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Abstract Deliberate control of an entertainment robot presents a special
problem in balancing the requirement for intentional behavior with the ex-
isting mechanisms for autonomous action selection. We propose that the in-
tentional biasing of activation in lower-level reactive behaviors is the proper
mechanism for realizing such deliberative action. In addition, we suggest
that directed intentional bias can result in goal-oriented behavior without
subsuming the underlying action selection used to generate natural behav-
ior. This objective is realized through a structure called the intentional bus.
The intentional bus serves as the interface between deliberative and reactive
control by realizing high-level goals through the modulation of intentional
signals sent to the reactive layer. A deliberative architecture that uses the
intentional bus to realize planned behavior is described. In addition, it is
shown how the intentional bus framework can be expanded to support the
serialization of planned behavior by shifting from direct intentional influence
for plan execution to attentional triggering of a learned action sequence. Fi-
nally, an implementation of this architecture, developed and tested on Sony’s
humanoid robot QRIO, is described.
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1 Introduction

As robots’ interactions with humans become increasingly prevalent both in
a service capacity [7] and in personal interaction roles [6], it becomes im-
portant to address the problem of incorporating intentional action into these
systems in a natural way. This is an exceptionally challenging proposition
for entertainment robots because the intentional control needs to provide for
goal directed action without subsuming the existing action selection mech-
anisms used to provide the robot with “personality” [21]. In the case of a
humanoid, such as Sony’s QRIO shown in figure 1, the problem is further
compounded by the expectations placed upon anthropomorphic robots by
the user. In order for a humanoid’s actions to be perceived as natural, its
deliberative capabilities need to extend beyond that of simple plan execution
and move closer to the range of deliberative capabilities afforded to humans.

Intentional behavior, in the context of this work, can be defined as any
behavior that is deliberately invoked in order to achieve a high-level goal.
High-level goals, in this regard, are goals that are not explicitly encapsulated
within the reactive behaviors used by the system. High-level goals may be
realized in a number of ways including the activation of a particular sequence
of behaviors or the inhibition of certain behavior. Examples of high-level
goals that may exist in an entertainment robot can range from the simple
(e.g. moving to a particular room at a particular time) to the increasingly
complex (e.g. searching for objects in the environment, collecting them, and
delivering the objects to the user).

As stated earlier, the primary goal of this work is to incorporate these
types of intentional activities in a natural manner. Since natural behavior
can be subjective, the following will serve as the working definition for this
article: Natural intentional behavior is deliberative behavior that resembles
the type of intentional capabilities that are exhibited by humans. The types
of intentional control exhibited by humans have been divided into several
categories by psychologists [22]:

Tasks involving planning or decision making

Tasks involving troubleshooting

Tasks containing novel sequences of actions

Tasks that are dangerous or difficult

Tasks that require the overriding of habitual responses
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While intelligent systems may be able to benefit from handling all the
deliberative tasks described above, the three most relevant, at least from
the viewpoint of an entertainment robot, are tasks requiring planning, tasks
requiring novel sequences of actions, and tasks requiring the overriding of
habitual responses. As it is unlikely that an entertainment robot will need
to perform dangerous tasks or be required to troubleshoot, these capabilities
will not be addressed in this article.

While many examples of systems in which deliberative control in the form
of plan generation and execution exists (e.g., [20][23]), these systems rarely
allow for deliberative control to be expressed beyond sequences of actions
generated by the planner. For an entertainment robot, however, the range of



Fig. 1 Sony’s entertainment robot QRIO

control provided by a deliberative system should allow for more then merely
sequenced plan execution. Deliberative control should also serve as a source
of novel actions and novel plan execution. It addition, deliberative control
should not only serve as a means of expressing action, but also as a means
of suppressing action in situations where they may be inappropriate.

Finally, in any system that wishes to express intention in a natural man-
ner, a plan must be able to be expressed differently based on the importance
of its goals. An example of this can be seen when a person has a goal of
attending a meeting in a room down the hall. If time before the meeting is
sufficient, one may stop to chat with colleagues while on their way to the
meeting room. If late to the meeting, such interaction may be skipped in an
effort to reach the meeting quickly. In the case where there was sufficient
time to make the meeting, the high-level goal of attending the meeting was
of low priority. In the other case, the same goal was of higher priority and
thus results in different behavior. Similar, fine-grained expression of inten-
tional control in an entertainment robot is a crucial capability that must be
addressed if the robot is to go beyond mere plan execution.

This work proposes that intentional bias of the action selection mecha-
nism used by entertainment robots such as QRIO is the proper means by
which to express such deliberate control in a natural manner. Because of the
delicate balance required between a robot’s behavior serving in an entertain-
ment and service capacity, it is inappropriate for these functions to exist in
isolation. One does not want a robot meant to serve as a companion to lose



all semblance of personality or related entertainment characteristics when it
is pursuing high-level goals. Similarly, it is not desirable for an entertain-
ment robot to exist solely in the context of satisfying its immediate needs in
a purely reactive manner.

