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Abstract

The Kannan-Lovász-Simonovits conjecture says that the Cheeger constant of any logconcave density is
achieved to within a universal, dimension-independent constant factor by a hyperplane-induced subset.
Here we survey the origin and consequences of the conjecture (in geometry, probability, information
theory and algorithms) as well as recent progress resulting in the current best bounds. The conjecture
has lead to several techniques of general interest.
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Figure 1.1: Good and bad isoperimetry

1 Introduction

In this article, we describe the origin and consequences of the Kannan-Lovász-Simonovits (KLS) conjecture,
which now plays a central role in convex geometry, unifying or implying older conjectures. Progress on
the conjecture has lead to new proof techniques and in�uenced diverse �elds including asymptotic convex
geometry, functional analysis, probability, information theory, optimization and the theory of algorithms.

1.1 The KLS conjecture

The isoperimetric problem asks for the unit volume set with minimum surface area. For Euclidean space,
ancient Greeks (around 150 BC [8]) knew that the solution is a ball; a proof was only found in 1838 by Jakob
Steiner [85]. For sets of arbitrary volume, the isoperimetry (or expansion) of the set is de�ned to be the ratio
of surface area to its volume (or its complement, whichever is smaller). For the Gaussian distribution, or the
uniform distribution over a Euclidean sphere, the minimum isoperimetric ratio is achieved by a halfspace,
i.e., a hyperplane cut [86, 20]. However, this is not true in general (even for the uniform distribution over
a simplex) and the minimum ratio set, in the worst case, can be very far from a hyperplane. In general,
any domain that can be viewed as two large parts with a small boundary between them, a �dumbbell�-like
shape, can have arbitrary isoperimetric ratio (Figure 1.1). It is natural to expect that convex bodies and
logconcave functions (whose logarithms are concave along every line) have good isoperimetry � they cannot
look like dumbbells. The KLS conjecture says that a hyperplane cut achieves the minimum ratio up to a
constant factor for the uniform distribution on any convex set, and more generally for any distribution on
Rn with a logconcave density. The constant is universal and independent of the dimension.

Formally, for a density p in Rn, the measure of a set S ⊆ Rn is p(S) =
∫
S
p(x) dx. The boundary measure

of this subset is

p(∂S) = inf
ε→0+

p({x : d(x, S) ≤ ε})− p(S)

ε

where d(x, S) is the minimum Euclidean distance between x and S. The isoperimetric constant of p (or
Cheeger constant of p) is the minimum possible ratio between the boundary measure of a subset and the
measure of the subset among all subsets of measure at most half:

ψp = inf
S⊆Rn

p(∂S)

min {p(S), p(Rn \ S)}
.

For a Gaussian distribution and an unit hypercube in Rn, this ratio is a constant independent of the
dimension, with the minimum achieved by a halfspace as mentioned. Both of them belong to a much more
general class of probability distributions, called logconcave distribution. A probability density function is
logconcave if its logarithm is concave along every line, i.e., for any x, y ∈ Rn and any λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (1.1)

Many common probability distributions are logconcave e.g., Gaussian, exponential, logistic and gamma
distributions. This also includes indicator functions of convex sets, sets with the property that for any two
points x, y ∈ K, the line segment [x, y] ⊆ K.
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In the course of their study of algorithms for computing the volume, in 1995, Kannan, Lovász and
Simonovits made the following conjecture.

Conjecture (KLS Conjecture [46]). For any logconcave density p in Rn,

ψp ≥ c · inf
halfspace H

p(∂H)

min {p(H), p(Rn \H)}
. (1.2)

where c is an absolute, universal constant independent of the dimension and the density p.

For any halfspaceH, its expansion is a one-dimensional quantity, namely the expansion of the correspond-
ing interval when the density projected along the normal to the halfspace. Since projections of logconcave
densities are also logconcave (Lemma 2), it is not hard to argue that the isoperimetric ratio is Θ(1/σf ) for
any one-dimensional logconcave density with variance σ2

f . This gives an explicit formula for the right hand
side of (1.2). Going forward, we use the notation a & b to denote a ≥ c · b for some universal constant c
independent of the dimension and all parameters under consideration.

Lemma 1. For any n-dimensional logconcave density with covariance matrix A,

inf
halfspace H

p(∂H)

min {p(H), p(Rn \H)}
&

1√
‖A‖op

where ‖A‖op is the largest eigenvalue of A, or equivalently, the spectral norm of A.

It is therefore useful to consider the following normalization to a given distribution: apply an a�ne
transformation so that for the transformed density p, we have Ex∼p (X) = 0 and Ex∼p

(
XX>

)
= I, i.e.,

zero mean and identity covariance; we call such a distribution isotropic. For any distribution with mean
µ and covariance A, both well-de�ned, we can apply the transformation A−

1
2 (X − µ) to get an isotropic

distribution. Using this, we can reformulate the KLS conjecture as follows:

Conjecture (KLS, reformulated). For any logconcave density p in Rn with covariance matrix A, ψp &

‖A‖−
1
2

op . Equivalently, ψp & 1 for any isotropic logconcave distribution p.

1.2 Concentration of measure

Concentration of measure

One motivation to study isoperimetry is the phenomenon known as concentra-
tion of measure. This can be illustrated as follows: most of a Euclidean unit ball
in Rn lies within distance O( 1

n ) of its boundary, and also within distance O( 1√
n

)

of any central hyperplane. Most of a Gaussian lies in an annulus of thickness
O(1). For any subset of the sphere of measure 1

2 , the measure of points at dis-

tance at least
√

logn
n from the set is a vanishing fraction. These concentration

phenomena are closely related to isoperimetry. For example, since the sphere
has good isoperimetry (about

√
n), the boundary of any subset of measure 1

2
is large, and summing up over all points within distance 1√

n
gives a constant

fraction of the entire sphere.
The relationship between isoperimetry and concentration runs deep with

connections in both directions. In particular, the asymptotic behavior as the
dimension grows is of interest in both cases and we will discuss this in more
detail. We now review some basic de�nitions and properties of convex sets and logconcave distributions.

For two subsets A,B ⊆ Rn their Minkowski sum is A+B = {x+y : x ∈ A, y ∈ B}. The Brunn-Minkowski
theorem says that if A,B,A+B are measurable, then

vol(A+B)
1
n ≥ vol(A)

1
n + vol(B)

1
n .

For the cross-sections of a convex body K orthogonal to a �xed vector u, it says that the volume function

v(t) along any direction is 1
n−1 -concave, i.e. v(t)

1
n−1 is concave. If we replace each cross-section with a ball

of the same volume, the radius function is concave along u.
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Brunn-Minkowski applied to convex bodies: the radius function is concave

A generalization of convex sets is logconcave functions (1.1). Their basic properties are summarized by
the following classical lemma.

Lemma 2 (Dinghas; Prékopa; Leindler). The product, minimum and convolution of two logconcave functions
is also logconcave; in particular, any linear transformation or marginal of a logconcave density is logconcave.

Unlike convex sets, the set of logconcave distributions is closed under convolution. This is one of many
reasons we work with this more general class of functions. The proof of this follows from an analog of the
Brunn-Minkowski theorem for functions called the Prékopa-Leindler inequality: Let λ ∈ [0, 1], and three
bounded functions f, g, h : Rn → R+ satisfy f(λx+ (1− λ)y) ≥ g(x)λh(y)1−λ for any x, y ∈ Rn. Then,∫

Rn

f ≥
(∫

Rn

g

)λ(∫
Rn

h

)1−λ

.

1.3 The original motivation: A sampling algorithm

The study of algorithms has rich connections to high-dimensional convex geometry. It was the study of an
algorithm for sampling that led to the KLS conjecture.

