
The Interplay of Sampling and Optimization 

in High Dimension

Santosh Vempala, Georgia Tech



Deep Learning

 Neural nets can represent any real-valued function 

approximately.

 What can they learn efficiently?

 I don’t know.



High-dimensional problems

 What is the complexity of computational problems as the 

dimension grows?

 Dimension = number of variables

 Typically, size of input is a function of the dimension.

 Two fundamental problems: Optimization, Sampling



Problem 1: Optimization

Input: function f: 𝑅𝑛 → 𝑅 specified by an oracle, 

point x, error parameter ε . 

Output: point y such that  

𝑓 𝑦 ≥ max𝑓 − 𝜖

Examples:  max 𝑐 ⋅ 𝑥 𝑠. 𝑡. 𝐴𝑥 ≥ 𝑏 , min 𝑥 𝑠. 𝑡. 𝑥 ∈ 𝐾.



Problem 2: Sampling

Input: function f: 𝑅𝑛 → 𝑅+, ∫ 𝑓 < ∞, specified by an 

oracle, a point x, error parameter ε. 

Output: A point y from a distribution within distance ε
of distribution with density proportional to f.

Examples:  𝑓 𝑥 = 1𝐾 𝑥 , 𝑓 𝑥 = 𝑒−𝑎 𝑥 1𝐾(𝑥)



High-dimensional problems

 Optimization

 Sampling 

Also:

 Integration (volume)

 Learning

 Rounding

 … 

All intractable in general, even to approximate.

Q. What structure makes high-dimensional problems computationally 
tractable? (polytime solvable)



High-dimensional breatkthroughs

P1. Optimization. Find minimum of f over the set S.

Ellipsoid algorithm works when

S is a convex set and f is a convex function.

P2. Integration. Find the integral of f.

Dyer-Frieze-Kannan algorithm works when

f is the indicator function of a convex set.



Convexity
(Indicator functions of) Convex sets:

∀𝑥, 𝑦 ∈ 𝑅𝑛, 𝜆 ∈ 0,1 , 𝑥, 𝑦 ∈ 𝐾  𝜆𝑥 + 1 − 𝜆 𝑦 ⊆ 𝐾

Concave functions:

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝜆𝑓 𝑥 + 1 − 𝜆 𝑓 𝑦

Logconcave functions: 

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ 𝑓 𝑥 𝜆 𝑓 𝑦 1−𝜆

Quasiconcave functions:

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≥ min 𝑓 𝑥 , 𝑓 𝑦

Star-shaped sets:

∃𝑥 ∈ 𝑆 𝑠. 𝑡. ∀𝑦 ∈ 𝑆, 𝜆𝑥 + 1 − 𝜆 𝑦 ∈ 𝑆



Tractable cases: cONVEx++

Problem

Input type

Optimization
𝒎𝒊𝒏/𝒎𝒂𝒙 𝒇 𝒙 : 𝒙 ∈ 𝑲

Sampling

𝒙 ∼ 𝒇(𝒙)

Convex Linear: Kha79

Convex: GLS83

DFK89

Logconcave GLS83(implicit) Lipshitz:AK91

General: LV03

Stochastic/approx.

convex

BV03,KV03,LV06,

BLNR15, FGV15

KV03, LV06

Star-shaped X CDV2010

Efficient sampling gives efficient volume computation, integration 

for logconcave functions.



Computational model

Well-guaranteed Membership oracle:

Compact set K is given by 

 a membership oracle: answers YES/NO to “𝑥 ∈ 𝐾? "

 a point 𝑥0 ∈ 𝐾

 Numbers r, R s.t. 𝑥0 + 𝑟𝐵𝑛 ⊆ 𝐾 ⊆ 𝑅𝐵𝑛

Well-guaranteed Function oracle
 An oracle that returns 𝑓(𝑥) for any 𝑥 ∈ 𝑅𝑛

 A point 𝑥0 with 𝑓 𝑥0 ≥ 𝛽

 Numbers r, R s.t.

𝑥0 + 𝑟𝐵𝑛 ⊂ 𝐿𝑓
1

8
and 𝑅2 = 𝐸𝑓 𝑋 −  𝑋

2



A closer look: polytime convex optimization

Linear programs     Khachiyan79 Ellipsoid

Karmarkar83 Interior-point method (IPM)

Renegar88, Vaidya90 IPM

Dunagan-V04 Perceptron+rescaling

Kelner-Spielman05 Simplex+rescaling

….

Lee-Sidford13,15 IPM

Convex programs   GLS83* Ellipsoid++

Vaidya89* Volumetric center

NN94** IPM (universal barrier)

Bertsimas-V.02* Random walk+cutting plane

Kalai-V06* Simulated annealing

Lee-Sidford-Wong15# hybrid:IPM+cutting plane 

*: need only a membership/function oracle!

