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Abstract

This paper presents a self-improving reactive
control system for autonomous robotic naviga-
tion. The navigation module uses a schema
based reactive control system to perform the
navigation task. The learning module combines
case-based reasoning and reinforcement learn-
ing to continuously tune the navigation system
through experience. The case-based reason-
ing component perceives and characterizes the
system’s environment, retrieves an appropriate
case, and uses the recommendations of the case
to tune the parameters of the reactive control
system. The reinforcement learning component
refines the content of the cases based on the cur-
rent experience. Together, the learning com-
ponents perform on-line adaptation, resulting in
improved performance as the reactive control
system tunesitself to theenvironment, aswell as
on-linelearning, resultingin animproved library
of cases that capture environmental regularities
necessary to perform on-line adaptation. The
system is extensively evaluated through ssimula-
tion studies using several performance metrics
and system configurations.

Keywords: Robot navigation, reactive con-
trol, case-based reasoning, reinforcement learn-
ing, adaptive control.

1 Introduction

Autonomous robotic navigation is defined asthe
task of finding a path along which a robot can
move safely from a source point to a destination
point in an obstacle-ridden terrain, and executing

the actions to carry out the movement in a real
or ssimulated world. Several methods have been
proposed for this task, ranging from high-level
planning methods to reactive control methods.

High-level planning methods use extensive
world knowledge and inferences about the envi-
ronment they interact with (Fikes, Hart & Nils-
son, 1972; Sacerdoti, 1975). Knowledge about
available actions and their consequencesis used
toformulate adetailed plan beforetheactionsare
actually executedintheworld. Such systemscan
successfully perform the path-finding required
by the navigation task, but only if an accurate and
completerepresentation of theworld isavailable
to the system. Considerable high-level knowl-
edgeisalso needed to learn from planning expe-
riences (e.g., Hammond, 1989a; Minton, 1988;
Mostow & Bhatnagar, 1987; Segre, 1988). Such
arepresentation is usually not available in real-
world environments, which are complex and dy-
namic in nature. To build the necessary repre-
sentations, a fast and accurate perception pro-
cess is required to reliably map sensory inputs
to high-level representations of the world. A
second problem with high-level planning is the
largeamount of processing timerequired, result-
ing in significant slowdown and the inability to
respond immediately to unexpected situations.

Situated or reactive control methods have been
proposed as an alternative to high-level plan-
ning methods (Arkin, 1989; Brooks, 1986; K ael-
bling, 1986; Payton, 1986). In these meth-
ods, no planning is performed; instead, a sim-
ple sensory representation of the environment



is used to select the next action that should be
performed. Actions are represented as simple
behaviors, which can be selected and executed
rapidly, often in real-time. These methods can
cope with unknown and dynamic environmen-
tal configurations, but only those that lie within
the scope of predetermined behaviors. Further-
more, such methods cannot modify or improve
their behaviors through experience, since they
do not have any predictive capability that could
account for future consequences of their actions,
nor a higher-level formalism in which to repre-
sent and reason about the knowledge necessary
for such analysis.

We propose a self-improving navigation system
that uses reactive control for fast performance,
augmented with multistrategy learning methods
that allow the system to adapt to novel environ-
mentsandto learn from itsexperiences. Thesys-
tem autonomously and progressively constructs
representational structures that aid the naviga-
tion task by supplying the predictive capability
that standard reactive systems lack. The repre-
sentations are constructed using a hybrid case-
based and reinforcement learning method with-
out extensive high-level reasoning. The system
is very robust and can perform successfully in
(and learn from) novel environments, yet it com-
pares favorably with traditional reactive meth-
ods in terms of speed and performance. A fur-
ther advantage of the method is that the system
designers do not need to foresee and represent
al the possibilities that might occur since the
system develops its own “understanding” of the
world and its actions. Through experience, the
system is able to adapt to, and perform well in,
awide range of environments without any user
intervention or supervisory input. Thisisa pri-
mary characteristic that autonomous agents must
have to interact with real-world environments.