1.3.1 Model of computation

K

Rx
r

Well-guaranteed oracle

For algorithmic problems such as sampling, optimization and integration, the
following general model of computation is standard. Convex bodies and log-
concave functions are presented by well-guaranteed oracles. For a convex body
K ⊂ Rn, a well-guaranteed membership oracle is given by numbers R ≥ r > 0,
a point x0 ∈ K with the guarantee that x0 + rBn ⊆ K ⊆ RBn and an oracle
that answers YES or NO to a query of the form �x ∈ K?� for any x ∈ Rn.
Another oracle of interest is a well-guaranteed separation oracle; it is given by
the same parameters r,R (but no starting point in the set), and a stronger
oracle: for a query �x ∈ K?�, the oracle either answers YES or answers NO
and provides a hyperplane that separates x from K. For an integrable function
f : Rn → R+, a well-guaranteed function oracle is given by a bound on the
norm of its center of gravity, upper and lower bounds on the eigenvalues of
the covariance matrix with density proportional to f and an oracle that returns f(x) for any x ∈ Rn. The
complexity of an algorithm is measured �rst in terms of the number of calls to the oracle and second in terms
of the total number of arithmetic operations performed. An algorithm is considered e�cient (and a problem
tractable) if its complexity is bounded by a �xed polynomial in the dimension and other input parameters,

which typically include an error parameter and a probability of failure parameter. We use Õ(·) to suppress
logarithmic factors in the leading expression and O∗(·) to suppress logarithmic factors as well as dependence
on error parameters.

1.3.2 Sampling with a Markov chain
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S

x

Ball walk

An important problem in the theory of algorithms is e�ciently sampling high-
dimensional sets and distributions. As we will presently see, sampling is closely
related to an even more basic and ancient problem: estimating the volume (or
integral).

Algorithms for sampling are based on Markov chains whose stationary dis-
tribution is the target distribution for the sampling problem. One such method
is the ball walk [67] for sampling from the uniform distribution over a convex
body (compact convex set), a particular discretization of Brownian motion.
Start with some point in the body. At a current point x,

1. Pick a random point y in the ball of a �xed radius δ centered at x.

2. If y is in the body, go to y, otherwise stay at x.

This process converges to the uniform distribution over any compact, �well-
connected� domain. But how e�cient is it? To answer this question, we have
to study its rate of convergence. This is a subject on its own with several general tools.

One way to bound the rate of convergence is via the smallest non-zero eigenvalue of the transition
operator. If this eigenvalue is λ, then an appropriate notion of distance from the current distribution to the
stationary distribution decreases by a multiplicative factor of (1− λ)

t
after t steps of a discrete-time Markov

chain. Thus, the larger the spectral gap, the more rapid the convergence.

• But how to bound the spectral gap? There are many methods. In the context of high-dimensional
continuous distributions, where the state space is not �nite, one useful method is the notion of con-
ductance. This can be viewed as the isoperimetry or expansion of the state space under the transition
operator. More precisely, for a Markov chain de�ned by a state space Ω with transition operation
p(x→ y) and stationary distribution Q, the conductance of a measurable subset is

φ(S)
def
=

∫
y/∈S

∫
x∈S P (x→ y)Q(x)dxdy

min {Q(S), Q(Ω \ S)}
and the conductance of the entire Markov chain is

φ
def
= inf

S⊂Ω
φ(S).

The following general theorem, due to Jerrum and Sinclair [82] was extended to the continuous setting by
Lovász and Simonivits [69].

Theorem 3 ([69]). Let Qt be the distribution of the current point after t steps of a Markov chain with
stationary distribution Q and conductance at least φ, starting from initial distribution Q0. Then, with M =

supA
Q0(A)
Q(A) ,

dTV (Qt, Q) ≤
√
M

(
1− φ2

2

)t
where dTV (Qt, Q) is the total variation distance between Qt and Q.

The mixing time of a Markov chain is related to its conductance via the following fundamental inequality.

1

φ
. τ .

1

φ2
logM (1.3)

The conductance of the ball walk can be lower bounded by the product of two parameters. The �rst
parameter is a mix of probability and geometry and asks for the minimum distance such that two points at
this distance will have some constant overlap in their next-step distributions. The second is a purely geometry
question, it is exactly the Cheeger constant of the stationary distribution. It turns out the �rst parameter
can be estimated (for a precise statement, see Theorem 15), thereby reducing the problem of bounding the
conductance of the Markov chain to bounding the Cheeger constant of the stationary distribution. This
motivated the conjecture that the Cheeger constant for any isotropic logconcave density is in fact at least a
universal constant, independent of the density and the dimension. If true, it would imply a bound of O∗(n2)
on the mixing time of the ball walk from a warm start in an isotropic convex body, which is the best possible
bound (it is tight for the isotropic hypercube).
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Figure 2.1: Connections

2 Connections

Here we discuss a wide array of implications of the conjecture, in geometry, probability and algorithms. For
further details, we refer the reader to recent books on the topic [23, 5, 7].

2.1 Geometry and Probability

The KLS conjecture implies the slicing conjecture and the thin-shell conjecture. Each of these has powerful
and surprising consequences. We discuss them in order of the strength of the conjectures � slicing, thin-shell,
KLS.

2.1.1 Slicing to anti-concentration

vol(S) ? vol(K)?

K

S

Slicing Conjecture

The slicing conjecture (a.k.a. the hyperplane conjecture) is one of the main
open questions in convex geometry. It is implied by KLS conjecture. Ball
�rst showed that a positive resolution of the KLS conjecture implies the slicing
conjecture [10]. Eldan and Klartag [36] later gave a more re�ned quantitative
relation (Theorem 10).

The conjecture says that any convex body in Rn of unit volume has a hyper-
plane section whose (n−1)-dimensional volume is at least a universal constant.
Ball [11] gave the following equivalent conjecture for logconcave distributions.

Conjecture 4 (Slicing conjecture [22, 11]). For any isotropic logconcave den-
sity p in Rn, the isotropic (slicing) constant Lp

def
= p(0)

1
n is O(1).

Geometrically, this conjecture says that an isotropic logconcave distribution
cannot have much mass around the origin. The best known bound is Lp . n

1
4

[50, 22].
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Paouris showed that if the slicing conjecture is true, then a logconcave distribution satis�es a strong
anti-concentration property (small ball probability).

Theorem 5 (Small ball probability [79]). If slicing conjecture is true, for any isotropic logconcave density
p in Rn, we have

Px∼p
(
‖x‖ ≤ t

√
n
)

= O(t)n

for all 0 ≤ t ≤ c for some universal constant c.

Paouris also showed that the inequality holds unconditionally with exponent O(
√
n) [79].

Another nice application of anti-concentration is to lower bound the entropy of a distribution.

Theorem 6 (Entropy of logconcave distribution [18]). If the slicing conjecture is true, for any isotropic
logconcave density p in Rn, we have

−O(n) ≤ Ex∼p log
1

p(x)
≤ O(n).

The Brunn-Minkowski inequality is not tight when applied to convex bodies that are large in di�erent
directions (e.g., K = {εx2 + ε−1y2 ≤ 1} and T = {ε−1x2 + εy2 ≤ 1} with tiny ε). The anti-concentration
aspect of slicing also shows the following reverse inequality.

Theorem 7 (Reverse Brunn-Minkowski Inequalities [74]). If slicing conjecture is true, then for any isotropic
convex sets K and T , we have

vol(K + T )1/n ≤ O(1)
(
vol(K)1/n + vol(T )1/n

)
.

We remark that all these consequences of the slicing conjecture are in fact equivalent to the conjecture
itself [32, 18, 21].

2.1.2 Thin shell to central limit theorem

Thin Shell conjecture

The Central Limit Theorem says that a random marginal of a hypercube is
approximately Gaussian. Brehm and Voigt asked if the same is true for convex
sets. Anttila, Ball and Perissinaki [72] observed that this is true for any distri-
bution on the sphere. Therefore, this also holds for any distributions with the
norm ‖x‖ concentrated at some value. Here, we state the version by Bobkov
that holds for any distribution.

Theorem 8 (Central Limit Theorem [19]). Let µ be an isotropic probability
on Rn, which might not be logconcave. Assume that

µ

(∣∣∣∣‖x‖2√n − 1

∣∣∣∣ ≥ ε) ≤ ε (2.1)

for some 0 < ε < 1/3. Let gθ(s) = µ({x>θ = s}) and g(s) = 1√
2π

exp(− s
2

2 ).
Then, for every δ > 0, we have that

P
({

θ ∈ Sn−1 : max
t∈R

∣∣∣∣∫ t

−∞
gθ(s)ds−

∫ t

−∞
g(s)ds

∣∣∣∣ ≥ 2δ +
6√
n

+ 4ε

})
≤ c1δ−

3
2 exp(−c2δ4n)

for some universal constants c1, c2 > 0.

