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Abstract. When robots undertake tasks in adversarial environments in which
they must cooperate with one another (e.g., military applications or the RoboCup
Competition), they are at risk for being deceived by competitors. Competitors
can misdirect the team to gaipasitional advantage. Our lab is exploring ways

in which teams of robots can be misdirected, in part, so cedeteption strat-

egies can be devised. This paper explores how robot shills can be used to misdi-
rect a multirobot team. It defines behaviorg fihe agents to be deceived (the
mark agents) using the multgent coordination literature as well as behaviors
for the deceiving team (the shills and lead agent). These behaviors were imple-
mented and simulations were run for a variety of conditions.r@sdts show

how shills can facilitate misdirection in certain circumstances. They provide in-
sights into enhancing muiltobot team deception.
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1! Introduction

A man is milling around a stadiuparking lot before a big event. There seem to be
countless people wandering around him waiting for the show later that day. A woman
moving very quickly enters the manQOs view; she moves with purpose away from the
stadium. The man finds the fasbving womannteresting but does not consider her
much further until he sees a nearby man begin moving quickly (with urgency) in the
same direction as the woman. He wonders if there is some kind of emergency for which
assistance might be needed. As he begins to onaekly toward the two, several peo-

ple behind him, who also had noticed the quickly moving pair, wonder what is going
on and begin to move with the group.

Research has shown how in teams of humans and animals a small proportion of the
group members arable to sway the behavior or movement of the larger group with
simple local interactions [1, 3]. In the story above, the woman did not need to call out
to all the followers. Instead, with purposeful movement, she was able to attract attention
to herselfand begin pulling people with her. The people who she pulled with her, in
turn, pulled people with them.

This flocking behavior can be useful for groups of robots and has been incorporated
into multragent robot teams [e.g. 2]. Our lab showed hovbatrbehavior inspired by



lekking in birds could help to support the formation of meaningful-taiginted robot
groups. This behavior, though useful, leaves robot teams susceptible to misdirection.

This paper explores misdirection in these robot teépecifically, it tries to under-
stand how shill agents (confederate members of the deception team) can help to misdi-
rect mark agents (targets of the deception). The goal of the deceptive agents is to move
the marks from a start position to a goal positioat is advantageous to the deceiving
team. Feints for example (moving in a direction intended to mislead) are common in
sports and the military.

In the story above, the man followed along with the woman when he saw the nearby
man begin to move wither. This second individual could have followed the woman
out of curiosity, but he could have been a confederate of (shill for) the woman. He could
have moved to encourage others to follow along and/or to keep others following along
with her. In groups, gople take an action when they have seen a sufficient number of
others take the same action [5]. People assume if many people are taking this action,
then it must be correct or appropriate. The man needed to see two people move with
urgency in a certain giction before deciding there was something worth seeing in their
direction and moving with them. Robots can similarly follow this threshold model to
inform their actions.

Our lab has done extensive work in robot deception $ 3] and even praded
the first taxonomy on humambot deception]0]. This work is building upon that
previous work by exploring the misdirection of a mualgient robot team by a multi
agent robot team. This research is being done in part to develop edecdgtive pac-
tices in future works.

The next section of this paper discusses previous research lookiecgation be-
tweenteams of robots as well A&sw robots have been used to move groups from one
location to another. The third section introduces the models of the mark agents and the
agents involved in the deception. The fourth section present simulation results involv-
ing implementations of theseews. The paper ends with a conclusion and discussion
of future work.

2! Related Work

Previous research into multiagent deceptionlbalsed athow a deceptive team of
robots can keep adversaries away from a certain area that may harbor valuatiteseso
[8]. Our researchinsteadfocusesn misdirectingadversaries ta certain area.

Robots havebeen employed in herding situations [4, 8, 12]. These robots
OpushedO animals from one location to another. This included hekadidp12],
which have similar flocking behaviors to sheep, into penned areas, and herding birds
away from airports to designated safe zones [4TI8gse OpushingO approaches are
fearbasedwith the robot acting as a predatie agent [4, 6, 1, 12]. They are funda-
mentally different than our deceptive approach. The agents that are moving the marks
to thegoallocation in this paper are indistinguishable from the mark agents themselves.