This paper is organized as follows. Section 2
presentsatechnical description of thesystem, in-
cluding the schema-based reactive control com-
ponent, the case-based and reinforcement learn-
ing methods, and the system-environment model
representations, and placesit in the context of re-
lated work inthearea. Section 3 presentsseveral
experiments that evaluate the system. The re-
sults shown provide empirical validation of our
approach. Section 4 concludes with a discus-

sion of the lessons learned from this research
and suggests directions for future research.

2 Technical Details
2.1 System Description

The Self-Improving Navigation System (SINS)
consists of a navigation module, which uses
schema-based reactive control methods, and an
on-line adaptation and learning module, which
uses case-based reasoning and reinforcement
learning methods. The navigation moduleisre-
sponsiblefor moving the robot through the envi-
ronment from the starting location to the desired
goal location while avoiding obstacles along the
way. The adaptation and learning module has
two responsibilities. The adaptation sub-module
performs on-line adaptation of the reactive con-
trol parametersto get the best performance from
the navigation module. The adaptation is based
on recommendationsfrom casesthat capture and
model the interaction of the system with its en-
vironment. With such a model, SINSis able to
predict future consegquences of its actions and
act accordingly. The learning sub-module mon-
itors the progress of the system and incremen-
tally modifies the case representations through
experience. Figure 1 showsthe SINS functional
architecture.

The main objective of the learning module is
to construct a model of the continuous senso-
rimotor interaction of the system with its envi-
ronment, that is, a mapping from sensory in-
puts to appropriate behavioral (schema) param-
eters. Thismodel alows the adaptation module
to control the behavior of the navigation module
by selecting and adapting schema parametersin
different environments. To learn a mapping in
this context is to discover environment config-
urations that are relevant to the navigation task
and corresponding schema parameters that im-
prove the navigationa performance of the sys-
tem. The learning method is unsupervised and,
unlike traditional reinforcement learning meth-
ods, does not rely on an external reward func-
tion (cf. Watkins, 1989; Whitehead & Ballard,
1990). Instead, the system’s “reward” depends
on the similarity of the observed mapping in the
current environment to the mapping represented
inthemodel. Thiscausesthe systemto converge
towards those mappings that are consistent over
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a set of experiences.

The representations used by SINS to model its
interaction with the environment are initially
under-constrained and generic; they contain very
little useful information for the navigation task.
Asthe systeminteractswith theenvironment, the
learning module gradually modifies the content
of the representations until they become useful
and providereliableinformation for adapting the
navigation system to the particular environment
at hand.

The learning and navigation modules function
in an integrated manner. The learning moduleis
alwaystrying to find a better model of the inter-
action of the system with its environment so that
it can tune the navigation module to perform its
function better. The navigation module provides
feedback to the learning module so it can build
a better model of this interaction. The behavior
of the system is then the result of an equilib-
rium point established by the learning module
whichistrying to refine the model and the envi-
ronment which is complex and dynamic in na-
ture. This equilibrium may shift and need to be
re-established if the environment changes dras-
tically; however, the model is generic enough at
any point to be able to deal with a very wide
range of environments.

We now present the reactive module, the repre-
sentations used by the system, and the methods
used by the learning module in more detail.

2.2 The Schema-Based Reactive Control
Module

The reactive control module is based on the
AURA architecture (Arkin, 1989), and consists

of a set of motor schemas that represent the indi-
vidual motor behaviors available to the system.
Each schemareacts to sensory information from
the environment, and produces a velocity vec-
tor representing the direction and speed at which
the robot is to move given current environmen-
tal conditions. Thevelocity vectors produced by
al the schemas are then combined to produce a
potential field that directs the actual movement
of the robot. Simple behaviors, such as wan-
dering, obstacle avoidance, and goal following,
can combine to produce complex emergent be-
haviors in a particular environment. Different
emergent behaviors can be obtained by mod-
ifying the ssimple behaviors. This allows the
system to interact successfully in different en-
vironmental configurations requiring different
navigationa “strategies’ (Clark, Arkin, & Ram,
1992).