So, it su�ces to prove that ‖x‖ is concentrated near
√
n for any isotropic logconcave distribution. In

a seminal work, Klartag proved that (2.1) holds with ε . log−
1
2 n [51]. Shortly after, Fleury, Guédon and

Paouris gave an alternative proof with ε . log−1/6 n · (log log n)2 [40]. It is natural to ask for the optimal
bound for (2.1). If the KLS conjecture is true, we can apply the conjecture for the sets {‖x‖2 ≤ r} for
di�erent values of r and get the following conjecture, suggested in [72, 17].
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Conjecture 9 (Thin shell conjecture). For any isotropic logconcave density p in Rn, the thin shell constant
σp

def
= Varx∼p ‖X‖2 is O(1).

The relation σp . ψ−1
p is an exercise. Eldan and Klartag showed that the slicing constant is bounded by

the thin-shell constant (to within a universal constant).

Theorem 10 ([36]). Lp . supp σp where the maximization is over all isotropic logconcave distribution.

Since Klartag's bound on σp, there has been much e�ort to improve the bound (see Table 1). In a
breakthrough, Eldan [35] showed that the thin shell conjecture is in fact equivalent to the KLS conjecture
up a logarithmic factor (see Theorem 35).

Year/Authors σp

2006/Klartag [51]
√
n/
√

log n

2006/Fleury-Guédon-Paouris [40]
√
n (log logn)2

log1/6 n

2006/Klartag [52] n4/10

2010/Fleury [39] n3/8

2011/Guedon-Milman [44] n1/3

2016/Lee-Vempala [65] n1/4

Table 1: Progress on the thin shell bound.

2.1.3 Isoperimetry to concentration

After discussing two conjectures that are potentially weaker than KLS conjecture, we now move to some
implications of the KLS conjecture itself.

The Poincaré constant of a measure is the minimum possible ratio of the expected squared gradient to
the variance over smooth functions. Applying Cheeger's inequality [29] this constant is at least the square
of the Cheeger constant. The reverse inequality holds for logconcave measures and was proved by Buser [26]
(Ledoux [55] gave another proof).

Theorem 11 (Poincaré inequality [88, 29, 26, 55]). For any isotropic logconcave density p in Rn, we have
that

ζp
def
= inf

smooth g

Ep
(
‖∇g(x)‖22

)
Varp (g(x))

≈ ψ2
p·

for any smooth g.

The Poincaré inequality is important in the study of partial di�erential equations. For example, the
Poincaré constant governs exactly how fast the heat equation converges. For the logconcave setting, the
choice of `2 norm is not important and it can be generalized as follows:

Theorem 12 (Generalized Poincaré inequality [73]). For any isotropic logconcave density p in Rn and for
all 1 ≤ q <∞, we have that

Ex∼p |∇g(x)| ? ψp
q
· (Ex∼p |g(x)− Ey∼pg(y)|q)1/q

for any smooth g.

Together with previous inequalities, we can summarize the relationships as follows: for any isotropic
logconcave density p in Rn,

Lp . sup
p
σp and σp .

1√
ζp
≈ 1

ψp

where the relation �.� hides only universal constants independent of the density p and the dimension n.
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We next turn to concentration inequalities. The classical concentration theorem of Levy says that any
Lipschitz function g on the sphere in Rn is concentrated near its mean (or median):

P (|g(x)− Eyg(y)| ≥ t) ≤ 2e−
1
2 t

2n.

The following theorem is an analogous statement for any logconcave density, and is due to Gromov and
Milman.

Theorem 13 (Lipschitz concentration [42]). For any L-Lipschitz function g in Rn, and isotropic logconcave
density p,

Px∼p (|g(x)− Eg| > L · t) = e−Ω(tψp).

Milman [73] showed the reverse, namely that a Lipschtiz concentration inequality implies a lower bound
on the Cheeger constant.

The next consequence is information-theoretic. Let X be a random variable from an n-dimensional
distribution with a density p. Its entropy is Ent(X) = −E(log p) = −

∫
Rn p(x) log p(x) dx. The Shannon-

Stam inequality says that for independent random vectors X,Y ∼ p,

Ent

(
X + Y√

2

)
≥ Ent(X)

with equality only if p is Gaussian. Quantifying the increase in entropy has been a subject of investigation.
Ball and Nguyen [12] proved the following bound on the entropy gap.

Theorem 14 (Entropy jump [12]). Let p be an isotropic logconcave density and X,Y ∼ p in Rn and Z be
drawn from a standard Gaussian in Rn. Then,

Ent

(
X + Y√

2

)
− Ent(X) & ψ2

p (Ent(Z)− Ent(X)) .

2.2 Algorithms

In this section we discuss algorithmic connections of the KLS conjecture.

2.2.1 Sampling

The ball walk can be used to sample from any density using a Metropolis �lter. To sample from the density
Q, we repeat the following: at a point x,

1. Pick a random point y in the δ-ball centered at x.

2. Go to y with probability min
{

1, Q(y)
Q(x)

}
.

If the resulting Markov chain is ergodic, the current distribution approaches a unique stationary distribution.
The complexity of sampling depends on the rate of convergence to stationarity. For an isotropic logconcave
distribution, the rate of convergence of the ball walk from a warm starting distribution is bounded in terms
of the Cheeger constant. A starting distribution Q0 is warm with respect to the stationary distribution Q if

Ex∼QQ0(x)
Q(x) is bounded by a constant.

Theorem 15 ([47]). For an isotropic logconcave density p, the ball walk mixes from a warm start in
O∗
(
n2/ψ2

p

)
steps.

2.2.2 Sampling to Convex Optimization

Sampling can be used to e�ciently implement a basic algorithm for convex optimization given a separation
oracle � the cutting plane method. Convex optimization can be reduced to convex feasibility by including
the objective function as a constraint and doing a binary search on its value. To solve the feasibility problem,
the method maintains a convex set containing K, starting with the ball of radius R which is guaranteed to
contain K. At each step it queries the centroid of the set. If infeasible, it uses the violated inequality given
by the separation oracle to restrict the set. The basis of this method is the following theorem of Grunbaum.
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Figure 2.2: Centroid cuts vs Simulated annealing for optimization

Theorem 16 ([43]). For any convex body K, for any halfspace H containing the centroid of K, vol(H∩K) ≥
1
evol(K).

Thus, the volume of the set maintained decreases by a constant factor in each iteration and the number of
iterations is O(n log R

r ), which is asymptotically the best possible. However, there is one important di�culty,
namely computing the center of gravity, even of an explicit polytope [33], is a computationally intractable
problem (#P-hard). The next theorem uses sampling to get around this, while keeping the same asymptotic
complexity.

Theorem 17 ([16]). Let X = 1
m

∑m
i=1Xi where Xi are drawn i.i.d. from a logconcave density p in Rn.

Then, for any halfspace H containing X,

E
(∫

H

p

)
≥ 1

e
−
√
n

m
.

Thus, for a convex body, using the average of m = O(n) samples is an e�ective substitute for the center
of gravity.

While this method achieves the best possible oracle complexity and (an impractically high) polynomial
number of arithmetic operations, the work of Lee, Sidford and Wong [60] shows how to reduce the overall

arithmetic complexity to Õ(n3). Their general method also leads to the current fastest algorithms for semi-
de�nite programming and submodular function minimization.

Convex optimization given only a membership oracle can also be reduced to sampling, via the method
known as simulated annealing. It starts with a uniform distribution over the feasible set, then gradually
focuses the distribution on near-optimal points. A canonical way to minimize the linear function c>x over a

convex body K is to use a sequence of Boltzmann-Gibbs distributions with density proportional to e−αc
>x

for points in K, with α starting close to zero and gradually increasing it. A random point drawn from this
density satis�es

E
(
c>x

)
≤ min

K
c>x+

n

α
.

Thus, sampling from the density with α = n/ε gives an additive ε error approximation. In [45] it is shown

how to make this method e�cient, using a sequence of only Õ(
√
n) distributions.

