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interdependence theory, a social psychological thgo of interaction and interpersonal situation analysis.
Experiments demonstrate the utility of the informaion provided by the situation analysis algorithm aul of the
value of this method for guiding robot interaction. We conclude that the situation analysis algorithnoffers a

viable, principled, and general approach to explorénteractive robotics problems.
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1 Introduction

Sociologists and social psychologists have longgeized the importance of the situation
as a determining factor of interpersonal interac(igelley et al., 2003; Kelley & Thibaut,
1978; Rusbult & Lange, 2003). Solomon Asch, a remvpsychologist, stated that, “most
social acts have to be understood in their setimdjlose meaning if isolated.” (as cited in
Kelley & Thibaut, 1978 pg. 4). If a goal of artift intelligence is to understand, imitate,
and interact with humans then researchers mustiajevieeoretical frameworks that will
allow an artificial system to, (1) understand tliteiagion-specific reasons for a human’s
social behavior, and (2) consider the situationftuence on the robot’s social behavior.
Understanding human interactive behavior is ciitasait implies that the robot will then be
capable of predicting and planning for future iat#ions and their consequences.
Recognition of the situational impacts on a robatgn interactive behavior is similarly
necessary if robots will be expected to operatifénpresence of humans in social settings

such as the home or the workplace.

This paper contributes an algorithm for extractsigiation-specific information and
uses this information to guide interactive behavkeor our purposes, a social situation
describes the environmental factors, outside ofritlviduals themselves, which influence
interactive behavior. The objectives of this papes to 1) introduce the human-robot
interaction community to the ideas of interdepeméaiheory; 2) present a novel algorithm
for situation analysis developed by the authormfroterdependence theory that provides a

robot with information about its social environmeamnd 3) demonstrate that the algorithm



provides information that can be profitably usedgtade a robot’s interactive behavior.
Simulation experiments accomplish the final objextiThese simulations first demonstrate
that the algorithm is applicable to robotics praotdeinvolving collaborations among
humans and robots and then examine the algoritefféstiveness across a wide expanse

of social situations.

Consider, as a running example, an industrial deeti involving a toxic spill and
injured victims. A teleoperated robot is assignedrdéscue victims and an autonomous
robot operates simultaneously to cleanup the dpilling the cleanup, both the human and
the robot will select behaviors directed towards éfffort. Perhaps due to the properties of
the spilled material, the victims need to be clelabefore being rescued. In this case, the
success of the cleanup depends entirely on botbtsolworking together. Alternative
chemical spills will allow the robot and the humanoperate in an independent manner,
with victims being rescued separately from the rlga In either case, the situation should
influence the autonomous robot’s decision to cowtd its cleanup behavior with the
human or to operate independently. Moreover, tfect¥eness of the cleanup will depend
on the robot’s ability to characterize the situatend to use this characterization to select

the appropriate behaviors.

The remainder of this paper begins by first sunzimag related research. Next, our
algorithm is described, followed by a set of expemts used to examine the algorithm.

This article concludes with a discussion of theseilts and directions for future research.



2 Related work

Many researchers have explored human-robot interagtithin a single social situation.
Breazeal examines situations involving emotive atjae between a human and a robot
(Breazeal, 2002). Pineau et al. explore an assisituation concerning elderly residents of
a retirement home and a robot (Pineau, Monteméttalack, Roy, & Thrun, 2003).
Several researchers have explored interactivetsiiginvolving museum tour guides (see
Fong, Nourbakhsh, & Dautenhahn, 2003 for a reviéMg, however, currently know of no
direct consideration of the theoretical aspectsauafial situations as applied to interactive

robots.

Social psychologists, on the other hand, have lomgsidered the situation-specific
aspects of interpersonal interaction (Kelley & Tduh 1978). The use of social situations
for examining social interaction is widespread witboth neuroscience (Sanfey, Rilling,
Aronson, Nystrom, & Cohen, 2003) and experimen@nemics (Berg, Dickhaut, &
McCabe, 1995). Interdependence theory is a so@gthmlogical theory developed by
Kelley and Thibaut as a means for understandingaaatizing interpersonal situations and
interaction (Kelley & Thibaut, 1978). Interdependentheory began as a method for
investigating group interaction processes and @blover the authors’ lifetimes into a
taxonomy of social situations categorizing intesp@al interactions (Kelley et al., 2003;
Kelley & Thibaut, 1978). It is often described asecof the most influential theories for
exploring interpersonal relationships and has lobanacterized by some as a type of social
exchange theory (Sears, Peplau, & Taylor, 1991¢ fBhm interdependence specifies the

extent to which one individual of a dyad influendég other. Using interdependence



theory as a basis of analysis, psychologists haaeently developed an atlas of
interpersonal situations that maps social situatkona multi-dimensional interdependence
space (Kelley et al., 2003). The social situatitimst occupy this space are not ad hoc
constructions. Rather, they represent real sitnatexperienced by real people in the world
(Kelley, 1979). Some situations, such as the peaserdilemma, have been the focus of
intense research involving human subjects sparh@egdes (Axelrod, 1984). Thus, if we
expect robots to interact with untrained peopleea world environments, it is important

for robots master these situations.

3 Situation-based human-robot social interaction

Interdependence theory underlies our framework $iuation-based human-robot
interaction. The following section briefly summaiz the aspects of interdependence
theory that are used in this work. Next, an al@ponit which uses aspects of
interdependence theory to produce information absaotial situations is detailed.
Afterwards, we develop a complete computationalcgss by which a robot can use

perceptual information to guide interactive behavio

3.1 Interdependence theory

Interdependence theory is based on the claim gwgtlp adjust their interactive behavior in
response to their perception of a social situasign@ttern of rewards and costs. Thus, each
choice of interactive behavior by an individuales# the possibility of specific rewards and

costs—also known as outcomes—after the interactiderdependence theory represents



social situations computationally as an outcomerimétigure 1). Outcome matrices are
the social psychological equivalent to game theomyrmal form game. An outcome
matrix represents a social situation by exprestiisgputcomes afforded to each interacting
individual with respect to the pairs of behaviowoides selected by the dyad. Figure 1
shows the outcome matrix for our toxic spill clepraxample. In the dependent situation in
figure 1, the robot receives outcome equal to tmaber of hazards if both the robot and
the human cooperate and choose to cleanup habard®ceive a zero outcome if they do
not cooperate. Critics of interdependence theotgnoktate that (1) it ignores the non-
economic aspects of interpersonal interaction saghaltruism and (2) that it assumes
people are rational, outcome maximizers. Kelleypoesls to these criticisms directly,
stating that the non-economic aspects of interaaiém also be included in a description of
a person’s outcomes and that the theory does msupre either rationality or outcome
maximization (Kelley, 1979). Rather, as will be Eiped shortly, individuals often
transform social situations to include the irratibaspects of socialization such as emotion

or social bias.
[Figure 1 about here]
[Figure 2 about here]