Our research presents a mechanism for providing uniform intentional con-
trol of the types described above. This mechanism, called the intentional bus,
serves as a gateway between the reactive and deliberative layers in the archi-
tecture. The intentional bus converts high-level goal-oriented tasks generated
by the deliberative system into intentional signals that serve to bias behav-
ioral activation in the reactive layer. These biases serve as a means of di-
recting the robot towards accomplishing the goals of the deliberative system
without overriding the existing action level computations used to generate
natural behavior. In addition, we show that this interface is general enough to
provide interaction beyond that of intentional bias by expanding it to handle
attentional triggering of learned sequences of behavior. Finally, we present
an implementation and results for this form of deliberative control on Sony’s
humanoid QRIO.

The remainder of the paper is composed as follows: Section II provides
an overview of related work on hybrid reactive-deliberative architectures,
psychological evidence for intentional bias, and an overview of the action-
selection architecture for the entertainment robot QRIO used in this work.
Section III describes the intentional bus developed for this research and its
interactions with the deliberative and reactive architectural layers. Section
IV extends the intentional bus design to allow for attentional triggering of
learned serial actions. Section V describes the deliberative architecture devel-
oped using intentional bias to provide high-level control for an entertainment
robot. Section VI provides an evaluation of the use of intentional bias for con-
trol of QRIO. Finally, section VII concludes the paper and presents an agenda
for future work.

2 Related Work
2.1 Hybrid Reactive-Deliberative Architectures

Hybrid reactive-deliberative systems have been successfully deployed for many
years, serving as a mechanism for combatting the shortfalls of purely reac-
tive and purely deliberative architectures. Arkin and Gat provide excellent
overviews of a number of hybrid architectures in [2] and [15]. In these archi-
tectures, the deliberative layer is usually coupled to the reactive layer in one
of three manners: as a mechanism for generating actions at a differing time
scale than the reactive layer; as a means to guide reaction; and through the
direct coupling of reaction and deliberation, each guiding the other [18]. In
most cases, the role of the deliberative system is to plan which actions should
execute at a particular time to achieve a goal. In many cases, the interaction
between the deliberative layer and the reactive layer is mediated by a se-
quencing layer which selects the portions of the plan that should execute at
a given time. The sequencer then activates the behaviors required to realize
the next step in the plan.



In most architectures, this activation is almost always binary, without
support for an increase or decrease in the likelihood of behavioral activation.
Some work has investigated alternative means of combining deliberative in-
formation directly into the reactive layer [24][27]. These plans provided a
navigational bias into a reactive controller, which served as a means of influ-
encing the expression of the currently executing behavioral assemblage while
still allowing other reactive behaviors, such as obstacle avoidance, to be ac-
tive. The plans used in their work were not incorporated into the behavioral
selection process itself, however.

Numerous other means of incorporating deliberative information into the
reactive layer have been investigated. In almost all cases, this influence is
expressed as the binary selection of reactive behavior and do not allow for
variable levels of activation as proposed in this article. An example of such
a coupling include Rosenblatt’s DAMN architecture [25] which provides a
mechanism where behaviors in the traditional sense, as well as planners in-
stantiated as behaviors, cast votes as to the appropriate action the robot
should take. The arbiter in this architecture combines these votes to select the
appropriate action to take. Significant challenges exist in specifying voting
semantics making arbitration between different behaviors and fine-grained
deliberative control difficult, however.

Carpenter et. al. developed an architecture for robot soccer in which
deliberate advice from a coach is integrated via the addition of suggested
behaviors to the set of executable behaviors [8]. The effect of this advice,
however, is highly dependent on the scoring function used by the behavioral
arbiter and appears unable to be influence behavioral selection in a non-
binary manner.

2.2 A Psychological Basis for Deliberative Control of Reactive Behaviors

One particularly compelling model for the deliberative control of automatic
actions in humans, developed by Norman and Shallice, is the supervisory
attentional system (SAS) [22]. Created to account for lapses of action in rou-
tine activity, they propose the SAS acts as the controller over the expression
of automatic behaviors within humans. An overview of the interaction of the
SAS with the underlying behavioral layer can be seen in figure 2. Their overall
behavioral model can be divided into two major interacting components: the
contention scheduling mechanism and the supervisory attentional system.

The contention scheduler involves multiple sets of simple, well-defined ac-
tions called schemas. Schemas can be atomic or an ordered series of schemas
and are activated by certain triggering conditions perceived in the envi-
ronment. While it is beyond the scope of this paper to discuss contention
scheduling in detail, there has been significant work in formalizing models
of contention scheduling [10] [11] as well as evaluating its feasibility as an
action-selection mechanism for robots [1] [16].