The method can be viewed as a special case of a more general family of algorithms referred to as the
interior-point method [76]. The latter method works by minimizing the sum of the desired objective function
with a diminishing multiple of a smooth convex function which blows up at the boundary. Thus the optimum
points to this modi�ed objective for any positive value of the multiplier are in the interior of the convex
body. The path followed by the method as a function of the multiplier is called the central path. There
are several interesting choices of the smooth convex functions, including the logarithmic barrier, volumetric
barrier, universal barrier and entropic barrier. The last two of these achieve the optimal rate in terms of the
dimension for arbitrary convex bodies. This rate, i.e., number of steps to reduce the distance to optimality
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Figure 2.3: DFK vs Simulated Annealing

by a constant factor, is O(
√
n), the same as for simulated annealing. This is not a coincidence � the path

of the centroid as a function of α corresponds exactly to the central path taken by the interior-point method
using the entropic barrier [24, 1]. The universal and entropic barriers are not the most e�cient for the
important case of linear programming � each step can be implemented in polynomial time, but is n4 or
higher. For a linear program given by m inequalities, the logarithmic barrier uses Õ(

√
m) phases, with each

phase requiring the solution of a linear system. Lee and Sidford have proposed a barrier that takes only
Õ(
√
n) iterations and gives the currest fastest method for solving linear programs [58, 59].
Optimization based on sampling has various robustness properties (e.g., it can be applied to stochastic

optimization [15, 38] and regret minimization [75, 25]), and continues to be an active research topic.

2.2.3 Sampling to Volume computation and Integration

Sampling is the core of e�cient volume computation and integration. The main idea for the latter problems
is to sample a sequence of logconcave distributions, starting with one that is easy to integrate and ending
with the function whose integral is desired. This process, known as simulated annealing can be expressed as
the following telescoping product: ∫

Rn

f =

∫
f0

∫
fi∫
f0

∫
f2∫
f3
. . .

∫
fm∫
fm−1

where fm = f . Each ratio
∫
fi+1/

∫
fi is the expectation of the estimator Y = fi+1(X)

fi(X) for X drawn from the

density proportional to fi. What is the optimal sequence of interpolating functions to use? The celebrated
polynomial-time algorithm of Dyer, Frieze and Kannan [34] used the uniform distribution on a sequence of
convex bodies, starting with the ball contained inside the input body K. Each body in the sequence is a ball
intersected with the given convex body K: Ki = 2

i
n rB ∩K. The length of the sequence is m = O(n log R

r )
so that the �nal body is just K. A variance bound shows that O(m/ε2) samples per distribution su�ce to
get an overall 1 + ε multiplicative error approximation with high probability. The total number of samples is
O∗(m2) = O∗(n2) and the complexity of the resulting algorithm is O∗(n5) as shown in [47]. Table 2 below
summarizes progress on the volume problem over the past three decades. Besides improving the complexity
of volume computation, each step has typically resulted in new techniques. For more details, we refer the
reader to surveys on the topic [81, 87].

Lovász and Vempala [70] improved on [47] by sampling from a sequence of nonuniform distributions. The

densities in the sequence have the form fi(x) ∝ exp(−αi ‖x‖)χK(x) or fi(x) ∝ exp(−αi ‖x‖2)χK(x). Then
the ratio of two consecutive integrals is the expectation of the following estimator:

Y =
fi+1(X)

fi(X)
.
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Year/Authors New ingredients Steps

1989/Dyer-Frieze-Kannan [34] Everything n23

1990/Lovász-Simonovits [68] Better isoperimetry n16

1990/Lovász [67] Ball walk n10

1991/Applegate-Kannan [6] Logconcave sampling n10

1990/Dyer-Frieze [33] Better error analysis n8

1993/Lovász-Simonovits [69] Localization lemma n7

1997/Kannan-Lovász-Simonovits [47] Speedy walk, isotropy n5

2003/Lovász-Vempala [70] Annealing, hit-and-run n4

2015/Cousins-Vempala [31] (well-rounded) Gaussian Cooling n3

2017/Lee-Vempala (polytopes) Hamiltonian Walk mn
2
3

Table 2: The complexity of volume estimation, each step uses Õ(n) bit of randomness.

They showed that the coe�cient αi (inverse �temperature�) can be changed by a factor of (1 + 1√
n

), which

implies that m = Õ(
√
n) phases su�ce, and the total number of samples is only O∗(n). This is perhaps

surprising since the ratio of the initial integral to the �nal is typically nΩ(n). Even though the algorithm

uses only Õ(
√
n) phases, and hence estimates a ratio of nΩ̃(

√
n) in one or more phases, the variance of the

estimator is bounded in every phase.

Theorem 18 ([70]). The volume of a convex body in Rn (given by a membership oracle) can be computed
to relative error ε using Õ(n4/ε2) oracle queries and Õ(n2) arithmetic operations per query.

The LV algorithm has two parts. In the �rst it �nds a transformation that puts the body in near-
isotropic position. The complexity of this part is Õ(n4). In the second part, it runs the annealing schedule,
while maintaining that the distribution being sampled is well-rounded, a weaker condition than isotropy.
Well-roundedness requires that a level set of measure 1

8 contains a constant-radius ball and the trace of the
covariance (expected squared distance of a random point from the mean) to be bounded by O(n), so that
R/r is e�ectively O(

√
n). To achieve the complexity guarantee for the second phase, it su�ces to use the

KLS bound of ψp & n−
1
2 . Connecting improvements in the Cheeger constant directly to the complexity

of volume computation is an open question. To apply improvements in the Cheeger constant, one would
need to replace well-roundedness with (near-)isotropy and maintain that. However, maintaining isotropy
appears to be much harder � possibly requiring a sequence of Ω(n) distributions and Ω(n) samples from
each, providing no gain over the current complexity of O∗(n4) even if the KLS conjecture turns out to be
true.

Cousins and Vempala [31] gave a faster algorithm for well-rounded convex bodies (any isotropic logconcave
density satis�es R

r = O(
√
n) and is well-rounded). Their algorithm, called Gaussian cooling, is signi�cantly

simpler, crucially utilizes the fact that the KLS conjecture holds for a Gaussian density restricted by any
convex body (Theorem 25), and completely avoids computing an isotropic transformation.

Theorem 19 ([31]). The volume of a well-rounded convex body, i.e., with R/r = O∗(
√
n), can be computed

using O∗(n3) oracle calls.

We note that the covariance matrix of any logconcave density can be computed e�ciently from only a
linear in the dimension number of samples. This question of sample complexity was also motivated by the
study of volume computation.

Theorem 20 ([2, 3, 83]). Let Y = 1
m

∑m
i=1XiX

>
i where X1, . . . , Xm are drawn from an isotropic logconcave

density p. If m & n
ε2 , then ‖Y − I‖op ≤ ε with high probability.

3 Proof techniques

Classical proofs of isoperimetry for special distributions are based on di�erent types of symmetrization that
e�ectively identify the extremal subsets. Bounding the Cheeger constant for general convex bodies and
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logconcave densities is more complicated since the extremal sets can be nonlinear and hard to describe
precisely, due to the trade-o� between minimizing the boundary measure of a subset and utilizing as much
of the �external� boundary as possible. The main technique to prove bounds in the general setting has been
localization, a method to reduce inequalities in high dimension to inequalities in one dimension. We now
describe this technique with a few applications.

3.1 Localization

S1

S3

S2

Euclidean isoperimetry

We will sketch a proof of the following theorem to illustrate the use of localiza-
tion. This theorem was also proved by Karzanov and Khachiyan [49] using a
di�erent, more direct approach.

Theorem 21 ([33, 68, 49]). Let f be a logconcave function whose support has
diameter D and let πf be the induced measure. Then for any partition of Rn
into measurable sets S1, S2, S3,

πf (S3) ≥ 2d(S1, S2)

D
min{πf (S1), πf (S2)}.

Before discussing the proof, we note that there is a variant of this result in
the Riemannian setting.

Theorem 22 ([66]). If K ⊂ (M, g) is a locally convex bounded domain with smooth boundary, diameter D
and Ricg ≥ 0, then the Poincaré constant is at least π2

4D2 , i.e., for any g with
∫
g = 0, we have that∫

|∇g(x)|2 dx ≥ π2

4D2

∫
g(x)2dx.