**: yes, even this.

#: needs separation oracle: NO answer comes with violating hyperplane



A closer look: polytime sampling

Convex bodies DFK89 grid walk n20

LS91,93 ball walk 𝑛7

KLS97 ball walk 𝑛3

LV03 hit-and-run

Logconcave functions AK91 grid walk 𝑛8

LS93 ball walk 𝑛7

LV03,06 hit-and-run 𝑛3

Polytopes KLS,LV Ball/hit-and-run 𝑛3 𝑚𝑛

KN09 Dikin walk mn 𝑚𝑛𝜔−1

Lee-V16+ Geodesic walk 𝑚𝑛𝑐 𝑚𝑛𝜔−1



This talk: interplay of sampling and optimization

 Part I: Optimization via Sampling

 Cutting Plane Method

 Simulated Annealing

 Interior Point Method

 Part II: Sampling via Optimization (ideas)

 Ball walk, hit-and-run

 Dikin walk

 Geodesic walk

 Faster polytope sampling

 Part III: Open questions



You want interplay?

SAMPLING OPTIMIZATION

ANNEALING BARRIERS



Convex feasibility from separation

Input: Separation oracle for a convex body K, r, R.

Output: A point x in K.   

Complexity: #oracle calls and #arithmetic operations. 

To be efficient, complexity of an algorithm should be bounded by 
poly(n, log(R/r)).  

Q. Which sequence of points to query? 

Each query either solves the problem or restricts the remaining 
set via the violating linear inequality. 

(Convex optimization  Convex Feasibility via binary search)



Centroid cutting-plane algorithm

 [Levin ‘65]. Use centroid of surviving set as query point in each 
iteration.

Thm [Grunbaum ‘60]. For any halfspace H containing the centroid 
of a convex body K, 

𝑣𝑜𝑙 𝐾 ∩ 𝐻 ≥
1

𝑒
𝑣𝑜𝑙 𝐾 .

 #queries = O(nlog(R/r)). 

 Best possible.

 Problem: how to find centroid?

 #P-hard! [Rademacher 2007]



Randomized cutting plane

[Bertsimas-V. 02]

1. Let z=0, P = −𝑅, 𝑅 𝑛.

2. Does 𝑧 ∈ 𝐾? If yes, output K. 

3. If no, let H = 𝑥 ∶ 𝑎𝑇𝑥 ≤ 𝑎𝑇𝑧 be a halfspace containing K.

4. Let 𝑃 ≔ 𝑃 ∩ 𝐻.

5. Sample 𝑥1, 𝑥2, … , 𝑥𝑚 uniformly from P.

6. Let 𝑧 ≔
1

𝑚
 𝑥𝑖 . Go to Step 2. 



Optimization via Sampling

Thm [BV02]. For any convex body K and halfspace H containing 

the average of m random points from K,

𝐸(𝑣𝑜𝑙 𝐾 ∩ 𝐻 ) ≥
1

𝑒
−

𝑛

𝑚
𝑣𝑜𝑙 𝐾 .

Thm. [BV02] Convex feasibility can be solved using O(n log R/r) 

oracle calls.  

Ellipsoid takes 𝑛2, Vaidya’s algorithm also takes O(n log R/r). 



Optimization from membership

Sampling suggests a conceptually very simple algorithm.



Simulated Annealing [Kalai-V.04]

To optimize 𝑓 consider a sequence 𝑓0, 𝑓1, 𝑓2, … ,
with 𝑓𝑖 more and more concentrated near the optimum.

𝑓𝑖 𝑥 = 𝑒−𝑡𝑖 𝑐,𝑥

Corresponding distributions: 

𝑃𝑡𝑖 𝑥 =
𝑒−𝑡𝑖 𝑐,𝑥

∫𝐾 𝑒−𝑡𝑖〈𝑐,𝑥〉𝑑𝑥

Lemma. 𝐸𝑃𝑡
𝑐 ⋅ 𝑥 ≤ min 𝑐 ⋅ 𝑥 +

𝑛

𝑡
.

So going up to 𝑡 =
𝑛

𝜖
suffices to obtain an 𝜖 approximation.



Simulated Annealing [Kalai-V.04]

 𝑃𝑡𝑖 𝑥 =
𝑒−𝑡𝑖 𝑐,𝑥

∫𝐾 𝑒−𝑡𝑖〈𝑐,𝑥〉𝑑𝑥

Lemma. 𝐸𝑃𝑡
𝑐 ⋅ 𝑥 ≤ min 𝑐 ⋅ 𝑥 +

𝑛

𝑡
.