Kelley and Thibaut conducted a vast analysis dhkbeoretical and experimental
social situations and were able to generate a gpatenapped particular social situations
to the dimensional characteristics of the situatigtelley & Thibaut, 1978). This

interdependence space (figure 2 depicts threeeofdilr dimensions) is a four dimensional



space consisting of: (1) an interdependence diraené?) a correspondence dimension, (3)
a control dimension, and (4) a symmetry dimensibhe interdependence dimension
measures the extend which each individual’'s outcomes are influendsdthe other
individual’'s actions in a situation. In a low intiependence situation, for example, each
individual's outcomes are relatively independent tbé other individual's choice of
interactive behavior. A high interdependence situaton the other hand, is a situation in
which each individual’'s outcomes largely dependtloa action of the other individual.

Correspondence describes the exterwhich the outcomes of one individual in a diia

are consistent with the outcomes of the other iddal. If outcomes correspond then
individuals tend to select interactive behaviorsuteng in mutually rewarding outcomes,
such as teammates in a game. If outcomes conftieh tindividuals tend to select
interactive behaviors resulting in mutually cosilytfcomes, such as opponents in a game.
Control describes the wawy which each individual affects the other's outas in a
situation. In some situations individuals must exule action for reaction, such as
situations involving buying and selling. Alternaly, some situations demand that
individuals coordinate their actions to producessuit, as in the rescue of a victim that is
too heavy to be saved by one individual alone. Sgiryndescribes the balance of a
situation’s outcomes in favor of one individual oemother. In a symmetric situation, both
individuals have equal influence over their parsmieutcomes. Asymmetric situations, on
the other hand, place more influence over the itl'd outcomes in one individual than in

the other.



A matrix’s location in interdependence space piesiimportant information relating
to the situation. For example, in a situation ofvlmterdependence the robot should
generally select the behavior that maximizes ite owtcome, because its choice of action
will not have a large impact on the outcome of ptner. We term the process of
deconstructing a matrix into its interdependenc&cepdimensionsituation analysis. As
will be demonstrated, the information provided btuaion analysis can be used to

profitably guide interactive behavior selectiongbsobot.

3.2 The situation analysis algorithm

Situation analysis is a general technique we deeelofrom interdependence theory to
provide a robot with information about its socidaliation. As an algorithm, it can be used
in an on-line or an off-ine manner to provide imf@tion about any social situation

represented by an outcome matrix. Thus, in theorgpot could use situation analysis as a
tool to investigate potential social situationsmitght encounter or situations that have

occurred in the past among others. The input toalgerithm is an outcome matrix
representing the social situation. The algorithrtpots a tupIe(a,ﬂ, Y 5>, indicating the
situation’s location in the four dimensional intepgndence space. Situation analysis
involves 1) deconstructing the outcome matrix iatdues representing the variances in

outcome and 2) the generation of the dimensionkiegafor the interdependence space.

Box 1 describes situation analysis algorithmically.

[Box 1 about here]



[Figure 3 about here]

The first step is matrix deconstruction. This muhare iteratively separates the values
in the input or raw outcome matrix into three saparmatrices (figure 3) (Kelley &
Thibaut, 1978). The Bilateral Actor Control (BAC)atnx represents the variance in
outcome resulting from the robot’'s own interactdecisions. This matrix thus quantifies
the robot’s control over its own outcomes. The NilitBartner Control (MPC) matrix, on
the other hand, represents the variance in outaesdting from a partner’s interactive
decisions and thus quantifies a partner’'s contk@r dhe robot’s outcomes. Finally, the
Mutual Joint Control (MJC) matrix represents theamce in outcome resulting from both
the robot’s and its partner’s joint interactive idems. In other words, the MJC matrix
describes how each individual is affected by hes, lor its joint actions. As depicted in
figure 3, all outcome variance occurs in the BACtnrawhen deconstructing an
independent situation. This procedure results itues for variablesBC, PC, JC
individually representing the variance of both thbot's and the human’s outcomes in the
situation. The subscripts in this figure denotevthgance of the outcome for the robot (R)

and the human (H) respectively.

[Table 1 about here]

Once the variances for the situation have beerpated these values can be used to
calculate the situation’s location in interdepermemspace. This is accomplished using
equations (1-4) from table 1. Equations (1) andg@ from (Kelley & Thibaut, 1978).

Equations (3) and (4) are contributions of this kvdquation (3) subtracts the outcome



resulting from joint action by the individual's frothe outcome resulting from partner and
individual control. This value is then normalizétuation (4) subtracts one individual’s
control over their own outcomes from the other wdlial’s control. This value is

normalized with respect to both individual's outesn These values constitute the tuple

(a,B,y,0), the situation’s location in interdependence space

3.3 Using situation analysis to select interactive bel#ors

The situation analysis algorithm presented abows Iseveral questions. Notably, 1) how
are the outcome matrices created? 2) How is thaitotin interdependence space used to
control a robot’s behavior? 3) Does knowing a situes location in interdependence
afford valuable information for determining whicrehavior to select? This section

addresses each of these questions in turn.

