local conductance can be arbitrarily small for the ball walk.  

 

ℓ 𝑥 =
vol 𝑥 + 𝛿𝐵𝑛 ∩ 𝐾

vol(𝛿𝐵𝑛)
 

 



How to bound conductance? 
 

𝐵𝑛 ⊆ 𝐾 ⊆ 𝐷𝐵𝑛 
 

 Average local conductance is high ~
1

𝑛
 

 

 Conductance of large subsets is high ~
1

𝑛𝐷
 

 

 From a warm start, the ball walk mixes in 𝑂∗ 𝑛2𝐷2  steps. 

 

 Q. Can this be improved?  Apparently not: 

  

  

  



Conductance 

 

 

 

 

 

 

Need:  

 Nearby points have overlapping one-step distributions 

 Large subsets have large boundaries [isoperimetry] 

 

𝜋 𝑆3 ≥
2𝑑 𝑆1, 𝑆2
𝐷
min𝜋 𝑆1 , 𝜋 𝑆2  



Isoperimetry and the KLS conjecture 
 

    𝜋 𝑆3 ≥
2𝑑 𝑆1,𝑆2

𝐷
min𝜋 𝑆1 , 𝜋 𝑆2  

 

 

 

 

A: covariance matrix of stationary distribution 𝜋 

𝐸𝜋 𝑥 − 𝑥 
2 = 𝑇𝑟 𝐴 = 𝜆𝑖(𝐴)

𝑖

 

Thm. [KLS95].    𝜋 𝑆3 ≥
𝑐

𝑇𝑟 𝐴
𝑑(𝑆1, 𝑆2)min 𝜋 𝑆1 , 𝜋(𝑆2) 

 

Conj. [KLS95].    𝜋 𝑆3 ≥
𝑐

𝜆1 𝐴
𝑑(𝑆1, 𝑆2)min𝜋 𝑆1 , 𝜋(𝑆2) 



KLS, Slicing, Thin-shell 

         current bound      

 thin shell  𝑛1/3   [Guedon-Milman] 

 slicing  𝑛1/4  [Bourgain, Klartag] 

 KLS       ~ 𝑛1/3         [Bobkov;  

      Eldan-Klartag]  

 

All are conjectured to be O(1). 

Conjectures are equivalent! [Ball, Eldan-Klartag]. 



Convergence 

Thm. [LS93, KLS97] For a convex body, the ball walk 

with an M-warm start reaches an (independent) nearly 

random point in poly(n, D, M) steps. 

 

Thm. [LV03]. Same holds for arbitary logconcave 

density functions. 

 

 Strictly speaking, this is not rapid mixing! 

 How to get the first random point? 

 Better dependence on diameter D? 



Is rapid mixing possible? 

Ball walk can have bad starts, but 

Hit-and-run escapes from corners 

Min distance isoperimetry 

is too coarse 



Average distance isoperimetry 

 How to average distance? 

 ℎ 𝑥 ≤ 𝑚𝑖𝑛  𝑑 𝑢, 𝑣 ∶  𝑢 ∈ 𝑆1, 𝑣 ∈ 𝑆2, 𝑥 ∈ ℓ(𝑥, 𝑦)  

 

 

 

 

Thm.[LV04; Dieker-V.13]  

 

𝜋 𝑆3 ≥ 𝐸 ℎ 𝑥 𝜋(𝑆1)𝜋(𝑆2) 



Hit-and-run 

 Thm [LV04]. Hit-and-run mixes in polynomial time from any 
starting point inside a convex body. 

 

 Conductance = Ω
1

𝑛𝐷
 

 

 Along with isotropic transformation, gives  𝑂∗ 𝑛3  sampling, 
𝑂∗ 𝑛4  volume. 

 

 Is this practical? 

 

 [Deak-Lovász 2012]  Implementation of [LV03]  

 works for cubes of dimension up to 9 (taking a couple of hours). 



Sampling: current status 

Can be sampled efficiently: 
 Convex bodies 

 Logconcave distributions 

 1/(n-1)-harmonic-concave distributions [Chandarasekaran-
Deshpande-V.09] 

 Near-logconcave distributions [AK91] 

 Star-shaped bodies [Dadush-Chandrasekaran-V.10] 

 Positive curvature manifolds (e.g., boundary of convex 
body) [Belkin-Narayanan-Niyogi; Dieker-V.13] 

 … 

 

Cannot be sampled efficiently: 
 Quasiconcave distributions 

 

 



Gaussian sampling/volume 

 Sample from Gaussian restricted to K 

 Compute Gaussian measure of K 

 

 Use annealing: 

 Define  𝑓𝑖 𝑋 = 𝑒
− 
𝑋
2

2𝜎𝑖
2

 

 

 Start with 𝜎0 small ~ 
1

𝑛
,  increase in phases till 1. 

 

 To compute Gaussian volume, compute ratios of integrals 
of consecutive phases. 



∫ 𝑓𝑖+1

∫ 𝑓𝑖
 



Gaussian sampling 

 KLS conjecture holds for Gaussian restricted to any 

convex body (via Brascamp-Lieb inequality). 

 

Thm.   𝜋 𝑆3 ≥
𝑐

𝜎
 𝑑(𝑆1, 𝑆2)min 𝜋 𝑆1 , 𝜋(𝑆2) 

 

 

 Not enough on its own, but can be used to show:  

 

Thm. [Cousins-V. 13]. Ball walk applied to Gaussian 

restricted to a convex body containing the unit ball mixes in 

𝑂∗ 𝑛2  time from a warm start. 

 

 



Speedy walk: a thought experiment 

 Take sequence of points visited by ball walk: 

𝑤0, 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑖 , 𝑤𝑖+1, 𝑤𝑖+3… 

 

 Subsequence of “proper” attempts that stay inside K 

 

 This subsequence is a Markov chain and is rapidly 

mixing from any point 

 

 For a warm start, the total number of steps is only a 

constant factor higher 



Gaussian volume 

 Theorem [Cousins-V.] The Gaussian volume of a 

convex body K containing the unit ball can be 

approximated to within relative error 𝜖 in time 𝑂∗ 𝑛3 . 

 

 

 No need to adjust for isotropy! 

 Each step samples a 1-d Gaussian from an interval 

 

 Is this practical?!   

 Note: this is number of oracle calls. 



Practical volume/integration? 
 

Start with a concentrated Gaussian 

Run the algorithm till the Gaussian is nearly flat 

 

In each phase, flatten Gaussian as much as possible while 
keeping variance of ratio of integrals bounded 

 

Variance can be estimated with a small constant number of 
samples 

 

If covariance is skewed (as seen by SVD of O(n) points), scale 
down high variance subspace 

 

“Adaptive” annealing 



Rotated cubes 



demo 

 



3 problems to understand better 

 

 How true is the KLS conjecture? 

 

 How efficiently can we learn a polytope from 

Gaussian or uniform random points? 

 

 Can we compute the volume of a polytope in 

deterministic polynomial time? 



One core algorithmic problem 

 

sampling 

 

 

 

 

     Thank you. 