The contention scheduling system serves as a means of providing reac-
tive control for routine actions. In the case of novel sequences of actions
that are not known a priori, the contention scheduling system alone is in-
sufficient to express such behavior. Norman and Shallice [22] propose that
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Fig. 2 Norman and Shallice’s model of the role of the SAS (after [22])

the SAS is the component that provides the additional source of control
needed to exhibit novel actions. They suggest that the SAS interacts with
the reactive contention scheduling layer through the use of motivational and
attentional threads. These threads bias the activation of schemas in the con-
tention scheduler without activating them directly. These biases can allow for
the activation of novel sequences of behavior even if that sequence did not
already exist in the contention scheduler. How the SAS actually does this is
to date still ill-defined, although Shallice and Burgess have examined possible
mechanisms by which the SAS may generate and evaluate plans [26]. They
do not, however, talk about the influence of the attentional and motivational
threads with the lower-level reactive layer in much detail.

While it has been proposed [2] that Norman and Shallice’s model of willed
behavior may provide a suitable guide for integration of reactive and delib-
erative control in robotic systems, little has been done to investigate such
mechanisms. Garforth et. al. appear to have been alone in doing so thus far.
They looked at using neural mechanisms to mimic processes of the super-
visory attentional system for a simulated robot [13] [14], investigating the
suppression of a particular behavior in a simple foraging task using a pre-
viously trained neural network. The controller in this architecture appears
to be limited to the suppression of a particular behavior and cannot gener-
ate novel behavioral sequences itself. In addition, their architecture does not
appear to support non-binary suppression.
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Fig. 3 Overview of the EGO architecture. Short-term memory and Long-term
memory are denoted by STM and LTM respectively.

2.3 Action Selection and Behavioral Representation in the EGO
Architecture

Action selection, the problem of determining which action to perform among
many possible conflicting actions, has been studied extensively in both the
agents and robotics communities. Numerous models have been produced in-
cluding ethologically-guided [4] and spreading activation models[19]. These
efforts, however, do not examine the role of intention in action selection.

For this work, we use the action selection mechanism incorporated within
the EGO architecture [12]. The EGO architecture, or Emotionally GrOunded
architecture, utilizes the OPEN-R framework originally designed for the
quadruped robot AIBO and later expanded to the humanoid QRIO, the
research platform for this work. An overview of the components within the
EGO architecture is shown in figure 3. In the EGO architecture, behaviors
are organized in a tree structure according to their conceptual relationship
with each other [3]. For example, a high-level soccer behavior may be decom-
posed into several low-level, reactive behaviors such as finding and kicking a
ball 4.

In the EGO architecture, behaviors maintain an activation level and set of
resources associated with them. Every cycle, most behaviors calculate their
activation levels after which a selection process occurs. In the action selection
process, the behavior with the greatest activation level for which there are
available resources is selected for execution . If there are remaining hardware
resources, this process is repeated until there are no more free resources. This
allows for the concurrent execution of non-conflicting behaviors to occur.

In the EGO architecture, the activation level calculation is a result of an
ethologically-based homeostatic action selection mechanism [3]. The homeo-
static control module in QRIO attempts to keep a number of internal state
variables, such as desires for interaction, rest, and activity, within certain
bounds. By evaluating the levels of these particular variables as well as ex-
ternal stimuli (releasing factors), actions can be selected by increasing the
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Fig. 4 Example behavioral tree in the EGO architecture containing two main
behaviors: Soccer and Dialog

activation levels of behaviors that will satisfy the robot’s internal drives. The
further a particular internal state variables is out of the specified range, the
greater its influence on action selection.

More precisely, the activation level for the behaviors in the EGO archi-
tecture are calculated as:

Bv = /BM’U + (]- - /B)va (1)

where B, is the activation level, M, is the motivational value based on the
robots internal state, and R, is the releasing value. The releasing value is be
specified as:

R, = aAS+ (1 —a)(S + AS9), (2)

where S is the current satisfaction as measured by the internal state variables
and AS is the expected change is satisfaction if the particular behavior were
to become active. A detailed discussion on the activation level computation
and action selection within the EGO architecture can be found in [17].

To reiterate, our hypothesis is that through the intentional bias of acti-
vation levels such as described here, goal-oriented behavior can be added to
the system without compromising the strength of the existing action selection
mechanism.