This also separates the graswork from our labOs recpaper ). A team of shep-
herding robots moved a team of mark robots from one location to another. The shep-
herding team was more effective at moving the marks to the goal location when it com-
bined agents that putlealong with agents that pushed the marks than when the pulling
and pushing agents were separate. The pulling and pushing agents, however, were iden-
tifiable as different from the marks themselves, contrary to the shills used here.

3l Robot Models

The simulaibns discussed in the following section replicate the scenario given in the
introduction. This section defines the behavioral assemblages that dictate the actions of
the agents. The primitive behaviors for each robotic agent are defined in Appendix I.
Thebehavioral assemblages can be seen in Appendiotationally, the behavior as-
semblages appear bolded throughout this paper and the primitive composing behaviors
appear italicized.

There are three types of agents. The first type, the leader adggstihe role of the
quickly moving woman. It leads the other agents toward the goal location. The second
agent type is the mark, the agents to be deceived. The mark agents are the crowd outside
of the stadium. They wander around and are unresponsive &utfounding robots
until seeing a number of agents moving with intent (moving quickly) at which point
they flock to those agents. The third agent type is the shill that act as confederates with
the leader agent. They mill among and flock with the maektsg while also helping
to pull the mark agents toward the leader. This is the person who moves as soon as the
quickly moving woman appears as illustrated in the introduction.

3.1 Behavior Overviews

The behavioral assemblages for each of the three agent types are summarized in Table
1. The leading agent enactd.@ad-To-Goal Behavior Assemblagehroughout the
simulation that includes three behaviors. The agent is attracted to the goal Idggation (
To-Goal Behavioy; it avoids obstacles (objects) in the environméwbp{d-Obstacle
Behavio), and it has noise incorporated into its movemaMander Behavigrso that

these movements are natural. The leader is the only agent with knowledge of the goal
locationOs position.

The marks are the agents to be relocated from their initial position to the goal loca-
tion. They begin the simulation wandering slowly around their start location with the
Anchored Wander Behavior Assemblagactive. They avoid crashgninto other ro-
bots Off Robots Behavipras well as obstacles (objects) within the environment
(Avoid-Obstacle Behavigr Otherwise, they simply wander around the area where they
begin the simulationWWander Behavioand Stay Near Start Behavjor

Each mark has a set threshold that will cause it to change its behavior to flock. This
threshold is the number of agents that the mark needs to recognize as moving with
intent. Moving with intent means moving at a speed above a set threshold. As described
above, humans will make a decision when they have seen a certain number of others



make the same decision [5]. The man in the story from the introduction decided it was
prudent to follow the quickly moving woman when a nearby man chose to move toward
her. Maks will flock with the robots that show intent once they have seen a sufficient
number of agents moving with intent.

Table 1 The behavior assemblages for each agent type along with
composingbehaviors

Robotic Behavior Assemblage Comp_osmgaehav-
Agent iors
¥  GoToGoal
Leader Lead To Goal ¥ AvoidObstacles
¥ Wander
¥  Wander
Wander Near Start ¥  Stay Near Start
(Simulation Outset) ¥ AvoidObstacle
¥ Off Robots
Mark Mill Around ¥ Wander
Mark (Below Flock Thresh- | ¥  Avoid-Obstacle
old) ¥ Off Robots
Mark Elock ¥ Lek Behavior
(Above Flock Thresh- . War_1der
old) ¥ AvoidObstacle
¥ Off Robots
¥ Wander
Wander Near Start ¥ Stay Near Start
(Simulation Outset) ¥ AvoidObstacle
¥ Off Robots
Shill ¥ Follow Leader
Shill Elock ¥ Lek Behavior
(Leader Signaled) -l War_1der
¥ AvoidObstacle
¥ Off Robots

All of the shill agents in the simulations are indistinguishable to the marks. Each
mark computes the speed of every agent within a certain radius that is not concealed by
an object in the environment. The marks meathe® speed by considering a robotOs
current position and its position ten simulation steps before. The agentOs speed is how
far the agent has moved in that time window.