A detailed description of schema-based reac-
tive control methods can be found in Arkin
(1989). In this research, we used three motor
schemas. AvOID-STATIC-OBSTACLE, MOVE-TO-
GOAL, and NOISE. AvOID-STATIC-OBSTACLEdi-
rects the system to move itself away from de-
tected obstacles. MoOVE-TO-GOAL schema di-
rects the system to move towards a particular
point in the terrain. The NoISE schema makes
the system to wander in a random direction.
Each motor schema has a set of parameters that
control the potential field generated by the mo-
tor schema. In this research, we used the fol-
lowing parameters. Obstacle-Gain, associated
with AvoID-STATIC-OBSTACLE, determines the
magnitude of the repulsive potential field gener-
ated by the obstacles perceived by the system;
Goal-Gain, associated with MovE-TO-GOAL,
determines the magnitude of the attractive po-
tential field generated by the goal; Noise-Gain,
associated with NoIsg, determines the magni-
tude of the noise; and Noise-Persistence, also
associated with Noisg, determines the duration
for which anoise value is allowed to persist.

Different combinations of schema parameters
produce different behaviors to be exhibited by
the system (see figure 2). Traditionally, param-
eters are fixed and determined ahead of time by
the system designer. However, on-line selec-
tion and modification of the appropriate param-
eters based on the current environment can en-
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Figure 2: Typical navigational behaviors of different tun-
ings of the reactive control module. The figure on the left
shows the non-learning system with high obstacle avoid-
ance and low goal attraction. On the right, the learning
system has |owered obstacle avoidance and increased goal
attraction, allowing it to “squeeze” through the obstacles
and then take a relatively direct path to the goal.

hance navigational performance (Clark, Arkin,
& Ram, 1992; Moorman & Ram, 1992). SINS
adoptsthisapproach by allowing schemaparam-
eters to be modified dynamically. However, in
their systems, the cases are supplied by the de-
signer using hand-coded coded cases. Our sys-
tem, in contrast, can learn and modify its own
casesthrough experience. The representation of
our cases is aso considerably different and is
designed to support reinforcement learning.

2.3 The System-Environment M odel
Representation

The navigation module in SINS can be adapted
to exhibit many different behaviors. SINS im-
proves its performance by learning how and
when to tune the navigation module. In this
way, the system can use the appropriate behav-
ior in each environmental configuration encoun-
tered. The learning module, therefore, must
learn about and discriminate between different
environments, and associate with each the ap-
propriate adaptations to be performed on the
motor schemas. This requires arepresentational
scheme to model, not just the environment, but
the interaction between the system and the en-
vironment. However, to ensure that the system
does not get bogged down in extensive high-
level reasoning, the knowledge represented in
the model must be based on perceptua and mo-
tor information easily available at the reactive
level.
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Figure 3: Sample representations showing the time his-
tory of analog values representing perceived inputs and
schema parameters. Each graph in the case (below) is
matched against the corresponding graph in the current
environment (above) to determine the best match, after
which the remaining part of the caseis used to guide nav-
igation (shown as dashed lines).

SINS uses a model consisting of associations
between the sensory inputs and schema param-
eters values. Each set of associations is rep-
resented as a case. Sensory inputs provides
information about the configuration of the en-
vironment, and schema parameter information
specifies how to adapt the navigation modulein
the environments to which the case is applica-
ble. Each type of information is represented as
a vector of analog values. Each analog value
correspondsto a quantitative variable (a sensory
input or a schema parameter) at a specific time.
A vector represents the trend or recent history
of avariable. A case models an association be-
tween sensory inputs and schema parameters by
grouping their respective vectors together. Fig-
ure 3 show an example of this representation.

This representation has three essential proper-
ties. First, the representation is capable of cap-
turing a wide range of possible associations be-
tween of sensory inputs and schema parameters.
Second, it permits continuous progressive re-
finement of the associations. Finally, the repre-
sentation capturestrends or patterns of input and



output values over time. This alows the sys-
tem to detect patterns over larger time windows
rather than having to make adecision based only
on instantaneous values of perceptual inputs.