3 The Intentional Bus as a Mechanism for Deliberative
Behavioral Biasing

In order to combine the execution of reactive behavior with goal-oriented
behavior in a natural manner, a mechanism for providing, monitoring, and
maintaining intentional control is necessary. The intentional bus is the com-
ponent that provides these services and allows the deliberative system to
interact with the reactive behaviors in a coherent manner. An overview of
the interaction between the deliberative layer and the lower level behavioral
layer appears in Figure 5. The intentional bus provides three major functions:

1. Monitoring and reporting the status of the underlying behaviors.
2. Biasing the activation levels in the reactive layer via intentional threads.
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Fig. 6 The state information contained within the intentional bus with sample
values

3. Maintenance of the intentional bias in response to changing activation
levels.

3.1 Monitoring the Reactive Layer

The intentional bus serves as a repository of information about the underlying
reactive level for use by a deliberative system. In addition, this state infor-
mation is used by the intentional bus itself for calculating the appropriate
intentional bias to send to behaviors. The bus stores information pertain-
ing to the state of all behaviors (running, stopped, etc.), activation levels of
all behaviors, and the intentional levels of all behaviors. This information is
derived from two different locations: Intentional data comes from the deliber-
ative layer while all other information is received from the reactive layer. An
example of the state information stored and utilized by the intentional bus is
depicted in figure 6. In addition, figure 7 shows the origins and destinations
for all data in the bus as well as the computations performed on that data
by the bus.
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Fig. 7 Dataflow in the intentional bus. Arrows show origin and destination of the
data. Trapezoids show computations internal to the intentional bus.

Algorithm 1 Biasing Behavioral Activation for Behavior s at time ¢
:activationiotq; = 0
for each behavior s do

activationiotar = activationiorar + activations —1 — intentions ¢—1
end for

intentions; =

activationy,iq*bias

S . 100 . . . .
activations s = (activations -1 — intentionst—1) + intentions ¢
record intention type (bias or attentional trigger)

3.2 Biasing Activation Levels via Intention

The second function of the intentional bus, the biasing of behavioral ac-
tivation levels, is initiated upon request from the deliberative system. This
request is composed of three parts:

1. s: the behavior to bias

2. m: the magnitude of the bias

3. a: an attentional flag, set to indicate if the bias should be an attentional
trigger (described in detail in the next section)

The magnitude of the bias is calculated by treating m as a percent of the
total activation of all behaviors minus the total intentional bias of the system,

such that,
m Z(al — bl)
b=————"— -
100 (3)
where a; and b; represents the activation level and bias for behavior ¢. Other

means of calculating the bias can be substituted without loss of generality,
however. The resulting bias value is placed on the bus where it is sent to
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Fig. 9 An idealized graph of activa-
tion values for four behaviors demon-
strating how intentional bias does not
necessarily override existing behav-
ioral expression. In this case the bias
is not great enough to make the lo-
comotion behavior run. The bias re-
mains, however, and when the robot
finishes conversing with a user, the
bias to the locomotion behavior now
allows it to run.

leasing mechanism for dialog behavior
is found which causes its activation
level to increase. The intentional bus
observes this and adjusts locomotion
behavior’s bias appropriately.

the appropriate behavior, s, via the intentional threads and results in the
activation level increasing or decreasing. The bias on the activation level of
the behavior can have a large number of effects ranging from certain execution
for values of m > 100, slight influence towards activation when 0 < m <
100, to inhibition of the behavior when m < 0. An unbounded increase
in activation levels is avoided by subtracting the activation contributed by
intention. Ensuring that activation levels for individual behaviors remain
bounded is the responsibility of the underlying action selection mechanism.
Algorithm 1 depicts an overview of the process of behavioral bias.

The values of m can be derived from a number of sources. These sources
may include time constraints for plan completion where goals that must be
accomplished quickly are assigned higher values of m. Values of m may orig-
inate from the preferences for certain activities either assigned to or learned
by the robot. In these cases the robot may assign lower values of m when
performing actions that it does not enjoy. Another potential source of bias
magnitude could simply be the user who can inform the robot of the im-
portance of a particular goal. For this work, however, the origin of the bias
magnitude is not as crucial as the effect of the bias on the system itself.

After intentional biasing has occurred, the bus begins monitoring the
status of the biased behavior to determine when to stop the bias. When it
has detected the behavior transition from stopped to running or running
to stopped, intentional bias is adjusted as the situation calls for it. This
monitoring process is detailed in algorithm 2.
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Algorithm 2 State Monitoring
1: for each behavior s do

2: if the status of s changed then

3: if s stopped running then

4: intentions = 0

5: end if

6: if s started running then

7 if s is being biased and bias type is attentional then
8: intentions = 0

9: end if

10: end if

11:  end if

12:  record behavior data (activation levels, state, etc.)
13: end for

3.3 Intention Maintenance

The final function of the intentional bus is the active maintenance of the
intentional signals. As activation levels change in the system due to the ter-
mination and activation of behavior as well as the detection of releasing
mechanisms in the environment, the intentional bias currently applied to a
behavior may no longer remain at the appropriate level. In the event there is
a change in the activation levels of the underlying behavior, the intentional
bus uses the stored values of m and recalculates the intentional bias for each
behavior and adjusts the bias accordingly. The maintenance process can be
achieved executing algorithm 1 over each behavior each time a change in
behavioral activation levels is detected.