When a mark is at or above its flocking threshold,Maek Flock Behavior As-
sembageis active. This consists of four different behaviors. The mark is attracted to
each agent moving with intent that it is able to see within a certain régikBEhavior
[2])- The agent avoids crashing into robd@éf(Robots Behavipiand obstacle®{oid
Obstacle Behavigin the environment. There is also noise incorporated into the robotOs
movement to make it more naturg¥énder Behavior)



When the mark is below its threshold (i.e., the number of agents it sees moving with
intent is below thepecified number), the agent will enact ktark Mill Around Be-
havior Assemblage The agent will wander arountiVander Behavigr avoid other
robots Off Robots Behavipand obstacle@\void Obstacle Behavipr

Finally, the shill agents in the sination behave very similarly to the mark agents.
At the outset of the simulation, they enact the matk®bored Wander Behavior
AssemblageWhen the leader agent begins to move to the goal location, they enact the
Shill Flock Behavioral Assemblage This ircludes the same behaviors as the Mark
Flock behavior ©ff Robots Behavior, Avei@bstacle Behavior, Wander Behavior and
Lek Behavioywith the addition of being attracted to the leader when the leader is visi-
ble (Follow Leader Behavigr This helps pulthe flock toward the leaderOs position,
which is approaching the goal throughout the simulation.

3.2 Mathematical Models

Each robotOs position is updated every simulation step (simulation second). The dis-
tance and direction moved by a robot is based ondbatOs baseline speed (in meters

per second) and the behavioral assemblage that it is currently executing. Each behavior
in the behavioral assemblage outputs a vector. The simulation computes a weighted
sum of the vectors that are returned by the behaaiod multiplies the resulting vector

by the agentOs baseline speed to determine how far and in what direction the agent
moves. The behaviors appear in Appendix I. This appendix describes the vector re-
turned by each behaviofhe weights and parameters @sated with each behavior

and behavior assemblage appear in Appendix 1.

3.3 Robot Missions

The finite state automata that define the missions for the robot appear in Figure 1. The
circles show the behavioral assemblages for the agent that arethivghout the
course of a simulation. The rectangles show the triggers by which the agent moves
between behavioral assemblages.

The leader (Fig.A) waits until all of the other agents are contained within the start-
ing area and wandering around.ppaoaches the area containing the agents and signals
the shills that it is heading toward the goal. It then moves toward the goal location using
thelLead-To-Goal Behavior Assemblage

A mark (Fig.1B) wanders around in the start location until its kiag threshold
has been satisfie{ander Near Start Behavior Assemblagg The threshold is some
number of agents moving with intent (at or above a certain speed). It flocks with the
agents that are moving with intemfigrk Flock Behavior Assemblagg whenat or
above this threshold. It wanders when below this thresh&dak Mill Around Be-
havioral Assemblagé.

The shill agent (FiglC) wanders with the mark agents at the simulationOs outset
(Wander Near Start Behavior Assemblage When the leader sigis to the shill that
it is heading to the goal location, the shill begins to flock with the agentOs that move



with intent; it tries to drag the marks along to the leaderOs localiiH{ock Behav-

ior Assemblage.
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Each simulation began when tleader agent signaled the shill agents and it began to
move to the goal. The shills and marks began the simulation wandering within a start
areaof tenrmeter radius (20m, 40m). The simulation ended when all of the marks were
within ten meters of the go&cation (220m, 40m) or when the simulation had run
2000 steps (seconds). The simulation environment was 60m by 240m.

The five independent variables that were manipulated between simulations are sum-
marized in Table 2. Snapshots from a trial with tgemark agents, two shill agents
and a large object appear in Fig. 4. The marks were successfully relocated from the start
area to the goal area. The robots have unique colors so marks can identify and track

other agents to compute their speeds.

The rumber of shills was varied from 0 to 2 to understand the conditions under
which shills may facilitate misdirection. Shills are attracted toward the leader and flock
along with the marks. These agents help to keep the flock of marks moving toward the
leaderand help to meet the marksO thresholds for flocking. The shill agents move with

intent in the general direction of the leader.



Table 2: These are the five independent variables that were manipulated between simu
conditions. There were 30 differergrditions tested by running series of simulations with the
ues indicated.

