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1 Introduction

Hypergraph partitioning has been an important problem widely encountered in VLSI layout de-
sign [23]. Recent works have introduced new application areas, including one-dimensional and
two-dimensional partitioning of sparse matrices for parallel sparse-matrix vector multiplication [4,
5, 6, 7, 9, 25], sparse matrix reordering [4, 8], permuting sparse rectangular matrices into singly-
bordered block-diagonal form for parallel solution of LP problems [2]. The hypergraph partitioning
problem can be defined as the task of dividing a hypergraph into two or more roughly equal sized
parts such that a cost function on the hyperedges connecting vertices in different parts is minimized.

Kernighan-Lin (KL) based heuristics are widely used for graph/hypergraph partitioning be-
cause of their short run-times and good quality results. KL algorithm is an iterative improvement
heuristic originally proposed for bipartitioning [21]. This algorithm became the basis for most of the
subsequent partitioning algorithms. KL algorithm, starting from an initial bipartition, performs
a number of passes until it finds a locally minimum partition. Each pass consists of a sequence
of vertex swaps. The same swap strategy was applied to hypergraph partitioning problem by
Schweikert-Kernighan [24]. Fiduccia-Mattheyses (FM) [12] introduced a faster implementation of
KL algorithm for hypergraph partitioning. They proposed vertex move concept instead of vertex
swap. This modification as well as proper data structures, e.g., bucket lists, reduced the time
complexity of a single pass of KL algorithm to linear in the size of the graph and the hypergraph.
Here, size refers to the number of edges and pins in a graph and hypergraph, respectively. Kr-
ishnamurthy [22] added to FM algorithm a look-ahead ability, which helps to break ties better in
selecting a vertex to move. In FM-based algorithms, a vertex is locked as soon as it is moved in a
pass, and it remains locked until the end of the pass. Hoffman [18], and Dasdan and Aykanat [11]
introduced the dynamic locking approach to relax this restrictive locking mechanism.

The performance of KLFM algorithms deteriorates for large and too sparse graphs/hypergraphs.
Here, sparsity of graphs and hypergraphs refer to their average vertex degrees. Furthermore, the
solution quality of FM is not stable (predictable), i.e., average FM solution is significantly worse
than the best FM solution, which is a common weakness of move-based iterative improvement
approaches. Random multi-start approach is used in VLSI layout design to alleviate this problem
by running FM algorithm many times starting from random initial partitions to return the best
solution found [1]. However, this approach may not be viable in other applications because of high
partitioning overhead. Most users will rely on one run of the partitioning heuristic, so that the
quality of the partitioning tool depends equally on the worst and average partitionings than on just
the best partitioning.

These considerations have motivated the two–level application of FM in hypergraph partition-
ing. In this approach, a clustering is performed on the original hypergraph H0 to induce a coarser
hypergraph H1. Clustering corresponds to coalescing highly interacting vertices to supernodes as
a preprocessing to FM. Then, FM is run on H1 to find a bipartition Π1, and this bipartition is
projected back to a bipartition Π0 of H0. Finally, FM is re-run on H0 using Π0 as an initial solution.
Recently, the two–level approach has been extended to multilevel approaches [3, 15, 19] leading
to fast and successful graph partitioning tools Chaco [16], MeTiS [20], WGPP [14] and reordering
tools BEND [17], oMeTiS [20], and ordering code of WGPP [13]. We exploit the successful multi-
level methodology to develop a new multilevel hypergraph partitioning tool, called PaToH (PaToH:
Partitioning Tools for Hypergraphs).
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2 Preliminaries

2.1 Hypergraph Partitioning

A hypergraph H=(V,N ) is defined as a set of vertices V and a set of nets (hyperedges) N among
those vertices. Every net n ∈ N is a subset of vertices, i.e., n⊆ V. The vertices in a net n are
called its pins and denoted as pins[n]. The size of a net is equal to the number of its pins, i.e.,
sn= |pins[n]|. The set of nets connected to a vertex v is denoted as nets[v]. The degree of a vertex
is equal to the number of nets it is connected to, i.e., dv = |nets[v]|. Graph is a special instance
of hypergraph such that each net has exactly two pins. Weights and costs can be respectively
associated with vertices and nets of a hypergraphs. Let w[v] and c[v] denote the weight of vertex
v∈V and the cost of net n∈N .

Π={V1,V2, . . . ,VK} is a K-way partition of H if the following conditions hold:

• each part Vk is a nonempty subset of V, i.e., Vk ⊆ V and Vk ̸= ∅ for 1 ≤ k ≤ K,

• parts are pairwise disjoint, i.e., Vk ∩ Vℓ = ∅ for all 1 ≤ k < ℓ ≤ K

• union of K parts is equal to V, i.e.,
⋃K

k=1 Vk=V.

In a partition Π of H, a net that has at least one pin (vertex) in a part is said to connect that
part. Connectivity set Λn of a net n is defined as the set of parts connected by n. Connectivity
λn = |Λn| of a net n denotes the number of parts connected by n. A net n is said to be cut if it
connects more than one part (i.e. λn > 1), and uncut otherwise (i.e. λn = 1). The cut and uncut
nets are also referred to as external and internal nets, respectively. In a partition Π of H, a vertex
is said to be a boundary vertex if it is incident to a cut net. A K-way partition is also called a
multiway partition if K> 2 and a bipartition if K =2. A partition is said to be balanced if each
part Vk satisfies the balance criterion

Wk ≤ Wavg(1 + ε), for k = 1, 2, . . . ,K. (1)

In (1), weight Wk of a part Vk is defined as the sum of the weights of the vertices in that part, i.e.,

Wk=
∑
v∈Vk

w[v], (2)

Wavg denotes the weight of each part under the perfect load balance condition, i.e.,

Wavg=(
∑
v∈V

w[v])/K, (3)

and ε represents the predetermined maximum imbalance ratio allowed.
The set of external nets of a partition Π is denoted as NE . There are various [10, 26] cutsize

definitions for representing the cost χ(Π) of a partition Π. Two relevant definitions are:

(a) χ(Π) =
∑

n∈NE

c[n] and (b) χ(Π) =
∑

n∈NE

c[n](λn − 1). (4)

In (4.a), the cutsize is equal to the sum of the costs of the cut nets. In (4.b), each cut net n
contributes c[n](λn − 1) to the cutsize. The cutsize metrics given in (4.a) and (4.b) will be referred
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Figure 1: Cut-net splitting during recursive bisection.

to here as cut-net and connectivity metrics, respectively. The hypergraph partitioning problem can
be defined as the task of dividing a hypergraph into two or more parts such that the cutsize is
minimized, while a given balance criterion (1) among part weights is maintained. The hypergraph
partitioning problem is known to be NP-hard [23].

2.2 Recursive Bisection

The K-way graph/hypergraph partitioning problem is usually solved by recursive bisection. In this
scheme, first a 2-way partition of H is obtained, and then this bipartition is further partitioned in a
recursive manner. After lg2K phases, hypergraph H is partitioned into K parts. PaToH achieves
K-way hypergraph partitioning by recursive bisection for any K value. That is, K is not restricted
to be a power of 2.