Figure 8 shows a simple example in which the robot maintains intentional
bias under fluctuating activation levels. In this example, the intentional bus
is realizing a simple plan to walk to some location (using the locomotion
behavior). While executing this plan the robot encounters a person nearby.
This results in the activation level of the dialog behavior to increase (detect-
ing the presence of a person is the dialog behavior’s releasing mechanism). In
this case, the intentional bus detects this change and actively maintains the
intentional bias. As the bias magnitude is high, the robot continues walking
toward its goal instead of speaking with the person present.

A second example of intentional bias that does not override the existing
action selection can be seen in Figure 9. In this example, the intentional bus
once again provides the bias necessary to execute a simple plan to walk to
a location. In this case, however, the magnitude of the bias is lower then
that used in the previous example. As a result, the robot continues to speak
to the user despite the executing plan. When the robot is finished talking,
the dialog’s activation level falls and the bias to the locomotion behavior is
modulated. Now, however, the activation of the biased locomotion behavior
is high enough to allow that behavior to execute.
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4 The Intentional to Attentional Shift for Routine Activity

One important capability for a robot that is designed for long-term inter-
action is the ability to learn routine activities from repeated intentional ex-
ecution of plans. Routine activities in the context of this work are plans
generated by the deliberative layer that are repeated many times. When a
previously planned activity becomes a routine activity, the explicit plan ex-
ecution and monitoring that occurs in the deliberative system can migrate
to the lower-level action selection mechanism, freeing the resources that for-
merly had been dedicated to generating and executing such plans. We propose
that this transition can occur via the use of an attentional signal to activate
a learned behavioral sequence. Instead of the deliberative system executing
an activity through the intentional bias of the underlying behaviors, an at-
tentional signal is instead sent to the first behavior in the sequence in order
to start a chain-activation of the requisite behaviors. This notion of initiating
sequences of actions at a low-level via a high-level process has been touched
upon by Bonasso and Kortenkamp [5] but never investigated fully.

Describing the specific learning mechanism used within the reactive layer
for learning serial actions is beyond the scope of this paper, but details can be
found in [9]. Other alternative designs are also possible. For the purposes of
this article, it is assumed that such a mechanism exists and that the reactive
layer can relay a message to the deliberative system indicating that a task
has become routine. Upon receipt of this message, the deliberative system
shifts from providing a continuous intentional influence to instead providing
a short attentional signal to start the sequence of actions corresponding to
that plan. This occurs through the intentional bus using the same mechanism
that handles intentional signals. Once this signal from the low-level, reactive
behavior has been received, the current sequence of actions can be marked
as routine at the deliberative level. If the series of behaviors has in fact
been learned, in the future the deliberative system can send a request to
the intentional bus that an attentional message be sent to the first behavior
in the sequence whenever that sequence is required to be re-activated. This
attentional trigger differs from the intentional bias only in duration.

For an attentional trigger, the intentional bus only sends the bias until
the behavior begins activation. After that, the behavior is triggered and the
bias is set back to zero instead of being actively maintained at a specific level.
The first several times the attentional signal is sent, however, it is desirable
for the deliberative system to monitor the execution of the sequence to ensure
the sequence has indeed been learned properly. In the case that it has, the
deliberative system no longer interacts with the subsequent behavior in the
sequence but instead allows the sequence to execute automatically at the
reactive level.

An illustration of the intentional and attentional activity before and after
a serial action is learned can be seen in figures 10 to 13. The serial behavior
shown in the example is a simple soccer activity consisting of approaching and
then kicking a ball. When executed by the deliberative system, each of the
approach and kick behaviors are biased and maintained in turn (Figures 10
and 11). After this simple soccer plan has been executed by the deliberative
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ample, after the approach behav-
ior becomes active, the kick be-
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being active next.
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Fig. 13 An idealized graph of in-
tentional activity showing an at-
tentional trigger for a learned rou-
tine soccer behavior. The trigger
causes approach behavior to be-
come active and allows the com-
plete learned routine to express it-
self automatically.

system many times it may become a routine activity encapsulated in the
reactive behavioral system. Once this has happened, the intentional bus need
only to provide an attentional trigger to initiate the learned approach, kick

routine sequence (Figures 12 and 13).

5 Design and Implementation of an Architecture for Deliberative

Control via Intentional Bias

An overview of the deliberative/reactive architecture utilizing intentional bias
can be seen in figure 14. The deliberative system can be viewed as a collec-
tion of interacting subsystems. These subsystems provide mechanisms for
planning, plan execution, state tracking, as well as the intentional bus for
interfacing the deliberative layer with the reactive layer.
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Fig. 14 Overview of the end-to-end deliberative/reactive architecture

5.1 Planner, Knowledge Base, and the Internal Plan Representation

Generation of plans is one of the primary functions of a deliberative system.
To accomplish this task a suite of three components is utilized: the planner,
the knowledge base, and a module to convert the output of the planner to
a format usable by the robotic platform. The knowledge base contains facts
and assertions about the world, the state of the robot, the tasks that must
be accomplished, as well as knowledge concerning the different behaviors the
robot can execute and their effect upon the world. The knowledge base also
contains the information required for the generation of the bias values in a
plan. This knowledge takes the form of scalar values representing user and
robot preferences for tasks. Future work will look into means of acquiring
these values over the lifetime of the robot using on-line learning algorithms.
The planner uses the information contained in the knowledge base to generate
plans based on the goals of the robot at a given time.