For the case of convex bodies in Rn, this result is equivalent to Theorem 21 up to a constant. One
bene�t of localization is that it does not require a carefully crafted potential. Localization has recently been
generalized to Riemannian setting [53]. The origins of this method were in a paper by Payne and Weinberger
[80].

We begin the proof of Theorem 21. For a proof by contradiction, let us assume the converse of its
conclusion, i.e., for some partition S1, S2, S3 of Rn and logconcave density f , assume that∫

S3

f(x) dx < C

∫
S1

f(x) dx and

∫
S3

f(x) dx < C

∫
S2

f(x) dx

where C = 2d(S1, S2)/D. This can be reformulated as∫
Rn

g(x) dx > 0 and

∫
Rn

h(x) dx > 0 (3.1)

where

g(x) =


Cf(x) if x ∈ S1,

0 if x ∈ S2,

−f(x) if x ∈ S3.

and h(x) =


0 if x ∈ S1,

Cf(x) if x ∈ S2,

−f(x) if x ∈ S3.

These inequalities are for functions in Rn. The next lemma will help us analyze them.

Lemma 23 (Localization Lemma [46]). Let g, h : Rn → R be lower semi-continuous integrable functions
such that ∫

Rn

g(x) dx > 0 and
∫
Rn

h(x) dx > 0.

Then there exist two points a, b ∈ Rn and an a�ne function ` : [0, 1]→ R+ such that∫ 1

0

`(t)n−1g((1− t)a+ tb) dt > 0 and
∫ 1

0

`(t)n−1h((1− t)a+ tb) dt > 0.
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Truncated cone

The points a, b represent an interval and one may think of `(t)n−1 as pro-
portional to the cross-sectional area of an in�nitesimal cone.

The lemma says that over this cone truncated at a and b, the integrals of
g and h are positive. Also, without loss of generality, we can assume that a, b
are in the union of the supports of g and h.

Proof outline. The main idea is the following. Let H be any halfspace such
that ∫

H

g(x) dx =
1

2

∫
Rn

g(x) dx.

Let us call this a bisecting halfspace. Now either∫
H

h(x) dx > 0 or

∫
Rn\H

h(x) dx > 0.

Thus, either H or its complementary halfspace will have positive integrals for both g and h, reducing the
domain of the integrals from Rn to a halfspace. If we could repeat this, we might hope to reduce the
dimensionality of the domain. For any (n− 2)-dimensional a�ne subspace L, there is a bisecting halfspace
containing L in its bounding hyperplane. To see this, let H be a halfspace containing L in its boundary.
Rotating H about L we get a family of halfspaces with the same property. This family includes H ′, the
complementary halfspace of H. The function

∫
H
g −

∫
Rn\H g switches sign from H to H ′. Since this is a

continuous family, there must be a halfspace for which the function is zero.
If we take all (n−2)-dimensional a�ne subspaces de�ned by {x ∈ Rn : xi = r1, xj = r2} where r1, r2 are

rational, then the intersection of all the corresponding bisecting halfspaces is a line or a point (by choosing
only rational values for xi, we are considering a countable intersection). To see why it is a line or a point,
assume we are left with a two or higher dimensional set. Since the intersection is convex, there is a point
in its interior with at least two coordinates that are rational, say x1 = r1 and x2 = r2. But then there is a
bisecting halfspace H that contains the a�ne subspace given by x1 = r1, x2 = r2 in its boundary, and so it
properly partitions the current set.

Thus the limit of this bisection process is a function supported on an interval (which could be a single
point), and since the function itself is a limit of convex sets (intersections of halfspaces) containing this inter-
val, it is a limit of a sequence of concave functions and is itself concave, with positive integrals. Simplifying
further from concave to linear takes quite a bit of work. For the full proof, we refer the reader to [69].

Going back to the proof sketch of Theorem 21, we can apply the localization lemma to get an interval
[a, b] and an a�ne function ` such that∫ 1

0

`(t)n−1g((1− t)a+ tb) dt > 0 and

∫ 1

0

`(t)n−1h((1− t)a+ tb) dt > 0. (3.2)

The functions g, h as we have de�ned them are not lower semi-continuous. However, this can be addressed
by expanding S1 and S2 slightly so as to make them open sets, and making the support of f an open set.
Since we are proving strict inequalities, these modi�cations do not a�ect the conclusion.

Let us partition [0, 1] into Z1, Z2, Z3 as follows:

Zi = {t ∈ [0, 1] : (1− t)a+ tb ∈ Si}.

Note that for any pair of points u ∈ Z1, v ∈ Z2, |u− v| ≥ d(S1, S2)/D. We can rewrite (3.2) as∫
Z3

`(t)n−1f((1− t)a+ tb) dt < C

∫
Z1

`(t)n−1f((1− t)a+ tb) dt

and ∫
Z3

`(t)n−1f((1− t)a+ tb) dt < C

∫
Z2

`(t)n−1f((1− t)a+ tb) dt.
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Z3 Z2Z1

Figure 3.1: One-dimensional isoperimetry

The functions f and `(·)n−1 are both logconcave, so F (t) = `(t)n−1f((1 − t)a + tb) is also logconcave. We
get, ∫

Z3

F (t) dt < C min

{∫
Z1

F (t) dt,

∫
Z2

F (t) dt

}
. (3.3)

Now consider what Theorem 21 asserts for the function F (t) over the interval [0, 1] and the partition
Z1, Z2, Z3: ∫

Z3

F (t) dt ≥ 2d(Z1, Z2) min

{∫
Z1

F (t) dt,

∫
Z2

F (t) dt

}
. (3.4)

We have substituted 1 for the diameter of the interval [0, 1]. Also, 2d(Z1, Z2) ≥ 2d(S1, S2)/D = C. Thus,
Theorem 21 applied to the function F (t) contradicts (3.3) and to prove the theorem in general, and it su�ces
to prove it in the one-dimensional case. A combinatorial argument reduces this to the case when each Zi
is a single interval. Proving the resulting inequality up to a factor of 2 is a simple exercise and uses only
the unimodality of F . The improvement to the tight bound requires one-dimensional logconcavity. This
completes the proof of Theorem 21.

The localization lemma has been used to prove a variety of isoperimetric inequalities. The next theorem
is a re�nement of Theorem 21, replacing the diameter by the square-root of the expected squared distance
of a random point from the mean. For an isotropic distribution this is an improvement from n to

√
n.

This theorem was proved by Kannan-Lovász-Simonovits in the same paper in which they proposed the KLS
conjecture.

Theorem 24 ([46]). For any logconcave density p in Rn with covariance matrix A, the KLS constant satis�es

ψp &
1√

Tr(A)
.

The next theorem shows that the KLS conjecture is true for an important family of distributions. The
proof is again by localization [30], and the one-dimensional inequality obtained is a Brascamp-Lieb Theorem.
We note that the same theorem can be obtained by other means [57, 35].

Theorem 25. Let h(x) = f(x)e−
1
2x
>Bx/

∫
f(y)e−

1
2y
>Bydy where f : Rn → R+ is an integrable logconcave

function and B is positive de�nite. Then h is logconcave and for any measurable subset S of Rn,

h(∂S)

min {h(S), h (Rn \ S)}
&

1

‖B−1‖
1
2
op

.

In other words, the expansion of h is Ω(
∥∥B−1

∥∥− 1
2

op
).

The analysis of the Gaussian Cooling algorithm for volume computation [31] uses localization. Kannan,
Lovász and Montenegro [48] used localization to prove the following bound on the log-Cheeger constant, a
quantity that is asymptotically the square-root of the log-Sobolev constant [55], and which we will discuss
in the next section.
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Theorem 26 ([48]). The log-Cheeger constant of any isotropic logconcave density with support of diameter
D satis�es κp & 1

D where

κp = inf
S⊆Rn

p(∂S)

min
{
p(S) log 1

p(S) , p(Rn \ S) log 1
p(Rn\S)

} .
Next we mention an application to the anti-concentration of polynomials. This is a corollary of a more

general result by Carbery and Wright.

Theorem 27 ([27]). Let q be a degree d polynomial in Rn. Then for a convex body K ⊂ Rn of volume 1,
any ε > 0, and x drawn uniform from K,

Pr
x∼K

(
|q(x)| ≤ εmax

K
|q(x)|

)
. ε

1
dn

We conclude this section with a nice interpretation of the localization lemma by Fradelizi and Guedon.
They also give a version that extends localization to multiple inequalities.