The cutsize metrics given in (4) need special attention in K-way hypergraph partitioning by
recursive bisection. Note that these two metrics become equivalent in hypergraph bisection. Con-
sider a bipartition VA and VB of V obtained after a bisection step. It is clear that VA and VB and
the internal nets of parts A and B will become the vertex and net sets of HA and HB, respectively,
for the following recursive bisection steps. Note that each cut net of this bipartition already con-
tributes 1 (assuming unit cost nets) to the total cutsize of the final K-way partition to be obtained
by further recursive bisections. Since each cut net will remain to be a cut net in the final K-way
partition, all cut nets of this bipartition are discarded in the cut-net metric (4.a). However, in the
connectivity metric (4.b), the further recursive bisections of VA and VB may increase the connec-
tivity of these cut nets. Hence, after every hypergraph bisection step, each cut net ni is split into
two pin-wise disjoint nets n′ = pins[n]

⋂
VA and n′′ = pins[n]

⋂
VB, and then these two nets are

added to the net lists of HA and HB if |n′| > 1 and |n′′| > 1, respectively. Note that the single-pin
nets are discarded during the split operation since such nets cannot contribute to the cutsize in the
following recursive bisection steps. Thus, the total cutsize according to (4.b) will become equal to
the sum of the number of cut nets at every bisection step by using the above cut-net split method.
Figure 1 illustrates two cut nets ni and nk in a bipartition, and their splits into nets n′

i, n
′′
i and n′

k,
n′′
k, respectively. Note that net n′′

k becomes a single-pin net and it is discarded.
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3 Multilevel Hypergraph Bisection

The multilevel hypergraph bisection algorithm used in PaToH consists of three phases: coarsening ,
initial partitioning , and uncoarsening. In the first phase, a bottom-up multilevel clustering is
successively applied starting from the original graph by adopting various heuristics until number of
vertices in the coarsened graph reduces below a predetermined threshold value. In the second phase,
the coarsest graph is bipartitioned using various bottom-up heuristics. In the third phase, partition
found in the second phase is successively projected back towards the original graph by refining
the projected partitions on intermediate level uncoarser graphs using various top-down iterative
improvement heuristics. The following sections briefly summarize these three phases. Although
PaToH works on weighted nets, we will assume unit cost nets both for the sake of simplicity of
presentation.

3.1 Coarsening Phase

In this phase, the given hypergraph H = H0 = (V0,N0) is coarsened into a sequence of smaller
hypergraphs H1 =(V1,N1), H2 =(V2,N2), . . ., Hm =(Vm,Nm) satisfying |V0|> |V1|> |V2|> . . . >
|Vm|. This coarsening is achieved by coalescing disjoint subsets of vertices of hypergraph Hi into
multinodes such that each multinode in Hi forms a single vertex of Hi+1. The weight of each vertex
of Hi+1 becomes equal to the sum of its constituent vertices of the respective multinode in Hi. The
net set of each vertex of Hi+1 becomes equal to the union of the net sets of the constituent vertices
of the respective multinode in Hi. Here, multiple pins of a net n∈Ni in a multinode cluster of Hi

are contracted to a single pin of the respective net n′∈Ni+1 of Hi+1. Furthermore, the single-pin
nets obtained during this contraction are discarded. Note that such single-pin nets correspond to
the internal nets of the clustering performed on Hi. The coarsening phase terminates when the
number of vertices in the coarsened hypergraph reduces below pre-determined number.

Clustering approaches can be classified as agglomerative and hierarchical. In the agglomerative
clustering, new clusters are formed one at a time, whereas in the hierarchical clustering several
new clusters may be formed simultaneously. In PaToH, we have implemented both randomized
matching–based hierarchical clustering schemes and randomized hierarchic–agglomerative cluster-
ing schemes . The former and latter approaches will be abbreviated as matching–based clustering
and agglomerative clustering, respectively.

The matching-based clustering works as follows. Vertices of Hi are visited in a random order.
If a vertex u ∈ Vi has not been matched yet, one of its unmatched adjacent vertices is selected
according to a criterion. If such a vertex v exists, we merge the matched pair u and v into a cluster.
If there is no unmatched adjacent vertex of u, then vertex u remains unmatched, i.e., u remains
as a singleton cluster. Here, two vertices u and v are said to be adjacent if they share at least one
net, i.e., nets[u] ∩ nets[v] ̸= ∅.

The matching-based clustering allows the clustering of only pairs of vertices in a level. In order
to enable the clustering of more than two vertices at each level, we have implemented a random-
ized agglomerative clustering approach. In this scheme, each vertex u is assumed to constitute a
singleton cluster Cu={u} at the beginning of each coarsening level. Then, vertices are visited in a
random order. If a vertex u has already been clustered (i.e. |Cu|>1) it is not considered for being
the source of a new clustering. However, an unclustered vertex u can choose to join a multinode
cluster as well as a singleton cluster. That is, all adjacent vertices of an unclustered vertex u are
considered for selection according to a criterion. The selection of a vertex v adjacent to u corre-
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sponds to including vertex u to cluster Cv to grow a new multinode cluster Cu =Cv =Cv ∪ {u}.
Note that no singleton cluster remains at the end of this process as far as there exists no isolated
vertex.

3.2 Initial Partitioning Phase

The goal in this phase is to find a bipartition on the coarsest hypergraph Hm. In PaToH, we use
Greedy Hypergraph Growing (GHG) algorithm for bisecting Hm. This algorithm can be considered
as an extension of the GGGP algorithm used in MeTiS to hypergraphs. In GHG, we grow a cluster
around a randomly selected vertex. During the coarse of the algorithm, the selected and unselected
vertices induce a bipartition on Hm. The unselected vertices connected to the growing cluster are
inserted into a priority queue according to their FM gains. Here, the gain of an unselected vertex
corresponds to the decrease in the cutsize of the current bipartition if the vertex moves to the
growing cluster. Then, a vertex with the highest gain is selected from the priority queue. After a
vertex moves to the growing cluster, the gains of its unselected adjacent vertices which are currently
in the priority queue are updated and those not in the priority queue are inserted. This cluster
growing operation continues until a predetermined bipartition balance criterion is reached. As also
mentioned in MeTiS, the quality of this algorithm is sensitive to the choice of the initial random
vertex. Since the coarsest hypergraph Hm is small, we run GHG multiple times starting from
different random vertices and select the best bipartition for refinement during the uncoarsening
phase.

3.3 Uncoarsening Phase

At each level i (for i = m,m−1, . . . , 1), bipartition Πi found on Hi is projected back to a bipartition
Πi−1 on Hi−1. The constituent vertices of each multinode in Hi−1 is assigned to the part of the
respective vertex in Hi. Obviously, Πi−1 of Hi−1 has the same cutsize with Πi of Hi. Then,
we refine this bipartition by running a KLFM-based iterative improvement heuristics on Hi−1

starting from initial bipartition Πi−1. PaToH involves a wide range of KLFM-based refinement
implementations as listed in Section 4.3.4. Here, we will only discuss the details of our Boundary
FM (BFM) implementation. BFM is an FM algorithm that moves only the boundary vertices from
the overloaded part to the under-loaded part, where a vertex is said to be a boundary vertex if it
is connected to an at least one cut net.