The creation of outcome matrices that accuratefieet a robot or agent’s social
environment is a current topic of investigation smveral research groups. Vorobeychik,
Wellman, and Singh, for instance, have exploredueeof machine learning techniques to
determine the outcome values in an outcome maXotdbeychik, Wellman, & Singh,
2005). Nevertheless, the absence of a general agiprfor creating outcome matrices has
not impeded their use in numerous fields. Neurosaeaesearchers, for example, use the
value of money to directly populate the outcomerimaisee Sanfey, Rilling, Aronson,
Nystrom, & Cohen, 2003 as an example). Moreoveagreat deal of work has considered

the challenge of representing uncertainty withiroattome matrix (Osborne & Rubinstein,

10



1994). Results range from probabilistic expectatiomer the utility values to cumulative
probability functions that model normative humaspanses capturing several types of
psychological phenomena (Kahneman & Tversky, 199@yeover, often the actual values
within the cells of a matrix are less importantrtiibe relation of one cell to another cell.
For example, it is typically more valuable to knevihich action in an outcome matrix
provides maximal reward than it is to know the attwalue of the reward provided. We
therefore assume that a method for creating theoow# matrix from a social situation
exists and that the outcome matrix created acdynaifects the social situation including
its uncertainty. For the experiments conducted a$ pf this research, the number of
hazards and victims perceived is used to consthetoutcome matrix (figure 1). These
matrices expand upon the human-robot cleanup &ituatescribed previously. In these
examples, both the human and the robot selectredtheaction to rescue a victim or to
cleanup a hazard. The outcome for each pair ot®eleactions, in this case, is a function
of the number of victims and hazards in the envitent. The functions in figure 1 were
selected to give the autonomous robot a preferemadeanups and the teleoperated robot
a preference for victims. Preferences such as timéglet result from the configuration of
each robot. In the independent situation, for eXxemip the robot chooses to cleanup a
hazard and the human chooses to rescue a viceém tile human obtains an outcome equal
to the number of victims and the robot obtains ait@ame equal to the number of hazards.
In the dependent condition, on the other hand tipesbutcome is only obtained if both the
robot and the human select the same action. Atsituauch as this could occur if victims

must be cleaned prior to be being rescued.
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[Table 2 about here]

Before discussing how this information is usedctmtrol a robot’s behavior, we
consider strategies by which the outcome matrixleadirectly used to select actions. The
most obvious method for selecting an action fronoattcome matrix is to simply choose
the action that maximises the robot's outcome. Veemt this strategymax own.
Alternatively, the outcome matrix can be transfadni@ create a new, different matrix that
the robot uses to select a behavior. Table 2 disteral different methods for transforming
an outcome matrix. In the case rofix_other the partner's outcome values are swapped
with the robot’s outcome values. Thax_joint transformation, on the other hand, replaces
the robot’s outcomes with the sum of the robot im@artner’'s outcome. Once an outcome
matrix has been transformed, timax_own strategy is used to select an action. This simple
technique of transforming the outcome matrix anehtlising themax own strategy to
select a behavior serves as a control strategihasdhe benefit of changing the character

of the robot’s response without consideration efdbtual actions involved.

Because the situation analysis algorithm simpgvijotes information, this information
could theoretically be used in many different waysaid action selection. For instance,
rules could directly map a situation’s location &oparticularaction. Alternatively, the
information could be used to select transformati@able 2). One advantage of the latter
method is that it does not require knowledge ofabions available to the robot. Rather,
the situation’s interdependence space locatiorsésl uo alter theharacter of the robot’s

responsendependent of interactive actions available. Another advantage of this approach

12



is that, one can test a specified set of transfboms at a given location to determine
which transformation is best at that location.His tmanner, a mapping of interdependence
space location to transformation can be developedhnis independent of the individuals
interacting and the actions available. As will bscdssed in the next section, our initial

step for this research was creating this mappirgjtoation location to transformation.

Finally, does knowing a situation’s location irtardependence space afford valuable
information? We approached this question empirchil performing two experiments in
simulation. The first experiment investigates tlaue of this information in a practical
scenario. The second experiment considers the \@lik®@owing the situation’s location

over the entire interdependence space.

3.4  Mapping a situation’s location to a transformation
A mapping from a situation’s location to a trangfiation can be described formally as the
function f : L — T wherel is the interdependence space location and the space of

possible transformations. We subdivide the inteedelence space into three areas of

interest to robotics researchers, namely high dejgendence ¢, = 075) and low
correspondence £< ) high interdependencea(, = 0.75) and high correspondence
(£ >0) and low interdependence af; < 0.75. These areas are abbreviated I3sl,, .,
respectively. The arel, represents situations in which the robot’s outcergeeatly

depend on its partner but the robot and the hunsanodl select actions towards the same

goal, potentially resulting in poor outcomes foe tlobot. The areg,, , on the other hand,

13



describes situations in which the robot’s outcoralss greatly depend on its partner and

both the robot and the human select actions towdrelssame goal. Finally, the arka

represents the location of situations in which rthigot’'s outcomes do not greatly depend
on its partner. ThusL:{Ihl,Ihh,I,} describes the domain df The codomain of is
T={ max_own, min_own, max other, min_other, max joint, min_joint, max_diff,
min_diff, min_risk }(see table 2 for descriptions), the set of transfations considered as
part of this work.

Given the preceding description, the challenge ikeo determine for each location in
L which transformation fronT results in the greatest overall net outcome. Tdhi® we
created a random matrix and then used the situatiatysis algorithm to determine the
matrix’s location in interdependence space until s 1000 matrices in each area

I+l - Random matrices consisted of an empty matrixufaded with random numbers
between 0 and 24. Next, for every matrix in eadagy,l,, |, , we iterated through the set

T altering the matrix according to the transform@aospecification (table 2). Afterward, a
simulated robot selects the action from the tramséal matrix that maximizes its outcome.
The robot's simulated partner also selects an macfrom the original matrix that
maximizes its outcome. Finally, the robot's outcomsulting from the action pair (as
dictated by the original matrix) is recorded. Figurin section 4.1 graphically depicts this
procedure and the other experimental procedureas use

[Table 3 about here]
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Table 3 presents the mean outcome resulting fiexch ansformation at each location.
The transformation that results in the greatestmm#acome for each location in shaded.
Note that the difference in mean outcome for séwafréhe transformations is not great.
This lack of difference reflects the similarity tfe transform in the particular area of
interdependence space. More importantly, it fordelas the need of a robot to interact
with its partner in a variety of situations locataddifferent positions in interdependence
space in order to determine the partner’'s transdtion preference or type. The table
indicates thatnax_own, max_joint, andmin_risk are the best transformations of the group
of possible transformations in low interdependenddgh interdependence/high
correspondence, and high interdependence/low @unelence situations respectively.