Theorem 28 (Reformulated Localization Lemma [41]). Let K be a compact convex set in Rn and f be an
upper semi-continuous function. Let Pf be the set of logconcave distributions µ supported by K satisfying∫
fdµ ≥ 0. The set of extreme points of convPf is exactly:

1. the Dirac measure at points x such that f(x) ≥ 0, or

2. the distributions v satis�es

(a) density function is of the form e` with linear `,

(b) support equals to a segment [a, b] ⊂ K
(c)

∫
fdv = 0

(d)
∫ x
a
fdv > 0 for x ∈ (a, b) or

∫ b
x
fdv > 0 for x ∈ (a, b).

Since we know the maximizer of any convex function is at extreme points, this shows that one can
optimize maxµ∈Pf

Φ(µ) for any convex Φ by checking Dirac measures and log-a�ne functions!

3.2 Stochastic localization

We now describe a variant of localization that is the key idea behind recent progress on the KLS conjecture.
Consider a subset E with measure 0.5 according to a logconcave density (it su�ces to consider such subsets
to bound the isoperimetric constant [73]). In standard localization, we repeatedly bisect space using a
hyperplane that preserves the relative measure of E. The limit of this process is a partition into 1-dimensional
logconcave measures (�needles�), for which inequalities are easier to prove. This approach runs into di�culties
for proving the KLS conjecture. While the original measure might be isotropic, the one-dimensional measures
could, in principle, have variances roughly equal to the trace of the original covariance (i.e., long thin needles),
for which the Cheeger constant is much smaller. However, if we pick the bisecting hyperplanes randomly, it
seems unlikely that we get such long thin needles. In a di�erent line of work, Klartag introduced a "tilt"

operator, i.e., multiplying a density by an exponential of the form f(x) ∝ e−c>x along a �xed vector c, and
used it in his paper improving the slicing constant [50, 54]. A stochastic version of localization combining
both these aspects, i.e., apprpaching needles via tilt operators, was discovered by Eldan [35].

Stochastic localization can be viewed as the continuous-time process, where at each step, we pick a
random direction and multiply the current density with a linear function along the chosen direction. Thus,
the discrete bisection step is replaced by in�nitesimal steps, each of which is a renormalization with a linear
function in a random direction. One might view this informally as an averaging over in�nitesimal needles.
The discrete time equivalent would be pt+1(x) = pt(x)(1 +

√
h(x − µt)>w) for a su�ciently small h and

random Gaussian vector w. Using the approximation 1 + y ∼ ey−
1
2y

2

, we see that over time this process
introduces a negative quadratic factor in the exponent, which will be the Gaussian factor. As time tends
to ∞, the distribution tends to a more and more concentrated Gaussian and eventually a delta function, at
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Figure 3.2: Stochastic localization

which point any subset has measure either 0 or 1. The idea of the proof is to stop at a time that is large
enough to have a strong Gaussian factor in the density, but small enough to ensure that the measure of a
set is not changed by more than a constant. Over time, the density can be viewed as a spherical Gaussian
times a logconcave function, with the Gaussian gradually reducing in variance. When the Gaussian becomes
su�ciently small in variance, then the overall distribution has good isoperimetric coe�cient, determined by
the inverse of the Gaussian standard deviation (Theorem 25). An important property of the in�nitesimal
change at each step is balance � the density at time t is a martingale and therefore the expected measure of
any subset is the same as the original measure. Over time, the measure of a set E is a random quantity that
deviates from its original value of 1

2 over time. The main question then is: what direction to use at each
step so that (a) the measure of E remains bounded and (b) the Gaussian factor in the density eventually
has small variance.

3.2.1 A stochastic process and its properties

Given a distribution with logconcave density p(x), we start at time t = 0 with this distribution and at each
time t > 0, we apply an in�nitesimal change to the density. To make some proofs easier, one may assume
that the support of p is contained in a ball of radius n because there is only exponentially small probability
outside this ball, at most e−Ω(n). Let dWt be the in�nitesimal Wiener process.

De�nition 29. Given a logconcave distribution p, we de�ne the following stochastic di�erential equation:

c0 = 0, dct = dWt + µtdt, (3.5)

where the probability distribution pt and its mean µt are de�ned by

pt(x) =
ec
>
t x− t

2‖x‖
2
2p(x)∫

Rn e
c>t y− t

2‖y‖
2
2p(y)dy

, µt = Ex∼ptx.

We will presently explain why pt takes this form with a Gaussian component. Before we do that, we note
that the process can be generalized using a �control� matrix Ct at time t. This is a positive de�nite matrix
that could, for example, be used to adapt the process to the covariance of the current distribution. At time
t, the covariance matrix is

At
def
= Ex∼pt(x− µt)(x− µt)>

The control matrix is incorporated in the following more general version of (3.5):

c0 = 0, dct = C
1/2
t dWt + Ctµtdt,

B0 = 0, dBt = Ctdt,

where the probability distribution pt is now de�ned by

pt(x) =
ec
>
t x− 1

2‖x‖
2
Btp(x)∫

Rn e
c>t y− 1

2‖y‖
2
Btp(y)dy

.

When Ct is a Lipschitz function with respect to ct, µt, At and t, standard theorems (e.g., [77, Sec 5.2]) show
the existence and uniqueness of the solution in time [0, T ] for any T > 0.
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We will now focus on the case Ct = I and hence Bt = tI. The lemma below says that the stochastic
process is the same as continuously multiplying pt(x) by a random in�nitesimally small linear function.

Lemma 30. We have that dpt(x) = (x− µt)>dWt · pt(x) for any x ∈ Rn.

3.2.2 Alternative de�nition of the process

Here, we use dpt(x) = (x− µt)>dWtpt(x) as the de�nition of the process and show how the Gaussian term

− t
2 ‖x‖

2
2 emerges. To compute d log pt(x), we �rst explain how to apply the chain rule (Itô's formula) for

a stochastic processes. Given real-valued stochastic processes xt and yt, the quadratic variations [x]t and
[x, y]t are real-valued stochastic processes de�ned by

[x]t = lim
|P |→0

∞∑
n=1

(
xτn − xτn−1

)2
,

[x, y]t = lim
|P |→0

∞∑
n=1

(
xτn − xτn−1

) (
yτn − yτn−1

)
,

where P = {0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ↑ t} is a stochastic partition of the non-negative real numbers,
|P | = maxn (τn − τn−1) is called the mesh of P and the limit is de�ned using convergence in probability.
Note that [x]t is non-decreasing with t and [x, y]t can be de�ned as

[x, y]t =
1

4
([x+ y]t − [x− y]t) .

For example, if the processes xt and yt satisfy the SDEs

dxt = µ(xt)dt+ σ(xt)dWt and yt = ν(yt)dt+ η(yt)dWt

where Wt is a Wiener process, we have that

[x]t =

∫ T

0

σ2(xs)ds, [x, y]t =

∫ T

0

σ(xs)η(ys)ds and d[x, y]t = σ(xt)η(yt)dt.

For vector-valued SDEs

dxt = µ(xt)dt+ Σ(xt)dWt and dyt = ν(yt)dt+M(yt)dWt

we have that

[xi, xj ]t =

∫ T

0

(Σ(xs)Σ
>(xs))ijds and d[xi, yj ]t =

∫ T

0

(Σ(xs)M
>(ys))ijds.

Lemma 31 (Itô's formula). Let x be a semimartingale and f be a twice continuously di�erentiable function,
then

df(xt) =
∑
i

df(xt)

dxi
dxi +

1

2

∑
i,j

d2f(xt)

dxidxj
d[xi, xj ]t.

We can now compute the derivative d log pt(x). Using dpt(x) in Lemma 30 and Itô's formula, we have
that

d log pt(x) =
dpt(x)

pt(x)
− 1

2

d[pt(x)]t
pt(x)2

= (x− µt)>dWt −
1

2
(x− µt)>(x− µt)dt

= x>(dWt + µtdt)−
1

2
‖x‖2 dt+ g(t)

= x>dct −
1

2
‖x‖2 dt+ g(t)
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where g(t) represents terms independent of x and the �rst two terms explain the form of pt(x) and the
appearance of the Gaussian.