BFM requires maintaining the pin-connectivity of each net for both initial gain computations
and gain updates. The pin-connectivity σk[n] = |n∩Pk| of a net n to a part Pk denotes the number
of pins of net n that lie in part Pk, for k = 1, 2. In order to avoid the scan of the pin lists of all
nets, we adopt an efficient scheme to initialize the σ values for the first BFM pass in a level. It is
clear that initial bipartition Πi−1 of Hi−1 has the same cut-net set with Πi of Hi. Hence, we scan
only the pin lists of the cut nets of Πi−1 to initialize their σ values. For each other net n, σ1[n]
and σ2[n] values are easily initialized as σ1[n]=sn and σ2[n]=0 if net n is internal to part P1, and
σ1[n]=0 and σ2[n]= sn otherwise. After initializing the gain value of each vertex v as g[v]=−dv,
we exploit σ values as follows. We re-scan the pin list of each external net n and update the gain
value of each vertex v ∈ pins[n] as g[v] = g[v] + 2 or g[v] = g[v] + 1 depending on whether net n is
critical to the part containing v or not, respectively. An external net n is said to be critical to a
part k if σk[n] = 1 so that moving the single vertex of net n that lies in that part to the other part
removes net n from the cut. Note that two-pin cut nets are critical to both parts. The vertices
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visited while scanning the pin-lists of the external nets are identified as boundary vertices and only
these vertices are inserted into the priority queue according to their computed gains.

In each pass of the BFM algorithm, a sequence of unmoved vertices with the highest gains are
selected to move to the other part. As in the original FM algorithm, a vertex move necessitates
gain updates of its adjacent vertices. However, in the BFM algorithm, some of the adjacent vertices
of the moved vertex may not be in the priority queue, because they may not be boundary vertices
before the move. Hence, such vertices which become boundary vertices after the move are inserted
into the priority queue according to their updated gain values. The refinement process within a
pass terminates either no feasible move remains or the sequence of last max{50, 0.001|Vi|} moves
does not yield a decrease in the total cutsize. A move is said to be feasible if it does not disturb the
load balance criterion (1) with K=2. At the end of a BFM pass, we have a sequence of tentative
vertex moves and their respective gains. We then construct from this sequence the maximum
prefix subsequence of moves with the maximum prefix sum which incurs the maximum decrease
in the cutsize. The permanent realization of the moves in this maximum prefix subsequence is
efficiently achieved by rolling back the remaining moves at the end of the overall sequence. The
initial gain computations for the following pass in a level is achieved through this rollback. The
overall refinement process in a level terminates if the maximum prefix sum of a pass is not positive.

4 Library Interface

PaToH v3.2 library interface consists of two files; a header file patoh.h which contains constants,
structure definitions and functions proto-types, and a library file libpatoh.a. The hypergraph
representation used by the library interface is described in Section 4.1, then detail description of
the functions are presented in Section 4.2. The parameter structure that is used by the PaToH’s
recursive multilevel hypergraph partitioner is discussed in the Section 4.3.

Before starting to discuss the details, lets look at a simple C program that partitions an in-
put hypergraph using PaToH functions. The program is displayed in Figure 2. First statement
is a function call to read the input hypergraph file which is given by the first command line ar-
gument. PaToH partition functions is customizable through a set of arguments, Although user
(programmer) can set each of these arguments one by one, it is a good habit to call PaToH func-
tion PaToH Initialize Parameters to set all parameters to default values. After this call, user
may prefer to modify the parameters according to his/her need before calling PaToH Alloc. All
memory that will be used by PaToH partitioning functions is allocated by PaToH Alloc function,
that is, there will be no more dynamic memory allocation inside the partitioning functions. Now, we
are ready to partition the hypergraph using PaToH’s multilevel hypergraph partitioning functions.
Call to PaToH Part will partition the hypergraph and resulting partition vector, part weights and
cutsize will be returned in the parameters. Here, variable cut will hold the cutsize of the computed
partition according to cutsize definition 4(b) since we requested to use this metric by initializing the
parameters with constant PATOH CONPART. User may call partitioning functions as many times as
he/she wants before calling function PaToH Free. There is no need to re-allocate the memory before
each partitioning call, unless hypergraph is changed. However, changing the coarsening algorithm
and number of parts may also require a re-allocation.
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#include <stdio.h>
#include "patoh.h"

int main(int argc, char *argv[])

{
PaToH Parameters args;

int c, n, nconst, *cwghts, *nwghts,

*xpins, *pins, *partvec, cut, *partweights;

PaToH Read Hypergraph(argv[1], & c, & n, & nconst, &cwghts, &nwghts,

&xpins, &pins);

printf("Hypergraph %10s -- #Cells=%6d #Nets=%6d #Pins=%8d #Const=%2d\n",
argv[1], c, n, xpins[ n], nconst);

PaToH Initialize Parameters(&args, PATOH CONPART, PATOH SUGPARAM DEFAULT);

args. k = atoi(argv[2]);

partvec = (int *) malloc( c*sizeof(int));
partweights = (int *) malloc(args. k* nconst*sizeof(int));

PaToH Alloc(&args, c, n, nconst, cwghts, nwghts, xpins, pins);

PaToH Part(&args, c, n, nconst, 0, cwghts, nwghts,

xpins, pins, NULL, partvec, partweights, &cut);

printf("%d-way cutsize is: %d\n", args. k, cut);

free(cwghts); free(nwghts);

free(xpins); free(pins);

free(partweights); free(partvec);

PaToH Free();

return 0;

}

Figure 2: A simple C program that partitions an input hypergraph using PaToH functions
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Figure 3: A hypergraph and its representation.

4.1 Hypergraph Representation

A hypergraph and its representation can be seen in Figure 3. In the figure, large white circles are
cells (vertices) of the hypergraph, and small black circles are nets. xpins and pins arrays stores,
the beginning index of “pins” (cells) connected to each net, and IDs of the pins, respectively.
Hence, xpins is an array of size number of nets plus one, and pins is an array of size num-
ber of pins in the hypergraph. Cells connected to net nj are stored in pins[xpins[j]] through
pins[xpins[j+1]-1].

4.2 Functions

Current PaToH interface contains three function categories; initialization and memory functions,
partitioning functions, and utility functions. Following subsections present the detailed descriptions
of the functions of each category.
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4.2.1 Initialization and memory functions

int PaToH_Initialize_Parameters(PPaToH_Parameters pargs, int cuttype,

int SBProbType);

Description:
Initializes the parameters that will be used in the partitioning to some default values according to
SBProbType (SuggestByProblemType) parameter.