Independent
Variable

Values Tested

Number of Shills

0, 1, and 2 for all other parameter settings

Numberof Marks 4 12
1 mark- threshold 1
2 marks- threshold 2
Mark Agents 2 marks-threshold 3
Threshods | 2 PeSiesion S mane restois 2 maretveshol
for Flocking 2 marks- threshold 5
2 marks- threshold 6
1 markBthreshold 7
Shill Lek . . .
BehaviorWeight High High Low, High
. No Object No Object .
g@;ggzsem Small Object Small Object Lglro Sgg.cet ot
Large Object Large Object 9 )

The shillLek Behaviorcould be given a higher or lower weight. A highek Be-
havior weight makes the shill more responsive to all the agents moving with intent in
the simulation. A lower weight makes the shill less responsive to all flocking agents
and gives greater influence over its movement to the leader agent.

The complexity of the environment was varied as well. Simulation cases included
no object present, a small object present, or a large object pfempme 2) The ob-
jects were centered at (140, 40) and had a radius of 3 meters or 10 meters. dike obje
obscured all agentsO lines of sight. During a trial with objects, the marks could lose sight
of agents moving with intent, so they would fall below their flocking threshold and
simply begin to mill about. The object could also prevent a shill agentdeging the
leader; this removes the shillOs ability to move toward the goal.

The number of marks and their thresholds for flocking were varied as well. In certain
simulations, all the marks were easily persuaded to flock, they all had low flocking
thresholds (of 1 and 2). In other conditions, certain marks had much higher thresholds
for flocking.

The degree to which the deceptive team (the leader and shill agents) was successful
in misdirecting the flock was assessed by looking aptbportion of the marks moved
from the start to the goal region.

4.1 Results

We compared the median humber of mark agents successfully moved from the start
location to the goal location using the Kruskdallis oneway analysis of variance test.



The number o$hills was the independent variable for each test. The environment com-
plexity, the number of marks, and the marksO thresholds varied between the tests but
were held constant within tests. This KrusWéllis test was used because the propor-

tion of agentshat were successfully misdirected did not follow a normal distribution.
There were many trials within conditions where almost all the mark agents were moved
to the goal location (the proportion of agents was near 1) or almost none of the mark
agents were pved to the goal location (the proportion of agents was near 0).
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@

@

Figure 2: Snapshots from a simulation trial with twelwarks and two shills. The
marks are successfully relocafeam the start to the goal.

There were no significant differences between the groups with respect to the
proportion of mark agents that were successfully moved to the goal location when the
Lek Behaviomweight was high and the flocking thresholds for all marks was low (p >
.05). Addtional shills in these simulations did not change the leading agentOs ability
to pull mark agents from the start to the goal location in any environment. In these
cases, it seems the leader alone was sufficient to pull large proportions of the marks to
thegoal location (see Table 3 and Fig@je

The results for when the marksO thresholds were changed to include agents that had
high flocking thresholds still had no significant differences between the three condi-
tions with different number of shdll(p > .05). In these cases, however, it was often true
that the marks were not successfully moved to the goal location. In all of the conditions,



the median values for the proportion of shills moved to thelgoation were below
.25, fewer than one in four marks was moved from the start to the goal location
The weight on the shill§@k Behaviowas changed to a lower weight. These results
are summarized in Tabfeand Figuret. There was aaxtremely significant difference
(p <.001) between all groups in the no object condition. With two shills, the agent was

Table 3 Theresults from the simulations run with twelve marks, a ligk Behavioweight,
and low flockng thresholds for all mark agents. There were no significant differences be
conditions. Marks did not facilitate the misdirection.

0 Shills Median 1 Shill Median 2 Shills Median
Environment | (Standard Deviation| (Standard Deviation] (Standard Deviation|
n=20 n=20 n=20
Big Object 1.0 (0.438) 0.708 (0.374) 0.667 (0.392)
Small Object 0.958 (0.390) 0.958 (0.405) 0.583 (0.384)
No Object 1.0 (0.283) 1.0 (0.253) 1.0 (0.293)

Proportion of 12 Marks Moved to Goal

1

ST

0.6 1 | 1 - 1 1 2 No Shills

0.4 | | _ | ‘ _ & One Shill
Two Shills

0.2

N . .
Big Object  Small Object  No Object

Figure 3: There were no significant differences between groups when all 12 m
had lowflocking thresholds. The leader alone was able to misdirect the ager

Table 4: The results from the simulations run with twelve markewal ek Behaviomweight,
andhighflocking thresholds fosomemark agents. Thengas a very significant differende-
tween all groups with no object present. Hhls facilitated the misdirectionWith the big
object present, they did not.