Using Itô's formula again, we can compute the change of the covariance matrix:

dAt =

∫
Rn

(x− µt)(x− µt)> · (x− µt)>dWt · pt(x)dx−A2
tdt.

3.2.3 Applications

Better KLS bound. Eldan introduced stochastic localization [35] and used it to prove that the thin-shell
conjecture implies the KLS conjecture up to a logarithmic factors. We later adapted his idea to get a better
bound on KLS constant itself. Since our proof is slightly simpler and more direct than Eldan's proof, we
choose to only discuss our proof in full detail. We will discuss the di�erence between our proof and his proof
in the next section.

Theorem 32 ([65]). For any logconcave density p in Rn with covariance matrix A,

ψp &
1

(Tr (A2))
1/4

.

In particular, we have ψp & n−
1
4 for any isotropic logconcave p.

We now outline the proof. For this, we use the simplest choice in stochastic localization, namely a pure
random direction chosen from the uniform distribution (i.e., Ct = I). The analysis needs a potential function
that grows slowly but still maintains good control over the spectral norm of the current covariance matrix.
The direct choice of ‖At‖op, where At is the covariance matrix of the distribution at time t, is hard to control.

We use the potential Φt = Tr(A2
t ). Itô's formula shows that this function evolves as follows:

dΦt =− 2Tr(A3
t )dt+ Ex,y∼pt

(
(x− µt)>(y − µt)

)3
dt+ 2Ex∼pt(x− µt)>At(x− µt)(x− µt)>dWt

def
=δtdt+ v>t dWt. (3.6)

The �rst term can be viewed as a deterministic drift while the second is stochastic with no bias. To
bound both terms, we use the following lemmas. The �rst one below is a folklore reverse Hölder inequality
and can be proved using the localization lemma (see e.g., [71]).

Lemma 33 (Logconcave moments). Given a logconcave density p in Rn, and any positive integer k,

Ex∼p ‖x‖k ≤ (2k)k
(
Ex∼p ‖x‖2

)k/2
.

Using this lemma and the Cauchy-Schwarz inequality, we have the following moment bounds.

Lemma 34. Given a logconcave distribution p with mean µ and covariance A,

1. Ex,y∼p |〈x− µ, y − µ〉|3 . Tr
(
A2
)3/2

.

2.
∥∥Ex∼p(x− µ)(x− µ)>A(x− µ)

∥∥
2
. ‖A‖1/2op Tr

(
A2
)
.

Proof. Without loss of generality, we can assume µ = 0.
For the �rst statement, we �x x and apply Lemma 33 to show that

Ey∼p |〈x, y〉|3 .
(
Ey∼p〈x, y〉2

)3/2
=
(
x>Ax

)3/2
=
∥∥∥A1/2x

∥∥∥3

2
.

Then we note that A1/2x follows a logconcave distribution (Lemma 2) with mean 0 and covariance A2 and
hence Lemma 33 to see that

Ex∼p
∥∥∥A1/2x

∥∥∥3

2
.

(
Ex∼p

∥∥∥A1/2x
∥∥∥2
)3/2

= Tr
(
A2
)3/2

.
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Therefore, we have that

Ex,y∼p |〈x, y〉|3 . Ex∼p
∥∥∥A1/2x

∥∥∥3

. Tr
(
A2
)3/2

.

For the second statement,∥∥Ex∼px · x>Ax∥∥2
= max
‖ζ‖2≤1

Ex∼px>ζ · x>Ax

≤ max
‖ζ‖2≤1

√
Ex∼p(x>ζ)2

√
Ex∼p (x>Ax)

2

= ‖A‖1/2op ·
√

Ex∼p
∥∥A1/2x

∥∥4

2
.

For the last term, by a similar argument as before, we can use Lemma 33 shows that

Ex∼p
∥∥∥A 1

2x
∥∥∥4

2
.
(
TrA2

)2
.

This gives the second statement.

The drift term in (3.6) can be bounded using the �rst inequality in Lemma 34 as

δt ≤ Ex,y∼pt
(
(x− µt)>(y − µt)

)3
. Tr

(
A2
t

)3/2
= Φ

3/2
t (3.7)

where we also used that the term −2Tr(A3
t ) is negative since At is positive semi-de�nite. The martingale

coe�cient vt can be bounded in magnitude using the second inequality:

‖vt‖2 ≤
∥∥Ex∼pt(x− µt)>At(x− µt)(x− µt)∥∥2

≤ ‖At‖1/2op Tr(A2
t ) > Φ

5/4
t .

Together we have the simpli�ed expression

dΦt > Φ
3/2
t dt+ Φ

5/4
t dWt

So the drift term grows roughly as Φ3/2t while the stochastic term grows as Φ
5/4
t

√
t. Thus, both bounds

indicate that for t up to O( 1√
TrA2

), the potential Φt remains O(TrA2), i.e., Tr(A2
t ) grows only by a constant

factor.
We can use this as follows. Fix any subset E ⊂ Rn of measure p(E) =

∫
E
p(x)dx = 1

2 . We will argue
that the set remains nearly balanced for a while. To see this, let gt = pt(E) and note that

dgt =

〈∫
E

(x− µt)pt(x)dx, dWt

〉
where the integral might not be 0 because it is over the subset E and not all of Rn. Hence,

d[gt]t =

∥∥∥∥∫
E

(x− µt)pt(x)dx

∥∥∥∥2

2

dt

= max
‖ζ‖2≤1

(∫
E

ζ>(x− µt)pt(x)dx

)2

dt

≤ max
‖ζ‖2≤1

∫
Rn

(
ζ>(x− µt)

)2
pt(x)dx · pt(E)dt

≤ max
‖ζ‖2≤1

(
ζ>Atζ

)
dt = ‖At‖op dt.

Thus, gt is bounded by a random process with variance ‖At‖op at time t. For 0 ≤ T > 1√
TrA2

, the total

variance accumulated in the time period [0, T ] is∫ T

0

‖As‖op ds .
∫ T

0

Tr(A2
s)

1
2 ds . 1.
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Hence, we get that the set E remains bounded in measure between 1
4 and 3

4 till time T = c√
TrA2

for some

universal constant c.
But at this time, the density pT has a Gaussian component with coe�cient T and hence the Cheeger

constant is Ω(
√
T ) by Theorem 25. Hence, we have the following:

p(∂E) = EpT (∂E)

&
√
T · P(

1

4
≤ pT (E) ≤ 3

4
)

&
√
T

& (TrA2)−
1
4

where the �rst equality follows from the fact that pt is a martingale, the second inequality follows from
ψpT &

√
T (Theorem 25) and the third inequality follows from the fact the set E remains bounded in

measure between 1
4 and 3

4 till time T = c√
TrA2

with at least constant probability. This completes the proof

of Theorem 32.

Reduction from thin shell to KLS. In Eldan's original proof, he used the stochastic process with

control matrix Ct = A
− 1

2
t . For this, the change of the covariance matrix is as follows:

dAt =

∫
Rn

(x− µt)(x− µt)> · (x− µt)>A
− 1

2
t dWt · pt(x)dx−Atdt.

To get the reduction from thin shell to KLS, we use the potential Φt = TrAqt with a suitably large integer q
for better control of the spectral norm.

dΦt =− qΦtdt+ qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>A

− 1
2

t dWt

+
q

2

∑
α+β=q−2

Ex,y∼pt(x− µt)>Aαt (y − µt)(x− µt)>Aβt (y − µt)(x− µt)>A−1
t (y − µt)dt.

The stochastic term can be bounded using the same proof as in the second inequality of Lemma 34. However,
the last term is more complicated. Eldan used the thin shell conjecture to bound the last term and showed
that

dΦt > qΦtdWt + q2σ(n)2 log n · Φtdt

where σ(n) = supp σp is the maximum thin-shell constant over all isotropic logconcave densities p in Rn.
For an isotropic distribution, Φ0 = n. Hence, we have that Φt > nO(1) for 0 ≤ t ≤ 1

q2σ(n)2 . By choosing

q = O(log n), we have that ‖At‖op > 1 for 0 ≤ t ≤ 1
σ(n)2 log2 n

. By a similar proof as before, this gives that

ψp & 1
σ(n) logn .