Proof: First reduce to cone, only makes it worse.

For cone, 𝐸 𝑐 ⋅ 𝑥 =
∫ 𝑦𝑒−𝑡𝑦𝑦𝑛−1𝑑𝑦

∫ 𝑒−𝑡𝑦𝑦𝑛−1𝑑𝑦
=

𝑛!

𝑡𝑛+1

𝑛−1 !

𝑡𝑛

=
𝑛

𝑡
.



Optimization via Simulated Annealing

• min 𝑐, 𝑥 = max 𝑓 𝑥 = 𝑒−〈𝑐,𝑥〉

• Can replace 𝑐, 𝑥 with any convex function

For 𝑖 = 1,… ,𝑚:

• 𝑓𝑖 𝑋 = 𝑓(𝑋)𝑎𝑖

• 𝑎0 =
𝜖

2𝑅
, 𝑎𝑚 =

𝑛

𝜖

• 𝑎𝑖+1= 𝑎𝑖 1 +
1

𝑛

• Sample with density prop. to 𝑓𝑖 𝑋 .

Output argmax 𝑓(𝑋).



Complexity of Sampling

Thm. [KLS97] For a convex body, the ball walk with an M-

warm start reaches an (independent) nearly random point 

in poly(n, R, M) steps.

𝑀 = sup
𝑄0 𝑆

𝑄 𝑆
𝑜𝑟 𝑀 = 𝐸𝑄0

𝑄0 𝑥

𝑄 𝑥

Thm. [LV03]. Same holds for arbitrary logconcave density 

functions. Complexity is 𝑂∗(𝑀2𝑛2𝑅2).

Isotropic transformation: 𝑅 = 𝑂 𝑛 ;   Warm start: 𝑀 = 𝑂(1).



Simulated Annealing 

To optimize 𝑓 = 𝑐, 𝑥 , take a sequence 𝑡0, 𝑡1, 𝑡2, … , with corresponding 
distributions: 

𝑃𝑖 𝑥 =
𝑒−𝑡𝑖 𝑐,𝑥

∫𝐾 𝑒−𝑡𝑖〈𝑐,𝑥〉𝑑𝑥

For sampling to be efficient, consecutive distributions must 

 have significant overlap in 𝐿2 distance:

𝑃𝑖/𝑃𝑖+1 2 = 𝐸𝑃𝑖

𝑃𝑖 𝑥

𝑃𝑖+1 𝑥
= 𝑂 1

 Maintain near-isotropy, which is implied by 𝑃𝑖+1/𝑃𝑖 2 = 𝑂 1 .

Lemma. For 𝑡𝑖+1 = 1 +
1

𝑛
𝑡𝑖 , 𝑃𝑖/𝑃𝑖+1 2, 𝑃𝑖+1/𝑃𝑖 2 < 5.

 Hence, ∼ 𝑛 phases.  Best possible even if we assume only (a) logconcave
distributions and (b) overlap in TV distance [KV03].



Interplay of sampling and optimization

 Part I: Optimization via Sampling

 Cutting Plane Method

 Simulated Annealing

 Interior Point Method

 Part II: Sampling via Optimization (ideas)

 Ball walk, hit-and-run

 Dikin walk

 Geodesic walk

 Faster polytope sampling

 Part III: Open questions



Interior point method

 𝜓𝑖 𝑥 = min
𝐾

𝑡𝑖 ⋅ 𝑓 𝑥 + 𝜙(𝑥)

 𝑓(𝑥): objective function, 𝑓 𝑥 = 〈𝑐, 𝑥〉 for LP.

 𝜙(𝑥): is smooth convex function “barrier”, blows up on the boundary of K.

 𝑡0 = 1, 𝑡𝑖+1 = 1 +
1

𝜈
𝑡𝑖

 Step:   𝑥𝑖 ≈ argmin𝜓𝑖(𝑥)

Q1. How to implement a step? 

A1. Newton method 

Q2. Number of steps?

A2.  𝑂 𝜈 for 𝜈-self-concordant 𝜙. 

 Barriers mollify boundary effects.