To generate plans for execution in this architecture, a hierarchical task
network planner was used for the initial implementation, which outputs plans
consisting of ordered sequences of actions that need to be accomplished in
order to achieve the goals maintained in the knowledge base. This output
can vary based on the specific type of planner being used. We do not use
the planner’s output directly so as not to tie the deliberative system to any
one particular planner implementation but instead convert it into a generic
format usable by the system. This format is called the Internal Plan Repre-
sentation (IPR).

An IPR statement includes information about the world state for which a
behavior should be biased, how much to bias the behavior, and any additional
parameters necessary for the behavior’s execution (e.g. the goal location or
the object to interact with).
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Algorithm 3 Plan Execution
1: for the next IPR statement ¢ that is not executing do

2 if state; matches world state then

3 if behavior; is already running then

4 resolve behavior priority conflicts

5 end if

6: if symbols in ¢ are not assigned to external objects then
7 bind objects in short-term memory to symbols in ¢
8 for each IPR statement j do

9 if symbols; = symbols; then

10: bind objects assigned to symbols; to symbols;
11: end if

12: end for

13: end if

14: calculate intention from priority;

15: bias behavior;

16: set ¢ to running

17 end if

18: end for

5.2 Plan Execution

The TIPR executor is the core module for the execution of plans generated
by the deliberative system. Its functions include plan item selection, plan
progress tracking, symbol binding, and behavior conflict resolution. The pri-
mary task for the IPR executor is the determination of applicable plan items
based upon their state requirements and the current state of the world. This
process occurs in several stages. The first phase selects the set of plan items
which are not executing and whose state requirements currently match those
of the world state. This set is then tested for potential behavior conflicts
(described below). The plan items without conflicts are then bound to the
proper symbols in memory. After binding they are then set to running, and a
message is sent to the intentional bus indicating which behavior to bias and
the associated bias magnitude as specified in the IPR statement. In addition,
the message contains the appropriate flag designated by the plan item indi-
cating if it is an intentional request requiring maintenance by the bus of the
behavioral bias or if it is instead an intermittent attentional trigger used for
a routine activity. The algorithm 3 depicts a high-level overview of the the
process used for plan execution.

The second major task the IPR executor performs is the binding of sym-
bols specified in the plan to their counterparts in the environment. This helps
ensure that different plans and partial plans share the same target informa-
tion despite belonging to different subtrees in the underlying behavioral tree.

Schema conflict resolution, the third function of the IPR executor, refers
to the fact that multiple plan items may be in competition for a single be-
havior. For example, there may be two potentially active plan items which
both require use of the robot’s approach behavior but for two different ob-
jects. Only one of these plan items can be active at a particular time. The
IPR executor uses a priority-based arbitration mechanism to resolve these
conflicts where the priority for a particular plan item is represented by the
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magnitude of the intentional bias as specified in the IPR representation.
Whenever a plan item is applicable, the IPR executor will first check that
the appropriate behavior is not already in use by another plan item. If it is,
it compares their bias magnitudes and selects the plan item with the high-
est magnitude. In the case of a tie, the plan item that currently has control
of the behavior remains the executing behavior. Hardware resource conflicts
(i.e. two competing behavior that each require use of the right arm) are han-
dled by the underlying action-selection system. This allows multiple plans or
partial plans to safely execute in parallel.

The final task of the IPR executor is tracking the plan’s progress, notably,
which plan items are running and which plan items have been completed. This
is done by querying the intentional bus for the status of biased behaviors.
When it has discovered a biased behavior has been completed, the bias is set
to zero and the relevant state information in the knowledge-base is updated.

5.3 Intentional Bus

As described previously, the intentional bus serves as the interface between
the deliberative system and the underlying reactive layer. The intentional
bus stores a large amount of information about the underlying behaviors
such as their state (ready, active, sleeping, etc.), their current activation
levels, their process ids, and their current intentional levels. Messages sent
from the reactive layer concerning behavior status and activation levels are
routed to the intentional bus for determining behavior completion.

Upon receipt of a message from the IPR executor indicating a specific
behavior to bias, the intentional bus stores the requested bias magnitude
for later bias calculation as well as the flag indicating if it corresponds to
an attentional trigger or intentional bias. In the case that the magnitude is
zero, the intentional bias is immediately stopped for that behavior. At every
timestep, the intentional bus examines the bias magnitude value for each
behavior, and uses this value to calculate the appropriate intentional bias to
send to the associated behavior as described in section 3. If the intentional
bus has been requested to send an attentional trigger to a particular behavior,
the next timestep the intentional level is set to zero.