Parameters:
pargs output pointer to parameters structure described in Section 4.3. The

structure that is pointed by this argument will be filled by this
function

cuttype input must be either PATOH CUTPART for cutnet metric (Equation 4(a))
or PATOH CONPART for “Connectivity-1” metric (Equation 4(b)).

SBProbType input Must be set to one of

• PATOH SUGPARAM DEFAULT: sets the parameters to default val-
ues.

• PATOH SUGPARAM SPEED: if you need faster partitionings use
this. For most of the matrix partitioning problems, we ob-
served that this setting will produce reasonably good results
much faster than the default value.

• PATOH SUGPARAM QUALITY: if you could afford a little bit
more extra time for a little better quality (such as VLSI
partitioning), use this value.

9



int PaToH_Alloc(PPaToH_Parameters pargs, int _c, int _n, int _nconst,

int *cwghts, int *nwghts, int *xpins, int *pins);

Description:
Allocates the memory that will be used by partitioning algorithms.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Alloca-

tion will be done using some of the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
nconst input number of constraints.
cwghts input array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are stored in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1]

nwghts input array of size n that stores the cost of each net. If hypergraph has
unweighted nets, this parameter can be NULL.

xpins input array of size n+1 that stores the beginning index of cells connected
to nets.

pins input array that stores the pin-lists (cell-list) of nets. Cells con-
nected to net nj are stored in pins[xpins[j]] through
pins[xpins[j+1]-1].

int PaToH_Free(void);

Description:
Frees the memory allocated by PaToH Alloc.

10



4.2.2 Partitioning functions

int PaToH_Part(PPaToH_Parameters pargs, int _c, int _n, int _nconst, int useFixCells,

int *cwghts, int *nwghts, int *xpins, int *pins, float *targetweights,

int *partvec, int *partweights, int *cut);

Description:
Unified interface for regular, multi-constraint and fix-vertex hypergraph partitioning methods. Par-
titions the hypergraph into pargs-> k parts using recursive multilevel hypergraph bisection algo-
rithm. If argument useFixCells is nonzero, some of the cells of the hypergraph may have been
pre-assigned (fixed to a part). If nconst> 1, multi-constraint partitioning is used. Please note
that multi-constraint partitioning does not work fixed cells.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Parti-

tioning will use the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
nconst input number of constraints.
useFixCells input If non-zero, partitioning is done using pre-assigned cells.
cwghts input array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are store in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1].

nwghts input array of size n that stores the cost of each net.
xpins input array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
targetweights input array of size pargs-> k (or pargs-> k× nconst for multi-

constraint partitioning) with target part weights. Alternatively,
targetweights[i] should store the fraction of total weight that
should be assigned to part i. For example, for a hypergraph with
a total cell weight of 400, if user wishes to have 3-way partition-
ing with 25% of total weight in parts 1 and 2, and remaining 50%
in part 3, he can provide either targetweights = { 100, 100,

200} or targetweights = { 0.25, 0.25, 0.50}.
partvec in/out array of size c that stores the part number of each cell belong

to. If useFixCells is zero, all vertices are assumed free, otherwise
this array is interpretted as follows: −1 indicates cell is free (can
be assigned any part), 0 to pargs-> k-1 indicates that cell is pre-
assigned (fixed) to that part.

partweights output array of size pargs-> k× nconst that returns the total part weight
of each part.

cut output cutsize of the solution, according to the requested cutsize metric
by pargs->cuttype.
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int PaToH_Partition(PPaToH_Parameters pargs, int _c, int _n,

int *cwghts, int *nwghts, int *xpins, int *pins,

int *partvec, int *partweights, int *cut);

Description:
Deprecated: Partitions the hypergraph into pargs-> k parts using recursive multilevel hyper-
graph bisection algorithm. Please use PaToH Part instead.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Parti-

tioning will use the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
cwghts input array of size c that stores the weight of each cell
nwghts input array of size n that stores the cost of each net.
xpins input array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
partvec output array of size c that returns the part number of each cell.
partweights output array of size pargs-> k that returns the total part weight of each

part.
cut output cutsize of the solution, according to the requested cutsize metric

by pargs->cuttype.
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int PaToH_Partition_with_FixCells(PPaToH_Parameters pargs, int _c,

int _n, int *cwghts, int *nwghts, int *xpins, int *pins,

int *partvec, int *partweights, int *cut);

Description:
Deprecated: Partitions the hypergraph into pargs-> k parts using recursive multilevel hyper-
graph bisection algorithm. Some of the cells of the hypergraph may have been pre-assigned (fixed
to a part). Please use PaToH Part instead.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Parti-

tioning will use the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
cwghts input array of size c that stores the weight of each cell.
nwghts input array of size n that stores the cost of each net.
xpins input array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
partvec in/out array of size c that stores the part number of each cell belong

to. −1 indicates cell is free (can be assigned any part), 0 to
pargs-> k-1 indicates that cell is pre-assigned (fixed) to that part.

partweights output array of size pargs-> k that returns the total part weight of each
part.

cut output cutsize of the solution, according to the requested cutsize metric
by pargs->cuttype.
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int PaToH_MultiConst_Partition(PPaToH_Parameters pargs, int _c,

int _n, int _nconst, int *cwghts, int *xpins,

int *pins, int *partvec, int *partweights, int *cut);

Description:
Deprecated: Partitions the hypergraph into pargs-> k parts using multi-constraint recursive mul-
tilevel hypergraph bisection algorithm. Please note that this call to multi-constraint partitioning
only works with unit net weights. Please use PaToH Part instead.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Parti-

tioning will use the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
nconst input number of constraints.
cwghts input array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are store in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1]

xpins input array of size n+1 that stores the beginning index of pins (cells)
connected to nets.

pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
partvec output array of size c that stores the part number of each cell belongs to.
partweights output array of size pargs-> k× nconst that returns the total part weight

of each part for each constraint.
cut output cutsize of the solution, according to the requested cutsize metric

by pargs->cuttype.
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int PaToH_Refine_Bisec(PPaToH_Parameters pargs, int _c, int _n,

int *cwghts, int *nwghts, int *xpins,

int *pins, int *partvec, int *partweights,

int *cut);

Description:
This function given an input bipartition assignments for cells in partvec array, refines the bisection
using one of the available refinement algorithms in PaToH. This is a single-level refinement function
that could be directly used in the development of new (multilevel) partitioning methods.

Parameters:
pargs input pointer to parameters structure described in Section 4.3. Refine-

ment will use the parameters of this structure.
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
cwghts input array of size c that stores the weight of each cell
nwghts input array of size n that stores the cost of each net.
xpins input array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
partvec in/out array of size c that stores the part number of each cell (0 or 1).
partweights output array of size pargs-> k that returns the total part weight of each

part.
cut output cutsize of the solution, according to the requested cutsize metric

by pargs->cuttype.
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4.2.3 Utility functions

int PaToH_Check_User_Parameters(PPaToH_Parameters pargs, int verbose);

Description:
Verifies some of the user parameters. Returns non-zero value indicating an error in the parameters.
Please note that verification is not exhaustive, hence does not cover all possible errors. Shoud
be use for simple checking. In most of the problematic cases, during partitioning PaToH tries to
re-set/ignore invalid parameter values. If this is not an option, it gives an error message and exits.