Interior point method

 𝜓𝑖 𝑥 = min
𝐾

𝑡𝑖 ⋅ 𝑓 𝑥 + 𝜙(𝑥)

 Log barrier for polytopes has 𝜈 ≤ 𝑚

𝜙 𝑥 = − 

𝑖=1

𝑚

log(𝐴𝑖 ⋅ 𝑥 − 𝑏𝑖)

 Universal barrier (Nemirovski-Nesterov94) has 𝜈 = 𝑂 𝑛 :

𝜙 𝑥 = log 𝑣𝑜𝑙 𝐾 − 𝑥 𝑜

 Entropic barrier (Bubeck-Eldan) has 𝜈 = 1 + 𝑜 1 𝑛

𝜙 𝑥 = sup
𝐑n

−𝜃 ⋅ 𝑥 − log 
𝐾

𝑒−𝜃⋅𝑥𝑑𝑥

 Canonical barrier (Hildebrand) has 𝜈 ≤ 𝑛 + 1



IPM complexity

 𝑂 𝜈 = 𝑂 𝑛 for general convex bodies via Universal, 

Entropic or Canonical barriers.

 The Universal and Entropic barriers can be computed via 

sampling and integration over convex bodies and 

logconcave densities.

 But there is an even closer connection! 



Annealing | IPM

 Entropic barrier IPM is equivalent to Simulated Annealing

𝐸𝑃𝑡
𝑥 = argmin 𝑡〈𝑐, 𝑥〉 + 𝜙(𝑥)

 Desired step of IPM is computed exactly by Simulated 
Annealing in one phase. 

Thm[AH16]. Simulated annealing path = IPM Central path

 Two very different analyses of the same algorithm: one 
with calculus (self-concordance), the other with 
probability.



This talk: interplay of sampling and optimization

 Part I: Optimization via Sampling

 Cutting Plane Method

 Simulated Annealing

 Interior Point Method

 Part II: Sampling via Optimization (ideas)

 Ball walk, hit-and-run

 Dikin walk

 Geodesic walk

 Faster polytope sampling

 Part III: Open questions



How to Sample?  

Ball walk

At x,  pick random y from 𝑥 + 𝛿𝐵𝑛

if y is in K, go to y

Boundary Effect #1:

Step size cannot be too large, 

else rejection probability becomes too high!



Hit-and-run

[Boneh, Smith]

At x, pick a random chord L through x

go to a uniform random point y on L

Boundary Effect #1:

Average chord length is small!



Larger steps?

 Step size for both walks, even in isotropic position, is 

𝑂
1

𝑛
leading to mixing in 𝜃 𝑛2 steps. 

 This constraint is due to points near the boundary

 Idea: take larger steps for points in the interior

 Boundary Effect #2:  Then stationary distribution is not 

uniform.



Dikin walk with barrier 𝜙
 At 𝑥, pick next step from Ellipsoid defined by 𝜙(𝑥):

𝐸𝑙𝑙 𝑥 = 𝑦: 𝑦 − 𝑥 𝛻2𝜙(𝑥) = 𝑦 − 𝑥 𝑇𝛻2𝜙 𝑥 𝑦 − 𝑥 ≤ 1 .

 Alternatively, 𝑦 ∼ 𝑁 𝑥,
1

𝑛
𝛻2𝜙 𝑥

−1

 Apply Metropolis filter to make steady state uniform

Log barrier:  𝜙 𝑥 = − 𝑖=1
𝑚 log 𝐴𝑥 − 𝑏 𝑖 and 𝛻2𝜙 𝑥 = 𝐴𝑇𝑆𝑥

−2𝐴

Thm. [Kannan-Narayanan09] For any polytope in R𝑛 with m facets, the Dikin walk with 
the log barrier mixes in 𝑂∗(𝑚𝑛) steps from a warm start. Each step takes 𝑂 𝑚𝑛𝑤−1

time. 

 Faster than hit-and-run when not too many constraints.



Dikin walk 

 Dikin ellipsoid is fully contained in K

 Idea: Pick next step y from a blown-up Dikin ellipsoid. 

Can afford to blow up by ~ 𝑛/ log𝑚 .  WHP 𝑦 ∈ 𝐾.

 But, rejection probability of filter becomes too high!



Markov chains
 State space K , next step distribution 𝑃𝑢 . associated with each point u in K.

 Stationary distribution Q,  ergodic “flow” defined as

Φ 𝐴 =  
𝐴

𝑃𝑢 𝐾\A 𝑑𝑄(𝑢)

 For a stationary distribution, we have Φ 𝐴 = Φ(𝐾\A)

 Conductance:

𝜙 𝐴 =
∫𝐴 𝑃𝑢 𝐾\A 𝑑𝑄(𝑢)

min𝑄 𝐴 , 𝑄 𝐾\A
𝜙 = inf 𝜙(𝐴)

 Thm. [LS93] 𝑄𝑡: distribution after t steps

𝑀 = sup
𝐴⊂𝐾

𝑄0 𝐴

𝑄 𝐴
: 𝑑𝑇𝑉 𝑄𝑡, 𝑄 ≤ 𝑀 1 −

𝜙2

2

𝑡

𝑀 = 𝐸𝑄0

𝑄0 𝑥

𝑄 𝑥
: 𝑑𝑇𝑉 𝑄𝑡, 𝑄 ≤ 𝜖 +

𝑀

𝜖
1 −

𝜙2

2

𝑡

∀𝜖 > 0



Conductance

Consider an arbitrary measurable subset S.