From this data the functioh mapping interdependence space location to tramsfioon

max_own =1
takes the following form f (I*): max_joint forl” =1, wherel” is the interdependence
min_risk 1" =1,

space location generated by the situation anabigisrithm. This function can also be

visualized as the decision tree in figure 4.

[Figure 4 about here]

3.5 A computational process for situation analysis

Assuming that outcome matrices can be generated gawweh the mapping from
interdependence location to transformation develope the preceding section, a

computational process can be developed that seectisot’'s behavior from its perception

15



of the situation. This computational process isicted in figure 5. The right side of this
figure depicts a stepwise procedure for generatiteyactive action from perception. The
first step is the creation of an outcome matrix.or experiments, these either were
derived perceptually using matrices in figure lgenerated by populating an empty matrix
with random values. The next two steps consist & situation analysis algorithm
described in section 3.2, which results in an ge@pendence space tuple. This tuple is then
mapped to a transformation using the functibralso depicted in figure 4). The
transformation is used to transform the originatriran the next step. The transformation
process results in the construction of an outcoma&imon which the robot can act—the
effective situation (Kelley & Thibaut, 1978). Indliinal step, the robot selects the action in
the effective situation that maximizes its own ame. The left side of figure 5 depicts an
example run through the procedure. The next sediscusses our empirical examination

of this process.

[Figure 5 about here]

4  Experiments and Results

The preceding discussion has descrilweds an outcome matrix can be mapped to a
location in interdependence space aond information about the matrix’s location can be
used to select a robot’s interactive action. Weehawt yet shown, however, that the
information afforded by the situation analysis aition results in better interactive

behavior on the part of the robot. The experimgmesented in this section, therefore,

examine the value of the information generatedheydituation analysis algorithm. Value

16



here is operationalized as increase in net outc@oth experiments test the hypothesis
that the use of the situation analysis algorithrii wésult in an increase in net outcome
when compared to alternative control strategieshe T first  experiment uses the
computational process from figure 5 to guide a $ted robot’s action selection in the
cleanup and rescue example described in sectibhelsecond experiment generalizes the
results from the first experiment to the entireeidependence space and compares the

algorithm to a larger number of control strategies.

4.1 Situation analysis in practice

To revisit the scenario described in the first ipecta teleoperated robot attempts to rescue
victims of an industrial accident while an autonamaobot works to cleanup a spill. We
considered two scenarios in simulation: one invavigreater dependence (high
interdependence condition) and another involvitiielidependence (low interdependence
condition). Notionally, because of the propertiéshe chemical the high interdependence
condition requires that the victims be cleaned teeh®ing rescued. Thus, in this condition,
the robots must both cooperate in order to completeescue task successfully. In the low
interdependence condition, both robots can operatependently of one another. This
scenario is based on the well-studied foraging lprakin robotics (Arkin, 1998). Figure 6
depicts the layout. Potential victims and hazaaddscfeanup are located within a disaster
area. A disposal area for hazardous items is Iddaeards the bottom and a triage area
for victims is located to the right.

[Figure 6 about here]
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This experiment compares the net outcome obtabyetioth robots as well as the
number of victims rescued and hazards cleaned um &mparate conditions. In the
experimental conditions, the autonomous robot tisedcomputational process depicted in
figure 5 to select its action. In the control cdiodis, the autonomous robot consistently
selected the behavior that maximized its own out@ithout consideration of its partner
(max_own). The experimental and control condition were exgdl in both high
interdependence situations and low interdependsitaations. A high interdependence
situation was created by populating the dependaicbone matrix from figure 1. Similarly,

a low interdependence situation was created bylptipg the independent outcome matrix
from the figure 1. Thus, the experiment consistethe following four conditions: high
interdependence-situation analysis, high interdéeece-control strategy, low
interdependence-situation analysis, low interdepeod-control strategy. In all conditions,
the teleoperated robot selected the behavior tretimzed its own outcome without
consideration of its partneméx _own). The primary author controlled the teleoperated
robot. Because the teleoperated robot employs tic strategy, experimenter bias is
eliminated.

Figure 7 describes the experimental procedure (msittlle procedure). First, a random
number of victims and hazards were generated. Néet,victims and hazards were
randomly placed in the environment. In the low ldépendence condition, the
autonomous robot perceives the number of victints lsazards and uses the independent
matrix from figure 1 to create its outcome mattix.the high interdependence condition,

the autonomous robot uses the dependent matrbeédecits outcome matrix. The outcome

18



matrix is then tested using the situation analgég®rithm and the control strategy. The
behaviors that the robot selects are actually ctidles of actions that direct the robot to
locate the closest attractor, pickup the attradt@ansport the attractor to a disposal area
where it is dropped off and finally return to agstey area. TheMissionLab mission
specification system was usedissionLab is a graphical software toolset that allows users
to generate mobile robot behavior, test behavioisimulation, and execute collections of
behaviors on real, embodied robots (MacKenzie, Ar& Cameroon, 1997).

[Figure 7 about here]

We conducted thirty trials in each of the four dibions. In these experiments,
interaction occurs when both individuals (autonosmbot and teleoperated robot, or both
simulated robots) are presented with an outcomeixratd simultaneously select actions
from the matrix receiving the outcome that restritsen the action pair. We recorded the
number of victims rescued and the hazards colleafied each trial. We predicted that the
situation analysis algorithm would outperform thentrol strategy in the dependent
condition but not in the independent condition. dpendent situations, by definition,
demand little consideration of the partner's aciomhus, in these situations, the
autonomous robot’s performance is not affectedheydctions of the partner. Dependent
situations, on the other hand, demand considerafitime partner, and we believed that our

algorithm would aid performance in these conditions

Figure 8 illustrates the results from the cleaanp rescue experiment. The left two
bars portray the results for the independent sdoatn these conditions, the autonomous

robot forages for hazards to cleanup and the huvpanated robot forages for victims.
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Thus, in all of the 30 trials each robot retrieeéher a victim or a hazard. As predicted,

both robots faired equally well in this condition.