Parameters:
pargs input pointer to parameters structure described in Section 4.3.
verbose input If it is non-zero, PaToH display explanation warnings if it finds a

problem in the parameters.

int PaToH_Read_Hypergraph(char *filename, int *_c, int *_n, int *_nconst,

int **cwghts, int **nwghts, int **xpins, int **pins);

Description:
Reads a hypergraph from the given file. See Section 5.1 for details of the file format. PaToH
allocates cwghts, nwghts, xpins and pins arrays. User should call free() function with those
pointers when hypergraph is not needed.

Parameters:
filename input name of the file that contains the hypergraph.
c output number of cells of the hypergraph.
n output number of nets of the hypergraph.
nconst output number of constraints.
cwghts output array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are store in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1]

nwghts output array of size n that stores the cost of each net.
xpins output array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins output array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
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int PaToH_Write_Hypergraph(char *filename, int numbering, int _c, int _n, int _nconst,

int *cwghts, int *nwghts, int *xpins, int *pins);

Description:
Writes a hypergraph into a file. See Section 5.1 for details of the file format.

Parameters:
filename input name of the file that will contain the hypergraph.
numbering input the index base for the indices, see Section 5.1.
c output number of cells of the hypergraph.
n output number of nets of the hypergraph.
nconst output number of constraints.
cwghts output array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are store in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1]

nwghts output array of size n that stores the cost of each net.
xpins output array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins output array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].

int PaToH_Compute_Cut(int _k, int cuttype, int _c, int _n, int *nwghts,

int *xpins, int *pins, int *partvec);

Description:
Given number of parts, cuttype, hypergraph and part vector, computes and returns cut.
Parameters:
k input number of parts.
cuttype input must be either PATOH CUTPART for cutnet metric (Equation 4(a))

or PATOH CONPART for “Connectivity-1” metric (Equation 4(b)).
c input number of cells of the hypergraph.
n input number of nets of the hypergraph.
nwghts input array of size n that stores the cost of each net.
xpins input array of size n+1 that stores the beginning index of pins (cells)

connected to nets.
pins input array that stores the pin-lists of nets. Cells connected to net nj

are stored in pins[xpins[j]] through pins[xpins[j+1]-1].
partvec input array of size c that returns the part number of each cell.
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int PaToH_Compute_Part_Weights(int _k, int _c, int _nconst,

int *cwghts, int *partvec, int *partweights);

Description:
Given number of parts, number of cells, number of constraints, cell weights and a part vector,
computes the part weights.

Parameters:
k input number of parts.
c input number of cells of the hypergraph.
nconst input number of constraints.
cwghts input array of size c× nconst that stores the weights of each

cell. In multi-constraint partitioning, each cell vi has nconst

weights, and they are store in cwghts[i* nconst] through
cwghts[(i+1)* nconst-1]

partvec input array of size c that stores the part number of each cell belongs to.
partweights output array of size pargs-> k× nconst that returns the total part weight

of each part for each constraint.
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4.3 Data Structures

User controls the execution of the multilevel bisection algorithm by setting appropriate parameters.
First argument of PaToH partitioning functions is a pointer to a structure of type PaToH Parameters.
This structure is defined in file patoh.h. We have categorized the parameters in to four groups.
Following subsections briefly describes the each parameter.

4.3.1 Miscellaneous Parameters

• cuttype: determines the cost function for partitioning. Must be either PATOH CUTPART for
cutnet metric (Equation 4(a)) or PATOH CONPART for “Connectivity-1” metric (Equation 4(b)).

• k: number of parts.

• outputdetail: detail of verbose output. Use PATOH OD <X> constants, where <X> should be
NONE, LOW, MEDIUM and HIGH, for none, low, medium and high output detail.

• seed: seed of the random generator. Set to -1 for using current time as the seed for random
generator, set to 0 for using partitioning count (number of times PaToH partitioners called)
as the seed. Set to any other non-zero value to for fixing random generator seed.

• doinitperm: if set to a non-zero value, PaToH shuffles the pins and nets lists of the hypergraph
prior to partitioning.

• bisec fixednetsizetrsh: During the each bisection nets with size larger than this value
will be discarded. Please note that, if such a larger net is split during the recursive bisection
it may be considered in the further partitionings.

• bisec netsizetrsh: Nets with size larger than
bisec netsizetrsh×savg are discarded during the each bisections step, where savg is the
average net size.

• bisec partmultnetsizetrsh: Nets with size larger than
bisec partmultnetsizetrsh×K are discarded during the each bisections step of a K-way
partitioning.

• bigVcycle: the maximum number of big V-cycles (default is 1 for PATOH SUGPARAM SPEED

and PATOH SUGPARAM DEFAULT, and higher for PATOH SUGPARAM QUALITY).

• smallVcycle: the maximum number of small V-cycles.

• usesamematchinginVcycles: if set to a non-zero value PaToH will use the same coarsening
algorithm during the V-cycles. If it is zero, PaToH will automatically selects a coarsening
algorithm for each V-cycle.

• usebucket: PaToH can use both the heap and the bucket data structures as priority queue. If
this parameter is 1, the bucket data structure is always used, if it is 0 the heap data structure
is always used, if it is -1 PaToH determines when to use the heap data structure using
the parameters maxcellinheap, heapchk mul, and heapchk div defined below. However,
since PaToH includes multiple coarsening, initial partitioning and refinement algorithms with
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different properties and needs, all combinations using both type of priority queue have not
been implemented. PaToH may ignore this parameter for some certain algorithms.

• maxcellinheap: Heap will not be used if the current hypergraph has more cell than this
number.

• heapchk mul: Heap will be used if bs×heapchk mul/heapchk div < |Vi| at the level i, where
bs is required bucket size.

• heapchk div: Heap will be used if bs×heapchk mul/heapchk div < |Vi| at the level i, where
bs is required bucket size.

• MemMul CellNet: PaToH allocates three large continues arrays to be able to run Multilevel
Partitioning. The first array holds the internal cell and net structures. This parameter tells
to PaToH to allocate MemMul CellNet times much memory that is required to hold the cell
and net structures of the original hypergraph.

• MemMul Pins: The second large array is used to store net-lists of cells (nets array) and pin-
lists of nets (pins array). This parameter tells to PaToH to allocate MemMul Pins times much
memory that is required to hold pins and nets arrays of the original hypergraph.

• MemMul General: The last large array is used to store temporary working arrays required
during the multilevel partitioning. This parameter tells to PaToH to allocate MemMul Pins

times much memory that is required to hold pins array of the original hypergraph.