Need to show that the escape probability from S is large.

 (Smoothness of 1-step distribution) Points that do not cross over are far 
from each other i.e., nearby points have large overlap in 1-step distributions

 (Isoperimetry) Large subsets have large boundaries



Isoperimetry

𝜋 𝑆3 ≥
𝑐

𝐷
𝑑(𝑆1, 𝑆2)min𝜋 𝑆1 , 𝜋 𝑆2

𝑅2= 𝐸𝜋 𝑥 −  𝑥 2

A = 𝐸((𝑥 − 𝑥)(𝑥 −  𝑥)𝑇) : covariance matrix of 𝜋

𝑅2 = 𝐸𝜋 𝑥 −  𝑥 2 = 𝑇𝑟 𝐴 =  

𝑖

𝜆𝑖(𝐴)

Thm. [KLS95].    𝜋 𝑆3 ≥
𝑐

𝑅
𝑑(𝑆1, 𝑆2)min 𝜋 𝑆1 , 𝜋(𝑆2)



Convergence of ball walk

Thm. [LS93, KLS97] If S is convex, then the ball walk with 

an M-warm start reaches an (independent) nearly random 

point in poly(n, D, M) steps.

 Strictly speaking, this is not rapid mixing!

 How to get the first random point?

 Better dependence on diameter D?



Convergence of hit-and-run

Cross-ratio distance:

𝑑𝐾 𝑢, 𝑣 =
𝑢 − 𝑣 𝑝 − 𝑞

𝑝 − 𝑢 𝑣 − 𝑞

Thm. [L98;LV04] 𝜋𝑓 𝑆3 ≥ 𝑑𝐾 𝑆1, 𝑆2 𝜋𝑓 𝑆1 𝜋𝑓(𝑆2)

Conductance = Ω
1

𝑛𝐷

Thm [LV04]. Hit-and-run mixes in polynomial time from any

starting point inside a convex body.

Leads to 𝑂∗ 𝑛3 mixing.



KLS hyperplane conjecture

𝐴 = 𝐸(𝑥𝑥𝑇)

Conj. [KLS95].    𝜋𝑓 𝑆3 ≥
𝑐

𝜆1 𝐴
𝑑(𝑆1, 𝑆2)min 𝜋𝑓 𝑆1 , 𝜋𝑓(𝑆2)

• Could improve sampling complexity by a factor of n

• Implies well-known conjectures in convex geometry: slicing conjecture and 

thin-shell conjecture

• [CV13] True for the product of a logconcave function and a Gaussian.

• Best case scenario: 𝑂(𝑛2).



This talk: interplay of sampling and optimization

 Part I: Optimization via Sampling

 Cutting Plane Method

 Simulated Annealing

 Interior Point Method

 Part II: Sampling via Optimization (ideas)

 Ball walk, hit-and-run

 Dikin walk

 Geodesic walk

 Faster polytope sampling

 Part III: Open questions



Can we sample faster?

 Brownian motion SDE: 

𝑑𝑥𝑡 = 𝜇 𝑥𝑡, 𝑡 𝑑𝑡 + 𝐴 𝑥𝑡, 𝑡 𝑑𝑊𝑡

 Roughly speaking, next step is from infinitesimal Gaussian 𝑁(𝜇, 𝐴 𝑥𝑡, 𝑡 )

 Each point 𝑥 ∈ 𝐾 has its own local scaling (metric)

Thm. [Fokker-Planck] Diffusion equation of SDE is 
𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 =

1

2
𝛻 ⋅ 𝐴 𝑥, 𝑡 𝛻𝑝 𝑥, 𝑡

i.e.,

𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 = − 

𝑖

𝑛
𝜕

𝜕𝑥𝑖
𝜇 𝑥, 𝑡 𝑝 𝑥, 𝑡 +

1

2
 

𝑖

𝑛

 

𝑗

𝑛
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝐴𝑖𝑗 𝑥, 𝑡 𝑝 𝑥, 𝑡 ]

 For any metric, SDE gives diffusion equation.  

 When 𝐴 = 𝐼, this is the heat equation: 
𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 =

1

2
𝛻2𝑝(𝑥, 𝑡).



Which metric to use?
 Natural choice: metric defined by Hessian of a barrier function. 