[Figure 8 about here]

In the dependent condition, the best possibleesa@s thirty. The autonomous robot’s
use of situation information results in ten additib victims being rescued. Thus, as
predicted, in the dependent condition the auton@mobot’s use of situation information
affords better performance than the robot that sm¢sconsider the situation. In this case,
the information provided by our algorithm indicates the autonomous robot that its
outcomes for this situation rely on collaboratiofthwits human-operated partner. The
control strategy, on the other hand, fails to codessithe partner's role even though the
situation demands collaboration, hence resultingoiorer performance.

Overall, this experiment demonstrates that thermétion resulting from an analysis of
the social situation can improve a robot’'s abitiby perform interactive tasks similar to
collaborative foraging. The algorithm we have pregub successfully uses perceptual
stimuli in the environment to produce informatiomoat the social situation. Minimally,
we have shown the feasibility of our approach dredgotential importance of situational
considerations in human-robot interaction, ideagkwhave not been investigated as a part
of HRI in the past. Nevertheless, the results of &xperiment are limited in several ways.
First, the situations encountered as part of thgeement are derived from a limited
portion of the interdependence space. Second, anlgingle control strategy was
considered. The next experiment generalizes thesglts to the entire interdependence

space and considers additional controls.
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4.2 Situation analysis over the entire interdependencspace

Whereas the previous experiment only explored higiterdependence or low
interdependence outcome matrices, this experinmrgiders outcome matrices from every
corner of the interdependence space. We examinealg@ithm’s performance over
thousands of different matrices representing a drsectrum of the interdependence
space. Because of time-constraints, it was notilples® test each of these matrices using
interaction between a human and a robot. Ratherhtiman was replaced with an agent
that selected the behavior that maximized its owtcame without consideration of its
partner (nax_own). The strategy employed by the human in the &sgteriment and the

agent in this experiment were identical.

For this experiment, we also compare the algorghperformance to four different
control strategies. For the first control stratefpg autonomous robot consistently selected
the behavior that maximized its own outcome withaoihsideration of its partner
(max_own). For the second control strategy, the autonomolist consistently selected the
behavior that minimized the difference of its atedpartner’'s outcomarin_diff). For the
third control strategy, the autonomous robot cdesity selected the behavior that
maximizes the sum of its and its partner's outcqmeax joint). For the final control
strategy, the autonomous robot consistently saletite behavior that resulted in the

greatest guaranteed outcomar(_risk).

Figure 7 describes the experimental procedure (rsgiit procedure). First, a random

matrix is created from an empty matrix populatethwandom numbers between 0 and 24.
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The random matrix in this case does not have ast@msigned. Hence, these matrices are
abstract in the sense that the rewards and costasaociated with selecting one of two
non-specified actions. Once a matrix is createi, jiresented to both the simulated robot
and the agent. Both simultaneously select actiom® fthe matrix receiving the outcome
that results from the action pair. The simulatedotouses either situation analysis or a
control strategy to determine which action to sefemm the matrix. This experiment was
conducted as a numerical simulation and hence didoccur in a robot simulation
environment. In other words, the simulated robathis case was an agent that selects an
action in accordance with the strategy dictatedhgyexperimental condition, but did not
actually have to perform the action in an environtn€onsequentially, this experiment
did not require perceptual generation of the outeonatrix and the actions selected by the

agents did not affect the environment.

In order to ensure coverage over the entire speeexamined one hundred trials each
consisting of 1000 randomly generated outcome o®sri We recorded the outcome
obtained by each individual for the pair of actiselected. We predicted that the net
outcome received by the simulated autonomous rabotd be significantly greater when
the robot used the computational process from éguwhen compared to the controls. We
reasoned that, on average, the information provigesituation analysis would be valuable
to the robot for its selection of its behavior. Wwis hypothesized that the use of this

information would result in a greater net outcoimentthe control strategies.

Figure 8 presents results for this experiment. 3émond bar from the left depicts the

net outcome using our algorithm. The next four larthe right indicate the net outcome
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for the control conditions. Our algorithm signifitly outperforms the controls in all four
conditions p < 0.01 two-tailed, for all). The maximum possibl&a@me for a robot with
complete a priori knowledge of all of its partnedstions is also depicted to the left for
reference.

[Figure 9 about here]

The results confirm our prediction that use of sfigation analysis algorithm results in
greater net outcome than does the use of the ¢@ttategies. The graph also indicates that
our procedure outperforms several different constohtegies. Furthermore, the results
show that our procedure is beneficial on averagantagent or robot that will face many
different social situations from unique locatiomsthe interdependence space. Still, the
algorithm performs far below the maximum possilidetter performance could likely be
achieved by increasing the size of the domain asdbmain off, the mapping from
interdependence space location to transform (fremtian 3.4). In this work, we

subdivided the interdependence space into threasardenoted, |l ,l, . Greater

subdivision of the space would make better usé@ifriformation provided by the situation
analysis algorithm. We also limited the number minsformations considered to nine.
Additional transformations would increase the albpon's performance if a novel
transformation outperformed all other transformadiat some location in the space.

The value of the situation analysis algorithmpeesented in this paper, stems from the
very fact that it knows nothing of its interactipartner. The computational process does
not assume anything about the partner. Rathereitat@s only on the information available

within the outcome matrix. This is in contrast tantge theory, which operates on the
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presumption of the partner’s rationality (Osborndr&binstein, 1994). We expect that the
performance of this approach would increase dasti@s additional, partner specific,

information is provided.

5 Conclusions

This paper has introduced a method for capturifgrimation about social situations and
for using this information to guide a simulated ot¥ interactive behavior. We have
presented an algorithm for situation analysis anzbmputational process for using the
algorithm. Our approach is derived from the sop&jichological theory of interdependence
and has close ties to the psychology of human-huntaraction (Kelley & Thibaut, 1978).
The value of knowing a situation’s location in intependence space has been highlighted
with experiments indicating that, on average, tmfrmation can aid in selecting
interactive actions and that in some situations thformation is critical for successful
interaction and task performance.