In this research, we used four input vectors
to characterize the environment and discrim-
inate among different environment configura-
tions. Obstacle-Density provides a measure
of the occupied areas that impede navigation;
Absolute-M otion measures the activity of the
system; Relative-M otion represents the change
in motion activity; and M otion-Towar ds-Goal
specifies how much progress the system has ac-
tually made towards the goal. These input vec-
tors are constantly updated with the information
received from the sensors.

We also used four output vectors to represent
the schema parameter values used to adapt the
navigation module, one for each of the schema
parameters (Obstacle-Gain, Goal-Gain, Noise-
Gain, and Noise-Per sistence) discussed earlier.
The values are set periodically according to the
recommendations of the case that best matches
the current environment. The new valuesremain
constant until the next setting period.

Thechoiceof input and output vectorswas based
on the complexity of their calculation and their
relevance to the navigation task. The input vec-
tors were chosen to represent environment con-
figurations in a generic manner but taking into
account the processing required to producethose
vectors (e.g., obstacle density is more generic
than obstacle position, and can be obtained eas-
ily from the robot’s ultrasonic sensors). The
output vectors were chosen to represent directly
the actions that the learning modul e uses to tune
the navigation module, that is, the schema pa-
rameter values themselves.

24 TheOn-Line Adaptation And Learning
Module

This module creates, maintains and applies the
case representations used for on-line adapta-
tion of the reactive module. The objective of
the learning method is to detect and discrim-
inate among different environment configura-
tions, and to identify the appropriate schema
parameter values to be used by the navigation
module, in a dynamic and an on-line manner.
This means that, as the system is navigating,

the learning module is perceiving the environ-
ment, detecting an environment configuration,
and modifying the schema parameters of the
navigation module accordingly, while simulta-
neously updating its own cases to reflect the ob-
served results of the system’s actions in various
situations.

The method is based on a combination of ideas
from case-based reasoning and learning, which
deals with the issue of using past experiences to
deal with and learn from novel situations (e.g.,
see Kolodner, 1988; Hammond, 1989b), and
from reinforcement learning, which deals with
the issue of updating the content of system’s
knowledge based on feedback from the environ-
ment (e.g., see Sutton, 1992). However, intradi-
tional case-based planning systems (e.g., Ham-
mond, 1989a) |earning and adaptation requiresa
detailed model of the domain. This is exactly
what reactive planning systems are trying to
avoid. Earlier attemptsto combine reactive con-
trol with classical planning systems (e.g., Chien,
Gervasio, & DeJong, 1991) or explanation-
based learning systems (e.g., Mitchell, 1990)
also relied on deep reasoning and weretypically
too slow for the fast, reflexive behavior required
in reactive control systems. Unlike these ap-
proaches, our method does not fall back on slow
non-reactive techniques for improving reactive
control.

To effectively improve the performance of the
navigation task, the learning module must find a
consistent mapping from environment configu-
rationsto control parameters. Thelearning mod-
ule captures this mapping in the learned cases,
each case representing a portion of the map-
ping localized in a specific environment con-
figuration. The set of cases represents the sys-
tem’s model of its interactions with the envi-
ronment, which is adapted through experience
using the case-based and reinforcement learn-
ing methods. The case-based method selectsthe
casebest suited for aparticular environment con-
figuration. The reinforcement learning method
updates the content of a case to reflect the cur-
rent experience, such that those aspects of the
mapping that are consistent over time tend to be
reinforced. Since the navigation moduleimplic-
itly provides the bias to move to the goa while
avoiding obstacles, mappings that are consis-



tently observed are those that tend to produce
this behavior. As the system gains experience,
therefore, it improvesitsown performance at the
navigation task.