6 Experiments

To demonstrate the ability of the implemented system to provide goal-oriented
behavior compatible with the pre-existing action selection mechanisms, three
experiments were conducted. The goal of these experiments was to verify that
intentional bias can support the subset of human deliberative abilities suit-
able for producing natural behavior in an entertainment robot: traditional
plan execution, behavioral suppression, and novel behavioral expression. One
of these experiments was conducted as a numerical simulation, the other two
experiments were conducted on the QRIO platform.
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Fig. 15 Behavioral tree used in intentional experiments. The bold-italic labels
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applicable.
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Fig. 16 Behavior exhibited as a function of the amount of intentional bias on the
charge and rest behaviors. Demonstrates how intentional bias can provide variable
amounts of behavioral suppression.

6.1 Behavioral Suppression via Intentional Bias

In the first experiment we examine the ability of the system to exhibit behav-
ioral suppression through the use of intentional bias. The backstory for the
scenario can be described as follows: the owner of an entertainment robot is
having some friends over to show it off. When the guests arrive, she doesn’t
want the robot sitting around doing nothing but rather entertaining the
guests. She communicates this request to the robot and as a result, the robot
instantiates a plan in which its 'boring’ behaviors are suppressed. The goal of
this experiment is to examine how the suppression of behavior via negative
intentional bias will affect the action selection of the robot.
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In this experiment the robot has four high-level behaviors: a dialog behav-
ior, a soccer behavior, a resting behavior, and a battery charging behavior. A
numerical simulation was run to compute the activation levels of these behav-
iors based on the homeostatic action selection mechanism reviewed in section
2.3 and [17]. In the experiment, a variable amount of negative intentional bias
(suppression) was applied to the unentertaining rest and charge behaviors.
At each timestep in which a behavior was not activated, the behavior with
the highest activation level was run. The rest and soccer behaviors ran for 5
timesteps each time they were activated, the charge and dialog behavior had
a duration of 10 timesteps. The simulation was run for 500 timesteps total.
Twenty-one trials were run where the intentional bias for the rest and charge
behaviors ranged from 0 to -100 in increments of 5.

Figure 16 shows a graph of the expressed behavior in relation to the
magnitude of behavioral suppression. The behavioral expression of the core
homeostatic action selection mechanism can be seen when the intentional
bias is equal to zero. In this case, the robot rests when it is tired, chats when
it desires interaction, etc. As the amount of intentional bias decreases below
zero, the frequency of the ’boring’ behaviors decreases until they eventually
disappear (at m = —65). Important to note, is the fact that intentional bias
does not necessarily turn off behavior, but instead actively discourages its
use. The result of this suppression, in the case of the charge behavior, is that
the robot’s battery level must get lower before the robot’s desire to recharge
itself becomes great enough for the charge behavior to become active. This
demonstrates that intentional bias can provide fine-grained deliberative con-
trol via behavioral suppression without necessarily overriding the core action
selection mechanism.

6.2 Plan Execution via Intentional Bias

The second experiment looks purely at the ability to rigidly follow plans by
executing them through the addition of large amounts of intentional bias
(m > 100). The goal of this experiment is to demonstrate that intentional
bias of reactive behavior can ensure plans can get executed for very impor-
tant tasks or in situations in which traditional plan execution is desired. This
experiment was conducted on QRIO platform. For this experiment, a behav-
ioral tree was used consisting of several behaviors including dancing, singing,
approaching, searching, kicking, a reflex action to turn towards loud noise,
and a greeting action (figure 15).

To demonstrate the ability of intentional bias to serve as a mechanism
for executing plans, a simple plan was generated to play soccer. This plan
consisted of the three steps: searching for, approaching, and then kicking a
pink ball. While this plan is being executed by QRIO, the operator calls
out to QRIO to try to get it to interact with him. The operator then shows
QRIO a green ball, the releasing mechanism for the greet behavior. The
greet behavior, if activated, causes QRIO to stop, wave, and then sit down
for a few moments to interact with the user. It is proposed that through
the modulation of the intentional bias in reaction to events such as this, the
underlying action-selection can be overridden when necessary.
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Fig. 17 Activation levels trace dur-
ing the execution of a high intentional
magnitude plan: A) Search behavior
is active. B) Approach behavior be-
comes active. C) Releasing mecha-
nism for greet behavior is found and
its activation is increased. D) Inten-
tional bus maintains appropriate in-
tention levels keeping approach ac-
tive. E) Kick behavior becomes ac-
tive.

Fig. 18 Intention levels trace dur-
ing the execution of a high intentional
magnitude plan: A) Intentional bias
is sent to search behavior. B) Inten-
tional bias is stopped for search and
started for approach behavior. C) In-
tentional bias is increased by inten-
tional bus due to changes in behavior
activation levels. D) Intentional bias
to approach is stopped and bias to
kick behavior begins.