One limitation of our approach is that it requithat the robot's and its partner’s
utilities as well as the actions available to bwttlividuals be represented in an outcome
matrix. Nevertheless, researchers are developirijads to create these outcome matrices
automatically (Vorobeychik, Wellman, & Singh, 2005Ne also do not address the
challenge of managing uncertainty in this artidéch work has already addressed this
topic with respect to the outcome matrix (Osbornd&ébinstein, 1994). The uncertainty
present in the outcome matrix will result in similancertainty in the situation’s location in

interdependence space.
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We have presented one method for using informagioout a situation’s location to
guide behavior selection. Our method relates theixtslocation to a transformation of
the matrix. For the most part, we have not usedfathe information available. We did
not, for example, explore the effect of a situasmsymmetry on the behavior of the robot.
Symmetry describes the balance of control thatrdbet or its partner has over the other.
The value of this dimension could play an importesie in determining behavior. We
intend to explore this possibility as part of fleuwwvork. Moreover, we have assumed
throughout that the partner consistently selects ittex own transformation. The
exploration of different partner types will also bee fruits of future work. Additional
avenues for future work will also focus on extemdiese results to real robots. We
believe that the embodiment afforded by a real rebb present both new challenges and
new opportunities.

In summary, it is our contention that this apptoaffers a general, principled means
for both analyzing and reasoning about the sodialattons faced by a robot. The
development of theoretical frameworks that incliteation-specific information is an
important area of study if robots are expected twenout of the laboratory and into one’s
home. Moreover, because this work is based on ndse&éich has already been validated
for interpersonal interaction, we believe that @yneventually allow an artificial system to
reason about the situation-specific sources ofraam’s social behavior.

Acknowledgments

25



We would like to thank Zsolt Kira, Yoichiro Endona Patrick Ulam for their many helpful

comments.

References

Arkin, R. C. (1998)Behavior-based robotics. Cambridge, MA: The MIT Press.

Axelrod, R. (1984)The evolution of cooperation. New York: Basic Books.

Berg, J., Dickhaut, J., & McCabe, K. (1995). Trustiprocity, and social historgames
and Economic Behavior, 10, 122-142.

Breazeal, C. L. (2002pesigning sociable robots. Cambridge, MA: The MIT Press.

Fong, T., Nourbakhsh, I., & Dautenhahn, K. (20@8%urvey of socially interactive robots.
Robotics and Autonomous Systems, 42, 143-166.

Kahneman, D., & Tversky, A. (1979). Prospect Thedg Analysis of Decision under
Risk, Econometrica, 47, 263-291.

Kelley, H. H. (1979).Personal relationships: Their structures and processes. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Kelley, H. H., Holmes, J. G., Kerr, N. L., Reis, H, Rusbult, C. E., & Lange, P. A. M. V.
(2003).An atlas of interpersonal situations. New York, NY: Cambridge University
Press.

Kelley, H. H., & Thibaut, J. W. (1978)Interpersonal relations. A theory of
interdependence. New York, NY: John Wiley & Sons.

MacKenzie, D., Arkin, R., & Cameroon, J. (1997). Ifhgent mission specification and

execution Autonomous Robotics, 4(1), 29-52.

26



Osborne, M. J., & Rubinstein, A. (1994.course in game theory. Cambridge, MA: The
MIT Press.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N.,T&run, S. (2003). Towards robotic
assistants in nursing homes: Challenges and redeotsotics and Autonomous
Systems, 42, 271-281.

Rusbult, C. E., & Van Lange, P. A. M. (2003). Imntependence, interaction and
relationship Annual Review of Psychology, 54, 351-375.

Sanfey, A. G., Rilling, J. K., Aronson, J. A., Ng@n, L. E., & Cohen, J. D. (2003). The
neural basis of economic decision-making in thémaltum game Science, 300,
1755-1758.

Sears, D. O., Peplau, L. A., & Taylor, S. E. (19%cial psychology. Englewood Cliffs,
New Jersey: Prentice Hall.

Vorobeychik, Y., Wellman, M. P., & Singh S. (200&garning payoff functions in infinite
games. InProceedings of the Nineteenth International Joint Conference on

Artificial Intelligence, Edinburgh, Scotland, 977-982.

27



Example Outcome Matrices

#H = Number of Hazards

Robot
Rescue Cleanup
Victim Hazard
#V #H
% Rgsque
g Victim ny ny
= #v [ \#H
Cleanup #N\TT~ | #H
Hazard - >

Independent Situation

Rescue
Victim

Human

Cleanup
Hazard

#V = Number of Victims

Robot
Rescue Cleanup
Victim Hazard
#V 0
A
#V 0
#H
[
0 2

Dependent Situation

Figure 1.

of the human and the robot largely depend on thertst action selection.
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This figure depicts two example outcome matricegtie cleanup of a toxic spill and the rescue
of victims by a human and a robot. During any ameraction, both individuals choose to either resau
victim or clean up a hazard. The outcomes resuftioign each pair of choices are depicted in thesaaflithe
matrix. The human’s outcomes are listed below timt's outcomes. In the leftmost matrix, the outesrfor
the human and the robot are independent of the’sthetion selection. In the rightmost matrix, thecomes




Three Dimensions of the Interdependence Space

Coordination__ Conflicting Correspondence of
Basis of Control Outcomes Axis
Axis CHICKEN
Exchange ‘

Corresponding

TRUST

HERO

Prisoner’'s
Dilemma

Interdependence Dependent
AXis

Zero Interdependence

Independent

Parallelograms denote some
well known social situations

Figure 2. Three dimensions of interdependence space are tddpiabove (Kelley et al., 2003).
Interdependence theory represents social situatemmsputationally as an outcome matrix within this
interdependence space. The dimensions depictect adre interdependence, correspondence, and Hasis o
control. Planes within this space denote the looatf some well-known social situations, includitige
prisoner’s dilemma game, the trust game, and thie game. A matrix’s location allows one to predict
possible results of interaction within the situatio

The Situation Analysis Algorithm

Input: Outcome matrix O.
Output: Interdependence space tupé@,ﬂ,)(, 5> .