Each case represents an observed regularity be-
tween a particular environmental configuration
and the effects of different actions, and pre-
scribes the values of the schema parameters that
are most appropriate (asfar asthe system knows
based on its previous experience) for that en-
vironment. The learning module performs the
following tasksin acyclic manner: (1) perceive
and represent the current environment; (2) re-
trieve a case whose input vector represents an
environment most similar to the current envi-
ronment; (3) adapt the schema parameter val-
ues in use by the reactive control module by in-
stalling the values recommended by the output
vectors of the case; and (4) learn new associ-
ations and/or adapt existing associations repre-
sented in the case to reflect any new information
gained through the use of the case in the new
situation to enhance the reliability of their pre-
dictions.

A detailed description of each step would re-
quire more space than is available in this paper;
however, a short description of the method fol-
lows. Theperceivestep buildsaset of four input
vectors E ., , one for each sensory input ; de-
scribed earlier, which are matched against the
corresponding input vectors C it of the cases
inthe system’smemory intheretrievestep. The
case similarity metric S M is based on the mean
squared difference between each of the vector
vaues C* (i) of the kth case C* over atrend-

inputj
ing window [c, and the vector values £ i (2)
of the environment E over atrending window of
agiven length [:

SM(E, C*,p) =
24:104 min(lEZ—:p,lc) (E input](i +p)-C o, (l))z
o = (min(lg — p,lc) — p)?

The match window p . is calculated using a
reverse sweep over the time axis p similar to a
convolution process to find the relative position
(represented by min(l{z — p,[c)) that matches
best. The best matching case C* b=, satisfying
the equation:

{k bes P v MIN(S M (E, C*, p)), Y, 0 < p < I}

is handed to the adapt step, which selects the
schema parameter values C* , from the out-

output

put vectors of the case and modifies the values
currently in use using a reinforcement formula
which uses the case similarity metric as a scalar
reward. Thus the actual adaptations performed
depend on the goodness of match between the
case and the environment, and are given by:

CErst min(lp — p e, lo) %

output ;

|1 — RS M |random(O, m]?xc’“ best )

output ;

where RS M istherelative similarly metric dis-
cussed below. The random factor alows the
system to “explore” the search space locally in
order to discover regularities, since the system
does not start with prior knowledge that can be
used to guide this search.

Finally, the learn step uses statistical informa-
tion about prior applications of the case to de-
termine whether information from the current
application of the case should be used to mod-
ify this case, or whether a new case should
be created. The vectors encoded in the cases
are adapted using a reinforcement formula in
which a relative similarity measure is used as
a scalar reward or reinforcement signal. The
relative similarity measure RSM, given by
(SM — SM )/ (SM — SM ) quantifies how
similar the current environment configuration is
to the environment configuration encoded by the
caserelative to how similar the environment has
been in previous utilizations of the case. In-
tuitively, if case matches the current situation
better than previous situations it was used in, it
islikely that the situation involvesthe very reg-
ularities that the case is beginning to capture;
thus, it is worthwhile modifying the case in the
direction of the current situation. Alternatively,
if the match is not quite as good, the case should
not be modified because that will take it away
from the regularity it was converging towards.
Finally, if the current situation is a very bad fit
to the case, it makes more sense to create a new
caseto represent what is probably anew class of
situations.

Thus, if the RSM is below a certain threshold
(0.1inthispaper), theinput and output case vec-
torsareupdated using agradient descent formula
based on the similarity measure:

Chee(y) =

J



amin(lg — p,lc)(E;(i + p) — CF (1)),
0< i< le

wherethe constant « determinesthelearning rate
(0.5inthis paper). Intheadapt and lear n steps,
the overlap factor min(lg — p v, ) 1S Used to
attenuate the modification of early values within
the case which contribute more to the selection
of the current case.

Since the reinforcement formula is based on a
relative similarity measure, the overall effect
of the learning process is to cause the cases to
converge on stable associations between envi-
ronment configurations and schema parameters.
Stable associations represent regularities in the
world that have been identified by the system
through its experience, and provide the predic-
tive power necessary to navigate in future situ-
ations. The assumption behind this method is
that the interaction between the system and the
environment can be characterized by afinite set
of causal patterns or associations between the
sensory inputs and the actions performed by the
system. The method alows the system to learn
these causal patterns and to use them to modify
its actions by updating its schema parameters as
appropriate.