4.3.2 Coarsening Parameters

• crs VisitOrder: cell visit order for coarsening algorithms

– PATOH VO CONT=0: Continuous/Sequential (increasing vertex ID order),

– PATOH VO RAND=1: Random (default),

– PATOH VO SCD=2: Non-decreasing cell degree order,

– PATOH VO SMAXNS=3: Non-decreasing maximum net size order,

– PATOH VO SMINNS=4: Non-decreasing minimum net size order,

– PATOH VO SMINNSSUM=5: Non-decreasing minimum of net size sum sorted,

– PATOH VO SWEEP=6: Sweep: increasing vertex ID order in even levels, decreasing vertex
ID order in odd levels.

• crs alg: coarsening algorithm choices:

In matching-based clustering schemes listed below (first eight), vertex u denotes the un-
matched vertex visited according the order determined by the crs VisitOrder parameter.
Vertex u is the source of the current matching process and an unmatched vertex v is selected
according to a criterion among all unmatched vertices adjacent to u. Recall that two vertices
u and v are said to be adjacent if they share at least one net, i.e., nets[u]∩nets[v] ̸= ∅. Here,
Nuv denotes the set of nets shared by vertices u and v, and Nuv = |Nuv| denotes the number
of nets shared between u and v.
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– PATOH CRS HCM=1: Heavy connectivity matching. Vertex v has maximum connectivity
value Nuv.

– PATOH CRS PHCM=2: Probabilistic heavy connectivity matching.

– PATOH CRS MANDIS=3: Manhattan distance. Vertex v has minimum Manhattan Distance
Muv = du + dv − 2Nuv.

– PATOH CRS AVEDIS=4: Average distance. Vertex v has minimum average Manhattan
Distance Muv/(du −Nuv).

– PATOH CRS CANBERRA=5: Canberra metric. Vertex v has minimum Muv/(du + dv) ratio.

– PATOH CRS ABS=6: Absorption Matching. Vertex v has maximum sum
∑

n∈Nuv
1/(sn −

1). This similarity metric favors matching vertex pairs connected via nets of small sizes.

– PATOH CRS GCM=7: Greedy Cut Matching. Vertex v has minimum du + dv −Nuv value.

– PATOH CRS SHCM=8: Scaled Heavy Connectivity Matching. Vertex v has maximum
Nuv/(du + dv −Nuv) ratio.

In agglomerative clustering schemes listed below, vertex u denotes the unclustered vertex
visited according the order determined by the crs VisitOrder parameter. Vertex u is the
source of the current clustering process and all vertices adjacent to vertex u are considered
for selection according to a criterion. The selection of a vertex v adjacent to u corresponds
to including vertex u to singleton or multinode cluster Cv that contains vertex v to grow a
new multinode cluster Cuv = {u} ∪ Cv.

– PATOH CRS HCC=9: Heavy Connectivity Clustering. This metric is the agglomerative
version of PATOH CRS HCM. That is, v has maximum Nu,Cv , which denotes the number of
nets shared between vertex u and cluster Cv.

– PATOH CRS HPC=10: Heavy Pin Clustering. Cluster v has maximum
∑

n∈Nu,Cv
|pins[n]∩

Cv|.
– PATOH CRS ABSHCC=11: Absorption Clustering using Nets, This metric is the agglomer-

ative version of PATOH CRS ABS. That is, v has maximum
∑

n∈Nu,Cv
1/(sn − 1).

– PATOH CRS ABSHPC=12: Absorption Clustering using Pins, Similar to PATOH CRS ABSHCC,
but this accumulates absorption metric for every pin that connects u to Cv in this level.
This is the default coarsening scheme.

– PATOH CRS CONC=13: Connectivity Clustering,

– PATOH CRS GCC=13: Greedy Cut Clustering. This is agglomerative version of PATOH CRS GCM.
With this metric vj is chosen to form a cluster with vi that has minimum di + dj −Ni,j .

– PATOH CRS SHCC=15: Scaled Heavy Connectivity Clustering,

In the net-based clustering algorithms listed below, nets are visited in random order and their
pins are considered for clustering. We only recommend to use these schemes when average
net size of the hypergraph is very small.

– PATOH CRS NC=16: Net Clustering. All pins of a net are clustered if none of them has
been clustered yet. If at least one of them has been clustered, net is skipped.
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– PATOH CRS MNC=17: Modified Net Clustering. All pins of a net that are not currently
clustered gathered to form a cluster.

• crs coarsento: limits the number of cells in the coarsest hypergraph.

• crs coarsentokmult: Number of cells in the coarsest hypergraph is set to maximum of
K×crs coarsentokmult.

• crs coarsenper: Stops coarsening when number of cells is not reduced more than crs coarsenper%
(default is 9%).

• crs maxallowedcellwmult: limits the construction of large cells. Maximum weight of a cell
can be at most crs maxallowedcellwmult×Wavg.

• crs idenafter: starting level of identical net detection in coarsening. Supplying negative
values results in automatic computation of the parameter.

• crs iden netsizetrh: Threshold net size for identical net detection. Nets whose sizes are
equal or less than this values will be checked.

• crs useafter: Changes the coarsening algorithm after that level to crs useafteralg.

• crs useafteralg: Coarsening algorithm that will be used after level crs useafter.

4.3.3 Initial Partitioning Parameter

• nofinstances: PaToH can refine multiple partitions during the uncoarsening phase. This
parameter sets the number of partitioning instance to be constructed in initial partitioning
phase. Each of these instances will be refined during the uncoarsening phase.

• initp alg: Determines the initial partitioning algorithm, here is the list of the implemented
algorithms:

– PATOH IPA GHGP=1: Greedy Hypergraph Growing Partition (GHGP). In this algorithm
we grow a cluster around a randomly selected vertex. During the course of the algorithm,
the selected and unselected vertices induce a bipartitioning on the coarsest hypergraph.
The unselected vertices connected to the growing cluster are inserted into a priority queue
according to their FM move gains. Here, the gain of an unselected vertex corresponds to
the decrease in the cutsize of the current bipartition if the vertex moves to the growing
cluster. Then, a vertex with the highest gain is selected from the priority queue. After
a vertex moves to the growing cluster, the gains of its unselected adjacent vertices
which are currently in the priority queue are updated and those not in the priority
queue are inserted into the queue. This cluster growing operation continues until a
predetermined bipartition balance criterion is reached. Since the coarsest graph is small,
GHGP algorithm is run multiple times starting from different random vertices and select
the best bipartition for refinement during the uncoarsening phase.

– PATOH IPA AGG MATCH=2: Agglomerative Match and Bin Packing. This methods uses
agglomerative matching to further create bigger clusters then, simple bin packing is
used to assign those clusters to parts.
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– PATOH IPA BINPACK=3: Bin Packing uses best fit decreasing bin packing heuristic to
assign vertices (cells) of the coarsest graph to parts.

– PATOH IPA BF=4: Breadth-First Partitioning. This is very similar to GHGP. It starts
with assigning randomly selected vertex to part 0 and the others to part 1. It then tra-
verses the hypergraph in breadth-first manner and moves the visited vertices to from part
1 to part 0. This cluster growing operation continues until a predetermined bipartition
balance criterion is reached.