1. Use procedure from figure 3 to deconstruct tite@me
matrix.

2. Use the equations in table 1 to calculate theedsional
values for the interdependence space tuple.

3. Return the tuple

Box 1. An algorithm for the analysis of a social situation
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Matrix Deconstruction with an Example
Example Raw Outcomes Bilateral Actor Control ~ Mutual Partner Mutual Joint
Parameters (BAC) Control (MPC) Control (MJC)
Independent ..................... H ..E
Situation ° v i
#H =5 S 2.0\ 2.0 0 0 0 0
#V =2 s g
e & 0.25\_|-0.25 ) 0 0 0
S5 a |
I 35 2.0 2.0 : 0 0 0 0 |e
c
PROCEDURE: 3 025\ |0.25 b o 0 0 0
1) Add cells © T T !
2) Divide by two L I
3) Subtract mean T T T Bae 7T ' MPC MIC
4) Place resultin
the designated Robot mean: 3.0 ) Robot =-2.0-(2.0) Robot =0-(0) Robot =0-(0)
matrix cell Human mean: 2.25 Variance: BCgr =-4.0 PCr =0 JCr =0.0
Human =-0.25 - (0.25) Human =0 — (0) Human =0 - (0)
Variance: BCy  =-0.5 PCy =0 JCy =00

Figure 3. The procedure (from Kelley & Thibaut, 1978) for dastructing a social situation is presented
above. This procedure is an analysis of variancth@foutcome matrix that deconstructs the raw onéco
matrix into three new matrices (the BAC, MPC, andQY representing different forms of control ovee th
situation’s outcomes. The outcome values for edithese three matrices are produced from the ravoome
matrix by iteratively 1) adding the noted cells,diding by the number of actions, and 3) subtracthe
individual’'s mean outcome value. The variancesachematrix type are generated by calculating thearne
range for each choice of behavior and each indalidBecause this example is of an independenttsitya
the MPC and MJC matrices do not vary.

Table 1. Calculation of the interdependence space dimengjives the variances from figure 3.
Dimension Computation
((1) and (2) are from (Kelley & Thibaut, 1978), (3)and (4) were developed by the
authors)
h 2 2
Interdependencé .= (PCR + ‘JCR) 1)
(@r.ay) R 2 2 2
BC2 + PC2 + JC2

Calculate separately for each individual. Randeois O for independent situations
to +1 for dependent situations.

Correspondencg pe 2(BCRPCH +BC, PC, + JC,JC, ) )
(8) (BCZ +PCZ +JCZ +BCZ + PCZ + JC?)
Calculate once for both individuals. Range is frdnfior a situation in which the

dyad’s outcomes conflict to +1 for a situation ihigh the dyad’s outcomes
correspond.

Basis of Control B 4(0 - I/) (3

(y) y= (—)Sum(sit)z where

o=(Jc, +Jc, ) +(3c,-3c, )
v =(BC, +PC, )’ +(BC, +PC,)’ +(BC, - PC, )’ +(BC,, - PC,)
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Calculate once for both individuals. Range is frdnfor a situation controlled by
exchange and to +1 for a situation controlled bgrdmation.Sum( sit ) is a cell by
cell sum of the matrix.

Syr&ﬂanietry 5 \BCZ +PC] +3C)-(BC] +PCE +3C; ) )
(BCZ +PCZ+JC2+BC? +PC? +JC2 )

Calculate once for both individuals. Range is frdnfor an asymmetric situation in

which individual R depends orH to +1 for an asymmetric situation in which

individual H depends orR. The value of O denotes a symmetric situation (i.e
mutual dependence).

Table 2. A list of several simple matrix transformations.€Tlist is not exhaustive.
Transformation Transformation mechanism Social character
name
max_own No change Egoism—the individual selects the action
that most favors their own outcomes
max_other Swap partner’'s outcomes with  Altruism —the individual selects the action
one’s own that most favors their partner
max_joint Replace outcomes with the sum of Cooperation—the individual selects the
the individual and the partner's action that most favors both their own and
outcome their partner’s outcome
max_diff Replace outcomes with the Competition—the individual selects the
difference of the individual's action that results in the most relative gain
outcome to that of the partner to that of its partner
min_diff Maximize the value of the action Fairness—the individual selects the action
that has the minimal difference to that results in the least disparity
that of the partner.
min_risk Maximize the value of the action = Risk-aversion—the individual selects
that has the greatest minimal actions that result in the maximal
outcome guaranteed outcomes
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Table 3.  The cells denote the mean outcome obtained birdhsformation at each location. The
shaded cells indicate the mean of the best tramsfioon. The confidence interval is included fonallues.

Low interdependence High interdependence/high High interdependence/low
correspondence correspondence
Transformation Mean Transformation Mean Transformation Mean
outcome outcome outcome

max_own 13.47 £ 0.46 max_own 15.01 £0.39 max_own 14.27 £ 0.41
min_own 10.36 £ 0.46 min_own 8.75+0.40 min_own 7.712 + 0.38
max_other 11.67 £0.43 max_other 15.10+£0.36 max_other 7.80 + 0.37
min_other 11.86 £0.43 min_other 10.52 £ 0.42 min_other 12.94 £ 0.42
max_joint 12.90 + 0.43 max_joint 16.03 + 0.34 max_joint 13.40 + 0.42
min_joint 11.16 + 0.44 min_joint 9.55+0.41 min_joint 10.52 + 0.43
max_diff 11.41 +0.46 max_diff 10.41 + 0.43 max_diff 9.93 +0.47
min_diff 12.08 £ 0.42 min_diff 12.48 + 0.43 min_diff 12.10+0.41
min_risk 13.08 £0.41 min_risk 14.82 £ 0.38 min_risk 14.79 £ 0.37

Transformation selection

/nterdependence
space dimension

values

ag < 075

max_own

transformation Interdep.

a, = 075
. £>0
max_joint

transformation

B<0
min_risk
transformation

Figure 4. A mapping of interdependence space location toooagcmatrix transformation.
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A Computational Process for Situation Analysis

Example

Sim. Robot
A B

s AN [\o
g 2] 0
>
T 0 [\5
Blo\[25

!