 Why? It was useful in optimization to move quickly in the polytope, by 
avoiding boundaries.

 For barrier 𝜙, diffusion equation is 
𝜕

𝜕𝑡
𝑝 𝑥, 𝑡 =

1

2
𝛻 ⋅ 𝛻2𝜙 𝑥

−1
𝛻𝑝(𝑥, 𝑡)

 and the SDE is 

𝑑𝑥𝑡 = 𝜇 𝑥𝑡 𝑑𝑡 + 𝛻2𝜙 𝑥𝑡
−1/2

𝑑𝑊𝑡

with 𝜇 𝑥𝑡 = −
1

2
𝛻2𝜙 𝑥

−1
𝛻 log det 𝛻2𝜙(𝑥),   a Newton step!   

 But how to simulate Brownian motion? Studied in practice, but not much 
from a complexity perspective.



Discretization: which coordinate system?

𝑑𝑥𝑡 = 𝜇 𝑥𝑡 𝑑𝑡 + 𝜎 𝑥𝑡 𝑑𝑊𝑡

 Euler-Maruyama: For small h, 

𝑥𝑡+ℎ = 𝑥𝑡 + 𝜇 𝑥𝑡 ℎ + 𝜎 𝑥𝑡 𝑤𝑡 ℎ

 Not so great:

 Euclidean coordinates are arbitrary

 Approximation is weaker if local metric 𝜎(𝑥𝑡) varies a lot  

 Is there a more natural coordinate system? That 

effectively keeps local metric constant?



Enter Riemannian manifolds

 n-dimensional manifold M is an n-dimensional surface in 
𝑅𝑘 for some 𝑘 > 𝑛.

 We are going to map the polytope to a manifold. 

 Idea: distances will be shortest paths on manifold

 Examples: flight paths on earth, light in relativity



Enter Riemannian manifolds

 n-dimensional manifold M is an n-dimensional surface.

 Each point 𝑝 has a linear tangent space 𝑇𝑝𝑀 of dimension n, 
the local linear approximation of M at p. Tangents of curves in 
M lie in 𝑇𝑝𝑀.

 The inner product in 𝑇𝑝𝑀 depends on p: 𝑢, 𝑣 𝑝



Enter Riemannian manifolds

 Each point 𝑝 has a linear tangent space 𝑇𝑝𝑀. 

 The inner product in 𝑇𝑝𝑀 depends on p: 𝑢, 𝑣 𝑝

 Length of a curve 𝑐: 0,1 → 𝑀 is 

𝐿 𝑐 =  
0

1 𝑑

𝑑𝑡
𝑐 𝑡

𝑐(𝑡)

𝑑𝑡

 Distance between x,y in M is the infimum over all paths in M 
between x and y. This is the Riemannian metric.



Riemannian manifold/metric

 The inner product in 𝑇𝑝𝑀 depends on p: 𝑢, 𝑣 𝑝

 Length of a curve 𝑐: 0,1 → 𝑀 is 

 𝐿 𝑐 = ∫0
1 𝑑

𝑑𝑡
𝑐 𝑡

𝑐(𝑡)
𝑑𝑡

 Metric:  𝑑𝑀 𝑥, 𝑦 = inf 𝐿(𝑝𝑎𝑡ℎ 𝑥, 𝑦 )

 Geodesic: curve 𝛾: 𝑎, 𝑏 → 𝑀 that has 

 constant speed: 
𝑑

𝑑𝑡
𝛾 𝑡

𝛾 𝑡
is a constant 

 is a locally shortest path  



Riemannian manifold/metric

 Geodesic: curve 𝛾: 𝑎, 𝑏 → 𝑀 that has 

 constant speed: 
𝑑

𝑑𝑡
𝛾 𝑡

𝛾 𝑡
is a constant 

 is a locally shortest path  

 Exponential map exp𝑝: 𝑇𝑝𝑀 → 𝑀 is defined as
 exp𝑝(𝑣) = 𝛾𝑣(1), 
 𝛾𝑣: unique geodesic from p with initial velocity 𝑣.

 Locally, exp𝑝
−1(𝑥) gives x in “normal” coordinates at p. 



Hessian manifold

 Local inner product is defined by Hessian:

 𝑢, 𝑣 𝑝 = 𝑢𝑇𝛻2𝜙 𝑝 𝑣

 𝑣
𝑝

= 𝑣
𝛻2𝜙(𝑝)

Lemma. Let 𝐹 = exp𝑥0
−1, where exp𝑥: 𝑇𝑥𝑀 → 𝑀.Then the SDE 

𝑑𝑥𝑡 = 𝜇 𝑥𝑡 𝑑𝑡 + 𝜎 𝑥𝑡 𝑑𝑊𝑡

with 𝜎 𝑥 = 𝛻2𝜙 𝑥
−1/2

implies

𝑑𝐹 𝑥0 =
1

2
𝜇 𝑥0 𝑑𝑡 + 𝜎 𝑥0 𝑑𝑊0. 