– PATOH IPA RANDOM1=5: A random initial partitioning. Vertices are visited in a random
order and a random part assignment is choosen for each vertex. Vertex is placed in that
part unless the assignment violates the imblance requirement.

– PATOH IPA RANDOM2=6: Another random initial partitiong. Vertices are visited in a
random order and are assigned to the part with minimum weight.

– PATOH IPA RANDOM3=7: Yet another random initial partitioning. A random vertex visit
order is created and this list into partitioned into two for best balance.

– PATOH IPA GHG MAXPIN=8: Greedy hypergraph Growing with Max Pin. A variant of
GHGP that prioritizes the moves of the vertices to the growing cluster by number of
pins connected to the growing cluster.

– PATOH IPA GHG MAXNET=9: GreedyHypergraph Growing with Max Net. A variant of
GHGP that prioritizes the moves of the vertices to the growing cluster by number of
nets connected to the growing cluster. That is it discards the connections to the other
nets/cells.

– PATOH IPA GHG MAXPOSGAIN=10: GreedyHypergraph Growing with Max only-Pos FM
Gain. A variant of GHGP that only moves vertices that has positive FM gains.

– PATOH IPA COMP GHGP=11: Component bin-pack and Greedy Hypergraph Growing Par-
tition. This partitioning method first finds connected components of the coarse graph
then assigns those to parts using bin-packing.

– PATOH IPA GREEDY COMP GHGP=12: Greedy Component bin-pack and Greedy Hyper-
graph Growing Partition. This partitioning method first finds connected components
of the coarse graph then generates a coarser graph from those, and then uses GHGP to
partition that.

– PATOH IPA ALL=13: use one of the above at each instance and/or run of initial partition-
ing.

• initp runno: the number of initial partititioning runs for each instance.

• initp ghg trybalance: if it is set to a non-zero value, PaToH tries to find better balanced
partitions during greedy hypergraph growing partitioning.

• initp refalg: refinement algorithm that will be used after each initial partitioning, please
refer to ref alg in the next section, for a list of available algorithms.

4.3.4 Uncoarsening Parameters

– ref alg: Determines the refinement algorithm that will be used during the uncoarsening.
Current version of PaToH contains 18 KLFM-based refinement algorithms:
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∗ PATOH REFALG NONE=0: No refinement (NONE).

∗ PATOH REFALG T BFM=1: Boundary FM (BFM) with tight balance. This algorithm
only moves vertices, once in each pass, that are in the boundary. It always moves
vertices from heavily loaded part to underloaded part.

∗ PATOH REFALG T FM=2: FM with tight balance. Similar to previous algorithm this
algorithm always moves vertices from heavily loaded part to underloaded part, but
every vertex is eligible for a move once in each pass of the algorithm.

∗ PATOH REFALG D BFM=3: BFM with dynamic locking. Similar to T BFM, moves
boundary vertices but allows a vertex to be moved more than once in each pass.

∗ PATOH REFALG D FM=4: FM with dynamic locking. This is a generalized implemen-
tation of FM algorithm that allows vertices to be moved more than once in each
pass.

∗ PATOH REFALG BKL=5: Boundary Kernighan-Lin (BKL). This algorithms swaps the
vertices in the boundary, instead of moving a single vertex.

∗ PATOH REFALG KL=6: Kernihgan-Lin (KL). Swap-based refinment algorithm. Swap
code is not optimized agressively hence it should be avoided for larger hypergraphs.
However, due to balance constraints, it might be preferable especially in the higher
levels of uncoarsening (when graph is small).

∗ PATOH REFALG MLG BFM=7: BFM with Krishnamurthy’s multilevel gain improve-
ment [22].

∗ PATOH REFALG MLG FM=8: FM with Krishnamurty’s multilevel gain.

∗ PATOH REFALG BFMKL=9: One pass BFM followed by one pass BKL.

∗ PATOH REFALG FMKL=10: One pass FM followed by one pass KL.

– ref useafter: After that level of coarsening refinement algorithm ref useafter alg

will be used.

– ref useafteralg: Refinement algorithm that will be used after level ref useafter.

– ref passcnt: Limits the number of passes at each level of uncoarsening.

– ref maxnegmove: Limits the number of consecutive negative-gain moves, for early ter-
mination.

– ref maxnegmovemult: Limits the number of consecutive negative-gain moves to
ref maxnegmovemult×|Vi| at the i-th level of uncoarsening.

– ref dynamiclockcnt: Limits the maximum number of moves of a cell in a pass. Setting
this to one will be equivelant of running the clasic FM algorithm.

– ref slow uncoarsening: PaToH switches to “faster” refinement method (PATOH REFALG D BFM)
if uncoarsening is ref slow uncoarsening times slower than coarsening. To get repeat-
able results no matter what, this number should be very large.

– balance: enforces/relaxes PaToH’s balance constraint. 0: Strictly forces balance to be
ε/ logK in each bisection, 1: Dynamically adjusts imbalance in each recursion aiming ε
imbalance at the end, 2: each bisection in recursion will have maximum imbalance ε.

– init imbal: imbalance ratio of the coarsest hypergraph, i.e., maximum part weight in
the coarsest hypergraph can be at most Wavg × (1+init imbal).

– final imbal: imbalance ratio of the final partition, i.e., ε in Eq (1).
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– fast initbal mult: To give some room to refinement algorithm in terms of imbalance,
at the beginning of each uncoarsening level partition is forced to have maximum imbal-
ance ratio of fast initbal mult×ε, then selected refinement algorithm is executed.

– init sol discard mult: At the coarsest level, instances which have init sol discard mult

times worse cutsize than the partition with minimum cutsize are discarded.

– final sol discard mult: At the final partition, instances which have init sol discard mult

times worse cutsize than the partition with minimum cutsize are discarded. Note that,
PaToH linearly interpolates this discard multiplier at each level of uncoarsening.
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5 Stand-Alone Program

Distribution includes a stand-alone program, called patoh, for single constraint partitioning1. patoh
gets its paramaters from command line arguments. You can run the PaToH from command line as
follows:

> patoh <hypergraph-file> <number-of-parts> [[parameter1] [parameter2] ....]