0 Shills Median 1 Shill Median 2 Shills Median
Environment | (Standard Deviation| (Standard Deviation] (Standardeviation)
(n=10) (n=10) (n=10)
Big Object 0.0 (0.0) 0.0 (0.478) 0.0 (0.478)
No Object 0.0 (0.167) 0.417 (0.423) 1.0 (0.053)
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consistentlyable tomisdirect almost all of the mark agents. With no shills, the leader
was consistently not able to misdirect the mark agents. In the big object condition,
however there was no difference between groups. The leader, in all three conditions,
was unable to misdirect the marks. The object in a large portion of the trials obscured
the leading agent from the shill agents. This meant that the shill agents would not
continte toward the goal. The group of flocking marks and shills ended up stalling
behind the object while the leader continued on to the goal location

Proportion of 12 Marks Moved to Goal

1 1
0.8
0.6 “ No Shills
0.4 & One Shill

Two Shills

i

0

Big Object No Object

Figure 4: There were significant differences between all groups with no object presen
shill agents facilitated the misdirection. With a large object present, there was not a ¢
cant difference between groups. All groups with the large object had a mvatlianof 0.
The object obscured the leader agent from the shills.

4.2 Discussion

When teams of marks are OnaiveO (their thresholds for flocking are universally low),
shills are not necessary to successfully misdirect them.

The simulations in which the mark agents all had low thresholds for flocking (thresh-
olds of 1 or 2) shillsid not make a difference. The leader alone was able to bring the
marks from the start location to the goal location (cf. Pied Piper story). The medians
for these conditions were all at or near one, and there were no significant differences
between groups.

When teams of marks contain agents with higher flocking thresholds, a leader alone
is often not able to successfully misdirect them.

The conditions in which the marks had higher thresholds for flocking had medians
of 0 when a leader agent was the amgmber of the deception team. The use of the
shills aided in the misdirection under these conditions.

The weight of a shillOs lekking behavior must be low enough to prevent it from dom-
inating the follow the leader behavior.
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The conditions in which the shills had a higkk Behaviomeight were not signifi-
cantly different from the conditions in which only a leader agent composed the deceiv-
ing team. It appears that in these conditiond #dleBehaviowector cancels the vector
produced by th&ollow Leader Behaviowhen the flock of marks and shills approaches
the leader agent. This prevents the shills from pulling the marks all the way to the goal
location. Often the group stopped just short of the goal location.

If the deceptie team is going to function effectively, shill agents must be able to see
the leader agent throughout the deception or the shill agent must have knowledge of
the goal location.

In the set of simulations with no object present in the environment flbighing
thresholds, and a lolaek Behavioweight for the shill agents, the marks were success-
fully moved to the goal location in all trials except one when two shills were present.
With a large object inserted into the environment, the median propatiomarks
moved to the goal location was 0. The shills lost sight of the leading agent and were
unable to help drag the marks to the goal location. The shills may need to incorporate
additional behaviors to keep the leader agent within view or may neexeocaddi-
tional knowledge about the goal under these conditions.

5! Conclusions and Ongoing Work

This paper explored how shill agents could be used to facilitate the misdirection of a
team of mark agents. The simulations presented here show that in casesnatier
agents have low thresholds for flocking together, a leading agent that moves with intent
is sufficient to pull agents from a start location to a goal location. In cases where the
mark agents have higher thresholds for flocking, shill agents hefrtpout the mis-
direction. The shills facilitate misdirection when they do not lose sight of the leading
agent and when the influence of the flocking marks does not dominate the influence of
the leading agent on their motion.

Shills could employ moreomplex behaviors in order to more etfeely misdirect
mark agentsfFor example, they couldbserve ananodel the movement of the mark
agents and coordinate their behavior to optimize the deception. Any additional behav-
iors employed by the shill agentgwever, further differentiates them from the marks
(providing opportunities to spoil the deceptioh) this study shill agentswere de-
signed to bas simple and indistinguishable from the marks as possible.

In ongoing researchvearedevelopng counterdeceptive strategies for these scenar-
ios. Weare currently evaluatinij counteragents that emplapvel strategieto deter
misdirectioncan overcome the deceptive practices of the opposing team.
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Appendix I: The definitions of the robotic behaviors
discussed in the text appédeaiow.
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