(iii)

Fig. 19 Depiction of high intention soccer plan. i) QRIO approaches the ball ii)
The operator tries to distract QRIO with the green ball (the releasing mechanism
for the greet behavior) iii) QRIO kicks the ball and completes the plan.

The activation level traces for each behavior in a typical trial appear
in figure 17 while the intentional levels are shown in figure 18. Figure 19
shows the experiment while it is being executed. As seen from the activation
levels, each item of the plan is executed in sequential order mimicking the
effect of a traditional deliberative controller directing the behavior of the
robot. Note the large spike in activation level for the approach behavior D
(figure 17) while QRIO is executing the plan. This occurs when the operator
shouted and tried to gain QRIO’s attention and showed QRIO the green
ball. The greeting behavior’s activation level increased greatly but the active
maintenance of the intentional levels by the deliberative system prevents the
high priority plan from being interrupted as shown by C in figure 18. In all
trials, QRIO was able to execute the plan despite operator distraction.
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6.3 Novel Behavior via Moderate Intentional Bias

In the third experiment, the same soccer scenario was used as in the pre-
vious experiment. In this experiment, however, only a moderate amount of
intentional bias was introduced into the system when executing the plan. We
hypothesize that moderate that intentional bias can support plan execution
without subsuming the underlying reactive action selection mechanism. This
will allow the robot to produce novel action sequences through the interac-
tion of high-level plans and the action selection mechanism. Varying levels of
intentional control will serve to make the robot’s actions more natural and
less scripted.

In the third experiment, the magnitude of the bias for each behavior in
the search, approach, kick behavioral sequence was set to (m = 75). The
plan is then executed as before, with the operator attempting to distract
QRIO by calling out and then showing QRIO a ball in an effort to interact.
If successful, the robot’s behavior should differ from the high intentional bias
case despite the fact that the same behaviors are being executed in each plan.

Graphs of the activation and intentional levels for a typical trial can be
seen in figures 20 and 21 respectively, while figure 19 shows the trial. This
time, when the operator tries to get QRIO’s attention and shows him the
green ball, the activation level exceeds that of the particular plan item, even
with active maintenance (Figure 20, D). QRIO’s desire to interact, driven by
underlying action selection mechanism, causes the plan to be interrupted. In-
stead of continuing the plan, QRIO interacts with the user, and then resumes
the plan from the point of interruption and finshes executing the soccer plan.
In this example, the interplay between the low-level action selection mecha-
nism and the high-level intentional control allowed QRIO to perform action
sequences that were not explicitly planned. This allows QRIO to express
a richer set of behavior then could be exhibited through purely deliberative
control or control grounded solely in the reactive action-selection mechanism.

7 Conclusions and Future Work

This work presents the concept of intentional bias for deliberative control of
reactive behavior. Through behavioral biasing, we show that goal-oriented
behavior can be exhibited without overriding the underlying action selection
mechanisms. In addition, through the active modulation of bias afforded by
the intentional bus, the deliberative system is provided with a simple and
uniform mechanism for interfacing with a reactive controller. In our imple-
mentation, we have investigated an additive mechanism for incorporating
intentional bias into the reactive layer. In these experiments, it was shown
intentional bias affords three types of deliberative control important for en-
tertainment robots: plan execution, novel action production, and behavioral
suppression.

Further research is necessary to determine if non-additive methods may
be more effective in modifying the activation levels of the behaviors. In ad-
dition, it may be of value to investigate alternative means of calculating the
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Fig. 20 Activation levels trace dur-
ing the execution of a low intentional
magnitude plan: A) Search behavior
is active. B) Approach behavior be-
comes active. C) Releasing mecha-
nism for greet behavior is found and
its activation is increased. D) Inten-
tional bus maintains appropriate in-
tention levels but intentional magni-
tude is low enough to allow other be-
haviors to execute. E) Greeting be-
havior finishes and approach behavior

Fig. 21 Intention levels trace dur-
ing the execution of a low intentional
magnitude plan: A) Intentional bias
is sent to search behavior. B) Inten-
tional bias is stopped for search and
started for approach behavior. C) In-
tentional bias is increased by inten-
tional bus due to changes in behavior
activation levels. D) Intentional bias
to approach is stopped and bias to
kick behavior begins.

becomes active again. F) Kick behav-
ior becomes active.

(i)

(ii)

Fig. 22 Depiction of low intention soccer plan. i) QRIO approaches the ball ii)
The operator tries to distract QRIO with the green ball, the lower intentional bias
of this plan allows the greeting behavior to run and QRIO greets the user and sits
down. iii) QRIO gets back up, continues executing the plan, and kicks the ball.

magnitude of the bias for systems that do not have uniform activation level
calculations over all behaviors.
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