Ergo: Geodesic walk

In tangent plane at x, 

1. pick 𝑤 ∼ 𝑁𝑥(0, 𝐼),  i.e.  mean standar Gassian in ‖. ‖𝑥

2. Compute 𝑦 = exp𝑥
ℎ

2
𝜇 𝑥 + ℎ𝑤

3. Compute 𝑤’ s.t. 𝑥 = exp𝑦
ℎ

2
𝜇 𝑦 + ℎ𝑤′

4. Accept with probability Min 1,
𝑝 𝑦 → 𝑥

𝑝 𝑥 → 𝑦

How to compute geodesic and rejection probability?

𝑤’

w



Implementing one step
 Geodesic equation for 𝜙 𝑥 = − 𝑖=1

𝑚 log 𝐴𝑥 − 𝑏 𝑖

 Let 𝑆𝑥 = 𝐷𝑖𝑎𝑔 𝐴𝑥 − 𝑏 , 𝐴𝑥 = 𝑆𝑥
−1𝐴

𝛾′′ = 𝐴𝛾
𝑇𝐴𝛾

−1
𝐴𝛾

𝑇 𝐴𝛾𝛾
′ 2

 And the probability 𝑝 𝑥 → 𝑦

 are both second-order ODEs.

 We show this can be solved efficiently to inverse polynomial accuracy by 
the Collocation Method, for any Hessian manifold under smoothness 
assumptions.

  𝑂(𝑚𝑛𝜔−1) per step for log barrier

w



Mixing of Geodesic walk

Thm 1. [Lee-V16] For log barrier, Geodesic walk mixes in 
 𝑂 𝑚𝑛0.75 steps.

This is a special case of more general theorem:

Thm 2. [Lee-V16] For any Hessian manifold, for small 

enough step size h, Geodesic walk mixes in 𝑂
𝐺2

ℎ
steps, 

where G is the expansion of metric wrt to Hilbert metric. 

Q. How large can the step size be?



7-parameter mixing theorem
Convergence for general Hessian manifolds is based on:

 𝐷0 = sup 𝜇 𝑥
𝑥

: maximum norm of drift

 𝐷1 = sup
𝑑

𝑑𝑡
𝜇 𝛾 𝑡

𝛾(𝑡)

2
: smoothness of drift norm

 𝐷2 = sup 𝛻𝑠𝜇 𝑥
𝑥

: smoothness of drift

 𝐺1 = sup (logdet 𝑔 𝛾 𝑡
′′′

: smoothness of volume element of local metric g.

 𝐺2 = sup
𝑑 𝑥,𝑦

𝑑𝐻 𝑥,𝑦
: smoothness of metric (𝑑𝐻: Hilbert dist)

 𝑅1 : stability of Jacobi field,  𝑅2 : smoothness of Ricci curvature

Thm. Suppose  ℎ ≤ 𝑐 min
1

𝑛𝐷0𝑅1

2
3

,
1

𝐷2
,

1

𝑛𝑅1
,

1

𝑛
1
3𝐷1

2
3

,
1

𝑛𝐺1

2
3

,
1

𝑛𝑅2

2
3}

.

Then, the geodesic walk has conductance Ω
ℎ

𝐺2
and mixes in 𝑂

𝐺2
2

ℎ
steps.



7-parameter mixing for log barrier
Convergence for general Hessian manifolds is based on:

 𝐷0 = sup 𝜇 𝑥
𝑥

: maximum norm of drift 𝑂 𝑛

 𝐷1 = sup
𝑑

𝑑𝑡
𝜇 𝛾 𝑡

𝛾(𝑡)

2
: smoothness of drift norm   𝑂 𝑛 ℎ

 𝐷2 = sup 𝛻𝑠𝜇 𝑥
𝑥

: smoothness of drift   𝑂 𝑛

 𝐺1 = sup (logdet 𝑔 𝛾 𝑡
′′′

: smoothness of volume element of local metric g   𝑂 ℎ

 𝐺2 = sup
𝑑 𝑥,𝑦

𝑑𝐻 𝑥,𝑦
: smoothness of metric (𝑑𝐻: Hilbert dist)  𝑂 𝜈 = 𝑂 𝑚

 𝑅1 : stability of Jacobi field  𝑂
1

𝑛
,   𝑅2 : smoothness of Ricci curvature   𝑂 𝑛ℎ

Thm (log barrier). Suppose  ℎ ≤ 𝑐 min
1

𝑛𝐷0𝑅1

2
3

,
1

𝐷2
,

1

𝑛𝑅1
,

1

𝑛
1
3𝐷1

2
3

,
1

𝑛𝐺1

2
3

,
1

𝑛𝑅2

2
3}

. 𝑂 𝑛−0.75

Then, the geodesic walk has conductance Ω
ℎ

𝐺2
and mixes in 𝑂

𝐺2
2

ℎ
steps.   𝑂 𝑚𝑛0.75



Proof outline

Need to show:

 Rejection probability is small

 1-step distributions are smooth

 Isoperimetry is good: 
1

𝐺2
=

1

𝑚
for log barrier

 Follows from isoperimetry for hit-and-run



1-step distribution

Lemma. For any 𝑥 ∈ 𝑀, ℎ > 0, the probability density of the 

one-step distribution (before rejection sampling) is:

𝑝𝑥 𝑦 =  

exp𝑥 𝑣𝑥 =𝑦

det 𝑑 exp𝑥 𝑣𝑥
−1

det 𝑔 𝑦

2𝜋ℎ 𝑛
𝑒
−

1
2ℎ 𝑣𝑥−

ℎ
2𝜇 𝑥

𝑥

2

.

 Pick 𝑣𝑥 ∼ 𝑁𝑥(0, 𝐼),

 then apply exp𝑥(𝑣𝑥), 

 then account for new metric at 𝑦



1-step distribution

𝑝𝑥 𝑦 =  

exp𝑥 𝑣𝑥 =𝑦

det 𝑑 exp𝑥 𝑣𝑥
−1

det 𝑔 𝑦

2𝜋ℎ 𝑛
𝑒
−

1
2ℎ

𝑣𝑥−
ℎ
2
𝜇 𝑥

𝑥

2

.

Under conditions on h,

Lemma 1. log
𝑝𝑥 𝑦

𝑝𝑦 𝑥
<

1

4
.

 (rejection probability is small)

Lemma 2. 𝑑𝑇𝑉 𝑃𝑥, 𝑃𝑦 < 0.31415926

 (nearby points have large overlap in one-step distributions)



You can implement this!



Next steps

 Analyze Geodesic walk for Lee-Sidford barrier function

 Improve analysis further to allow larger step size

 Higher order simulation, anyone? 



Open questions: Algorithms

 Faster LP/convex optimization?

 Faster optimization with a membership oracle?

 Faster sampling: geodesic walk, reflection walk, coordinate 

hit-and-run, …



Open questions: Geometry

 How true is the KLS conjecture?

inf
𝑆 ≤

𝐾

2

𝜕𝑆

𝑆

 A weaker conjecture:
1

 𝑖 𝜆𝑖(𝐴)
>

1

 𝑖 𝜆𝑖 𝐴 2 1/4
=

1

𝐴
𝐹

1/2
>

1

𝜆1 𝐴



Open questions: Geometry

𝜓𝑑 𝑆 = inf
𝜖>0

𝑣𝑜𝑙 𝑥: 𝑑 𝑥, 𝑦 ≤ 𝜖

𝜖 ⋅ min 𝑣𝑜𝑙 𝑆 , 𝑣𝑜𝑙(𝐾 ∖ 𝑆)

Generalized KLS. 

Question: For any Hessian metric, is 𝜓𝑑 achieved to within 

a constant factor by a hyperplane cut?



Open questions: Riemannian manifolds

 Learning: learn metric approximately?

 Testing:

 Modeling: 

 Voronoi diagrams?

 Note: General relativity is Einstein-Kahler metric, this is 

induced by the canonical barrier!



Open questions: Probability

Q1. Does ball walk mix rapidly starting at a single nice 
point, e.g., the centroid?

Q2. When to stop? How to check convergence to 
stationarity on the fly? Does it suffice to check that the 
measures of all halfspaces have converged?

(Note: poly(n) sample can estimate all halfspace measures 
approximately)



Open questions: Algorithms

 How efficiently can we learn a polytope P given only 
random points?

 With O(mn) points, cannot “see” structure, but enough 
information to estimate the polytope!  Algorithms?

 For convex bodies:

 [KOS][GR] need 2Ω 𝑛 points to learn P

 [Eldan] need 2𝑛𝑐
even to estimate the volume of P



Open questions: Algorithms

 Can we estimate the volume of an explicit polytope in 

deterministic polynomial time?

𝐴𝑥 ≥ 𝑏



Thank you!

And to: 

Ravi Kannan

Laci Lovasz

Adam Kalai

Ben Cousins

Yin Tat Lee