You can tune the parameters using optional [parameter] arguments. The syntax of these
optional parameters is as follows; two-letter abbreviation of a parameter is followed by an equal
sign and a value. For example, parameter ref alg is abbreviated as “RA” and to select “Boundary
FM with dynamic locking” (3rd algorithm) you should use “RA=3”. For a complete example, lets
say we would like to partition the sample hypergraph ken-11.u (part of the distribution) into 4 parts
using the Kernighan-Lin refinement algorithm with cutnet metric (the default is “Connectivity-1”
metric (Equation 4(b)). Below is the command you need to execute and a sample output:

> patoh ken-11.u 4 RA=6 UM=U

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++ PaToH v3.2 (c) Nov 1999-, by Umit V. Catalyurek

+++ Build Date: Sun Mar 13 17:41:19 2011 -0400

+++++++++++++++++++++++++++++++++++++++++++++++++++++++

********************************************************************************

Hypergraph : ken-11.u #Cells : 14694 #Nets : 14694 #Pins : 82454

********************************************************************************

4-way partitioning results of PaToH:

Cut Cost: 4775

Part Weights : Min= 20408 (0.010) Max= 20947 (0.016)

--------------------------------------------------------------------------------

I/O : 0.007 sec

I.Perm/Cons.H: 0.002 sec ( 0.7%)

Coarsening : 0.087 sec (37.9%)

Partitioning : 0.011 sec ( 4.8%)

Uncoarsening : 0.128 sec (55.8%)

Total : 0.229 sec

Total (w I/O): 0.236 sec

--------------------------------------------------------------------------------

This output shows that cut cost according to cutnet metric is 4775. Final imbalance ratios for least
loaded and most loaded parts are 1.6% and -1.0%, and partitioning (without I/O) only took 0.229
seconds.

Tables 1 and 2 display the command-line abbreviation of each parameter, the value-types of the
parameters and the valid ranges of the values.

1Please note that this executable will not work with multiple vertex weights. For multi-constraint partioning use
the provided library interface. Also see sample source codes for use of multi-constraint partitioning.
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Table 1: Stand-alone program parameters

Parameter Abbreviation Type Range

Miscellaneous Parameters

outputdetail OD int 0, 1, 2, 3
seed SD int -1: random, otherwise sets seed
doinitperm DP int 0, 1
bisec fixednetsizetrsh float int [1, maxint)
bisec netsizetrsh NT float [0.5, maxfloat)
bisec partmultnetsizetrsh NM int [1, maxint)
bigVcycle BV int [1, maxint)
smallVcycle SV int [1, maxint)
usesamematchinginVcycles SM int 0, 1
usebucket UB int -1, 0, 1
maxcellinheap HC int [0, maxint)
heapchk mul HM int [1, maxint)
heapchk div HD int [1, maxint)
MemMul CellNet A0 int [1, maxint)
MemMul Pins A1 int [1, maxint)
MemMul General A2 int [1, maxint)

Coarsening Parameters

crs VisitOrder VO int [0, 6]
crs alg MT int [1, 17]
crs coarsento CT int [10, maxint)
crs coarsentokmult CK int [1, maxint)
crs coarsenper CP int [1, 100]
crs maxallowedcellwmult CM float [0.01-1.0]
crs idenafter ID int [-1, maxint)
crs iden netsizetrh IT int [2, maxint)
crs useafter FL int [0, maxint)
crs useafteralg FM int [1, 17]

Initial Partitioning Parameter

nofinstances NI int [1, maxint)
initp alg PA int [1, 13]
initp runno IR int [1, maxint)
initp ghg trybalance TB int 0, 1
initp refalg IA int [0, 10]
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Table 2: Stand-alone program parameters (continued)

Parameter Abbreviation Type Range

Uncoarsening Parameters

ref alg RA int [0, 10]
ref useafter RL int [0, maxint)
ref useafteralg RF int [0, 10]
ref passcnt RP int [1, maxint)
ref maxnegmove RN int [5, maxint)
ref maxnegmovemult RU float [0.0001, 1.0]
ref dynamiclockcnt LC int -1, 1, 2, 3
balance BA int 0, 1, 2
init imbal & final imbal IB float [0.00, 0.50]
init imbal II float [0.00, 0.50]
final imbal FI float [0.00, 0.50]
fast initbal mult FB float [0.5, 2.0]
init sol discard mult DI float [0.01, 1.00]
final sol discard mult DF float [0.01, 1.00]

Parameter for Stand-alone program

total # of runs NR i [1, maxint)

5.1 Input File Format

The input hypergraph H = (V,N ) is stored in a plain text file. The first line after the possible
comment lines describes the size of the hypergraph, the index base (0 or 1) and the weighting
scheme. The rest of the file contains information for each net, and possibly for each vertex–
depending on the weighting scheme. Any line beginning with ‘%’ is a comment line and skipped.

The first line contains 4, optionally 6 integers. The first one–either 1, or 0– shows the base value
used in indexing the elements of V and N . Next the sizes of the sets |V|, |N |, and pins should
be present. The fifth integer is optional and describes the weighting scheme of the hypergraph, if
present. The hypergraph can have weights associated with cells, nets, or both, 1, 2, 3 respectively.
The sixth integer also optional and denotes the number of constraints, in other words number of
weights for each cells. If it is omitted it is assumed to be 1.

The next |N | lines contain the information about the nets. ith line (excluding the comments)
contains the cell list of net ni. In the case of the weighted nets, each line begins with an integer
representing the weight of ni.

If cells are weighted, following the net lines, each cell’s weight must be supplied. If there are
more than one weight constraints then each cell should have number of constraint weights.

Input file corresponding to the sample hypergraph in Figure 3 is displayed in Figure 4.

5.2 Output File Format

When standalone PaToH executable patoh completes K-way partitioning of an hypergraph, H=
(V,N ), stored in input file input.hygr, it generates an output file named input.hygr.part.K.
This file contains |V| integers in range [0,K − 1]. ith entry in this file represents the part number
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0 12 11 31
2 3 5 6 9
0 1
0 1 2 3
1 3
4 5
4 5 6 7
6 7
8 9 10 11
8 11
8 10
2 5

(a)

0 12 11 31 2
2 2 3 5 6 9
2 0 1
2 0 1 2 3
2 1 3
2 4 5
3 4 5 6 7
3 6 7
3 8 9 10 11
3 8 11
3 8 10
3 2 5

(b)

0 12 11 31 1
2 3 5 6 9
0 1
0 1 2 3
1 3
4 5
4 5 6 7
6 7
8 9 10 11
8 11
8 10
2 5
1 1 1 1 2 2 2 2 3 3 3 3

(c)

0 12 11 31 3
2 2 3 5 6 9
2 0 1
2 0 1 2 3
2 1 3
2 4 5
3 4 5 6 7
3 6 7
3 8 9 10 11
3 8 11
3 8 10
3 2 5
1 1 1 1 2 2 2 2 3 3 3 3

(d)

Figure 4: (a) Hypergraph file without weights, (b) Hypergraph file with net weights (2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3), (c) Hypergraph file with cell weights (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3), (d) Hypergraph
file with weights on both nets and cells.
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that ith cell is assigned to.

6 License

PaToH binary distribution is available free of charge for non-commercial, research use by individu-
als, academic or research institutions and corporations. Commercial use of PaToH software requires
commercial license. Please direct commercial-use license inquiries to umit@gatech.edu.
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[8] U. V. Çatalyürek, C. Aykanat, and E. Kayaaslan. Hypergraph partitioning-based fill-reducing
ordering. Technical Report OSUBMI-TR-2009-n02 and BU-CE-0904, The Ohio State Uni-
versity, Department of Biomedical Informatics and Bilkent University, Computer Engineering
Department, 2009. submitted for publication.
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