BCr=-2; BGy=-.25
PGs=-2; PG=-.25
JG=3; JG=11

| =( 080.7,04,02)

|

max_joint

|

Sim. Roboi

(5 hazards, 2 victims; dep. sit.)

Computational Process

Perception

|

Create Random

Conversion of perceptual

Matrix stimuli into outcome matrix
T
—'—~—-—<—-—-—-—i Given Situation
f
Matrix deconstruction: Generate
variances from outcome matrix
Situation
Compute interdependence space
dimension values
g
I-Space Tuple <a,B,y,5>
-
A\ 4

Transformation
> Process

Use decision tree to select a
transformation

Transformation type
A 4

Transform the outcome matrix

v Effective Situation

Action Selection: Use max_own to
select the action maximizing
outcome

l

Action selected

Figure 5.

Finally, an action is selected.
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This figure depicts the algorithmic process coniéfol by this work. The process consists of six
steps. The first step generates an outcome matix.second step analyzes the matrix’s variances.tfird
step computes the situation’s interdependence spiacensions. These two steps constitute the prookss
situation analysis. The fourth step selects a toamgtion and in the fifth step, the transformatisrapplied

to the outcome matrix resulting in the effectivieiation. Steps 4 and 5 constitute the transformagtimcess.




~ MissionLab v6.0.01 (c) Georgia Institute of Technology -0 x

File Configure Conmand Options Compass ﬂelpl

Scale: 0 100.0 n Refresh| Pause| zoom: 100% ¥| 4|

P

Human Controlled o
Robot

{Mission area is 1200.0n by 1200.0n)

Victim. Triage Area

oObjective /i
/ Target; 580,33 868,22 DTG Tue Jan 17 17:41:33

Battery : N

Comn.

Delay 0.00ms—

Loss  OZ —
Deadman |
Switch
Close Telop| skip Waypoint |
—Select Hardware—————————— H
~ Joystick
- Mouse
—Select Coordinate
 Horld Coord. G
“* Robot Coord.
—Select Delay
~ Inmediate Effect
~ Delayed Effect Comid t &
| Joystick

Figure 6. The simulation environment used for the cleanup r@scue experiment is depicted above. The
experiment required that a teleoperated robot ees@iims while an autonomous robot performs arukga
Experimental conditions included independent verdapendent situations and the use of our situation
analysis algorithm versus a control strategy. Téledperation interface used by the human is depitte
right.
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Experimental Procedures
Interdependence space Emergency cleanup and rescue Situation analysis versus control
to transform procedure experimental procedure strategies experimental procedure
For every matrix Random number Create random
at each location of victims and matrix
T hazards
hl »"hhstl
| |
Create Create Use control
v dependent |ndependent strategy: v
U § matrix matrix max_own, U . .
se transform maxJoint, se S|tu_at|on
tOT to select min,_risk to analysis to
action v v select action select action
Use Use situation —
max_own to analysis to Control condition  Test condition
select action select action
Two control Two test
conditions conditions
\ 4 \ 4 \ 4 \4 ) V‘
Robot’s action selection l
i Interaction example |
: Robot |
1 1
i Robot selects action B A E
' Human selects action B '
! c AN\3|\0 !
: © 2 0 .
! _ £ .
| Human or simulated partner T 0 7 |
1 1
! always uses max_own to select 0 N\2° !
' action Robot receives outcome of 7 i
i Human receive outcome of 2.5 i
I_ _________________________________________________________________________ 1

Figure 7. The procedures used to create and use outcomeesatiie depicted above. The left side details
the procedure used to generate table 3. This puoeefirst iterates through all matrices in eachaare

I+ 1,1, and then iterates through the set of transformatio produce the matrix the robot will use to

select actions. The middle procedure first createsandom number of victims and hazards. Next, an
independent and dependent matrix is created frenmtimber of victims and hazards. Finally, in thatoad
conditions,max_own is used to select an action. In the test procediggtion analysis is used to select an
action. The right most procedure, first generatesnadom matrix and then transforms the matrix wétspect

to a control matrix or uses situation analysis. Ttigot selects an action from the transformed mairhe
interaction example at the bottom denotes the ndetised to determine how much outcome each indiidua
receives from the presentation of an outcome matrix
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Cleanp and Rescue Experiment Results

600 70
532 532
500 — _‘i 60
o
) 50 g
£ 400 30 30 s
S 282 L4 = 2
=300 I3
o [0S
S 200 | 173 B
= 4 r 20 p=
30 30 El
100 Z 18 L10 =
8
0 T T T 0
Independent Situation/Control  Independent Situation/Test ~ Dependent Situation/Control ~ Dependent Situation/Test
Robot Robot Robot Robot

Experimental Condition

—= Rescued Victims m=m Hazards Cleaned —— Net Outcome

Figure 8. Results for the cleanup and rescue experimentrasepted above. The line graph portrays the
net outcome for each condition. The bars depichtimber of hazards and victims retrieved. Hazalesned
are shown above the number of victims rescued. I&théwo bars and line points depict the independen
conditions for both the test and the control roltthese conditions both the control and test tq@sform
equally well. The right two bars and line pointsasine the dependent situation. In this situation tést
robot outperforms the control robot.

Quantifying Situation Analysis Gains
16000
15464
15500 =
15000 +—
© 14500 | 14230
S 13891 13698 13807
o 14000 +—
£ ) = —
O 13500 +— .
2 13000 | -
12500 +— 12035 —
12000 +— B —
11500 ‘ ‘ ‘ ‘ ‘
Maximum Analyze Max. Own Min. Diff Max. Joint Min. Risk
Possible Situation Outcome
Mechanism for Interactive Behavior Selection

Figure 9. Results of this second experiment are presentedtalitie second bar from the left indicates the
net outcome when our procedure is used. The nextlfars are the controls for the experiment. Ebams
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indicate 95% confidence interval. Analyzing theuatton resulted in the greatest net outcome of when
compared to the control strategies. The leftmospbarays the maximum possible net outcome.
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