Theorem 35 ([35]). For any isotropic logconcave density p in Rn, we have ψp & 1
σ(n) logn where σ(n) =

supp σp is the maximum thin-shell constant over all isotropic logconcave densities p in Rn.

Tight log-Sobolev constant and improved concentration. One can view the slicing conjecture as
being weaker than the thin-shell conjecture and the thin shell conjecture as weaker than the KLS conjecture.
Naturally one may ask if there is a conjecture stronger than the KLS conjecture. It is known that KLS
conjecture is equivalent to proving Poincaré constant is Θ(1) for any isotropic logconcave distribution. It is
also known that log-Sobolev constant (de�ned below) is stronger than the Poincaré constant. So, a natural
question is whether the log-Sobolev constant is Θ(1) for any isotropic logconcave distribution? We �rst
remind the reader of the de�nition.

De�nition 36. For any distribution p, we de�ne the the log-Sobolev constant ρp be the largest number
such that for every smooth f with

∫
f2(x)p(x)dx = 1, we have that∫

|∇f(x)|2 p(x)dx & ρp

∫
f2(x) log f(x)2 · p(x)dx.

21



Figure 3.3: Needle decomposition

The result of [48] (Theorem 26) shows that ρp ≥ 1
D2 for any isotropic logconcave measure with support

of diameter D. Recently, we proved the following tight bound.

Theorem 37 ([64]). For any isotropic logconcave density p in Rn with support of diameter D, the log-Sobolev
constant satis�es ρp & 1

D . This is the best possible bounds up to a constant.

The proof uses the same process as Theorem 32 with a di�erent potential function that allows one to get
more control on ‖At‖op. This potential is a Stieltjes-type barrier function de�ned as follows. Let u(At) be
the solution to

Tr((uI −At)−2) = n and At � uI (3.8)

Note that this is the same as
∑n
i=1

1
(u−λi)2

= n and λi ≤ u for all i where λi are the eigenvalues of At. Such

a potential was used to to build graph sparsi�ers [14, 4, 61, 62], to understand covariance estimation [83]
and to solve bandit problems [9].

The next theorem is a large-deviation inequality based on the same proof technique.

Theorem 38 ([64]). For any L-Lipschitz function g in Rn and any isotropic logconcave density p, we have
that

Px∼p (|g(x)−medx∼pg(x)| ≥ c · L · t) ≤ exp(− t2

t+
√
n

).

Furthermore, the same conclusion holds with medx∼pg(x) replaced by Ex∼pg(x).

For the Euclidean norm g(x) = ‖x‖ , the range t ≥
√
n is a well-known inequality proved by Paouris

[78] and later re�ned by Guedon and Milman [44] to exp(−min( t
3

n , t)). The bound above improves and
generalizes these bounds.

3.3 Needle decompositions

We describe a �combinatorial� approach to resolving the KLS conjecture. The idea of localization was to
reduce an isoperimetric inequality in Rn to a similar inequality in one dimension, by arguing that if the
original inequality were false, there would be a one-dimensional counterexample. Alternatively, one can
view localization as an inductive process � the �nal inequality is a weighted sum of inequalities for each
component of a partition into needles, viz. a needle decomposition. For this to be valid, the partition
should maintain the relative measure of the subset S whose isoperimetry is being considered. To be useful,
the Cheeger constant of each needle should be approximately as large as desired. In fact, it su�ces if some
constant fraction of needles (by measure) in a needle decomposition has good isoperimetry, i.e., small spectral
norm, i.e., variance equal to O(‖A‖op).

De�nition 39. An ε-thin cylinder decomposition of a convex body K is a partition of K by hyperplane
cuts so that each part P is contained in a cyclinder whose radius is at most ε. The limit of a sequence of
needle decompositions with ε → 0 is a needle decomposition with weighting w(P ) over the limiting set of
needles P.
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Theorem 40. Let P be a needle decomposition of an isotropic convex body K by hyperplane cuts s.t. for some∫
P
fdx = 0 for each needle P in the decomposition, where f : Rn → R is a continuous function. Suppose

also that a random needle chosen with density proportional to w(P ) satis�es PP∈P(‖AP ‖op ≤ C) ≥ c, for
constants c, C > 0. Then ψK & 1.

The proof of the theorem is simple. We �x a subset S ⊂ K of measure a ≤ 1/2 and choose f to be the
function which maintains the fraction of volume taken up S in each part; thus, the relative measure of S in
each needle is a. Next, using one-dimensional isoperimetry, the measure of the boundary of S in each needle
P is at least Ω(1) a

‖AP ‖1/2op

w(P ). This is Ω(a)w(P ) for at least c fraction of the needles (by their weight) by

the assumption of the theorem. Hence

voln−1(∂S)

vol(S)
≥ c · Ω(a) = Ω(a)

showing that ψK = Ω(1).
This puts the focus on whether there exist needle decompositions that have bounded operator norm

for some constant measure of the needles. This approach was used in [28] to bound the isoperimetry of
star-shaped bodies.

As far as we know, the bounded operator norm property might be true for any needle decomposition!
We conclude with this as a question:

Let P be a partition of an isotropic logconcave density p in Rn by hyperplanes. Is it true that there
always exists a subset of parts Q ⊂ P such that (1) p(Q) ≥ c and (2) Var(P ) ≤ C for each P ∈ Q? (c, C
are absolute constants, and Var(P ) is the variance of a random point from the part P drawn with density
proportional to p).

4 Open Problems

Here we discuss some intriguing open questions related to the KLS conjecture (besides resolving it!), asymp-
totic convex geometry and e�cient algorithms in general.

Deterministic volume. E�cient algorithms for volume computation are randomized, and this is unavoid-
able if access to the input body is only through an oracle [37, 13]. However, for explicit polytopes given as
Ax ≥ b, the only known hardness is for exact computation [33] and it is possible that there is a deterministic
polynomial-time approximation scheme. Such an algorithm would be implied if P=BPP. Thus, �nding a
deterministic polynomial-time algorithm for estimating the volume of a polytope to within a factor of 2 (say)
is an outstanding open problem.

Lower bound for sampling. The complexity of sampling an isotropic logconcave density in Rn, assuming
the KLS conjecture is O∗(n2) from a warm start. Is this the best possible? Can we show an Ω(n2) lower
bound for randomized algorithms?

Faster sampling and isotropy. The current bottleneck for faster sampling (in the general oracle model)
is the complexity of isotropic transformation, which is currently O∗(n4) [70]. Cousins and Vempala have
conjectured that the following algorithm will terminate in O(log n) iterations and produce a nearly-istropic
body. Each iteration needs O∗(n) samples and takes O∗(n2)×O∗(n) = O∗(n3) steps.

Repeat:

1. Estimate the covariance of the standard Gaussian density restricted to the current convex body.

2. If the covariance has eigenvalues smaller than some constant, apply a transformation to make this
distribution isotropic.

Another avenue for improvement is in the number of arithmetic operations per oracle query. This is Õ(n2)
for all the oracle-based methods since each step must deal with a linear transformation. A random process
that could be faster is Coordinate Hit-and-Run. In this, a coordinate basis is �xed, and at each step, we pick
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one of the coordinate directions at random, compute the chord through the current point in that direction
and go to a random point along the chord. It is open to show that the mixing time/conductance of this
process is polynomial and perhaps of the same order as Hit-and-Run, thus potentially a factor of n faster
overall.

Manifold KLS. In [63], we proved the following theorem, motivated by the goal of faster sampling and
volume computation of polytopes.

Lemma 41. Let φ : K ⊂ Rn → R be a convex function de�ned over a convex body K such that D4φ(x)[h, h, h, h] ≥
0 for all x ∈ K and h ∈ Rn. Given any partition S1, S2, S3 of K with d = minx∈S1,y∈S2

d(x, y), i.e., the
minimum distance between S1 and S2 in the Riemannian metric induced by the Hessian of φ. For any α > 0,∫

S3
e−αφ(x)dx

min
{∫

S1
e−αφ(x)dx,

∫
S2
e−αφ(x) dx

} &
√
α · d.

The special case when φ(x) = ‖x‖2 and d is the Euclidean metric is given by Theorem 25. What are
interesting generalizations of this theorem and the KLS conjecture to the manifold setting?
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