Genetic algorithms may also be used to mod-
ify schema parameters in a given environment
(Pearce, Arkin, & Ram, 1992). However, while
this approach is useful in the initial design of
the navigation system, it cannot change schema
parameters during navigation when the system
faces environments that are significantly differ-
ent from the environments used in the training
phase of the genetic algorithm. Another ap-
proach to self-organizing adaptive control isthat
of Verschure, Krose, & Pfeifer (1992), in which
aneural network isusedto learn how to associate
conditional stimulusto unconditional responses.
Although their system and ours are both self-
improving navigation systems, there is afunda-
mental difference on how the performance of the
navigation task is improved. Their system im-
proves its navigation performance by learning
how to incorporate new input data (i.e., condi-
tional stimulus) into an already working naviga-
tion system, while SINSimprovesits navigation
performance by learning how to adapt the system
itself (i.e., the navigation module). Our system
does not rely on new sensory input, but on pat-

terns or regularities detected in perceived envi-
ronment. Our learning methods are also similar
to Sutton (1990), whose system uses a trial-and-
error reinforcement learning strategy to develop
aworld model and to plan optimal routes using
the evolving world model. Unlike this system,
however, SINS does not need to be trained on
thesameworld many times, nor aretheresults of
its learning specific to a particular world, initial
location, or destination location.

3 Evaluation

The methods presented above have been eval-
uated using extensive simulations across a va-
riety of different types of environment, perfor-
mance criteria, and system configurations. The
objective of these experiments is to measure
gualitatively and quantitatively improvement of
the navigation performance of SINS (the “ adap-
tive system”), and to compare this performance
against a non-learning schema-based reactive
system (the “static system”) and a system that
changes the schema parameter values randomly
after every control interval (the “random sys-
tem”). Rather than simply measuretheimprove-
ment in performance in SINS by some given
metric such as “ speedup”, we were interested in
systematically evaluating the effects of various
design decisions on the performance of the sys-
tem across a variety of metricsin different types
of environments. To achieve this, we designed
several experiments, which can be grouped into
four sets as discussed below.

3.1 Experiment Design

The systems were tested on randomly generated
environments consisting of rectangular bounded
worlds. Each environment contains circular ob-
stacles, a start location, and a destination loca-
tion, as shown in figure 2. Figure 4 shows an
actual run of the static and adaptive systems on
one of the randomly generated worlds. The lo-
cation, number and radius of the obstacles were
randomly determined to create environments of
varying amounts of clutter, defined as the ra
tio of free space to occupied space. We tested
the effect of three different parameters in the
SINS system: max-cases, the maximum num-
ber of casesthat SINSisallowed to create; case-
length, [, representing the time window of a



case; and control-interval, which determines
how often the schema parametersin the reactive
control module are adapted.

We used six estimatorsto evaluatethe navigation
performance of the systems. These metricswere
computed using a cumulative average over the
test worlds to factor out the intrinsic differences
indifficulty of different worlds. Average number
of worlds solved indicates in how many of the
worlds posed the system actually found apath to
the goal location. The optimum value is 100%
since this would indicate that every world pre-
sented was successfully solved. Average steps
indicates the average of number of stepsthat the
robot takes to terminate each world; smaller val-
ues indicate better performance. Average dis-
tance indicates the total distance traveled per
world on average; again, smaller valuesindicate

better performance. Average oipct%trjr—aé[ distance

per world indicates the ratio of the total distance
traveled and the Euclidean distance between the
start and end points, averaged over the solved
worlds. The optimal valueis 1, but thisis only
possible in a world without obstacles. Average
virtual collisions per world indicates the total
number of times the robot came within a pre-
defined distance of an obstacle. Finally, average
time per worldindicatesthetotal timethesystem
takes to execute aworld on average.

The data for the estimators was obtained after
the systems terminated each world. This was
to ensure that we were consistently measuring
the effect of learning across experiences rather
than within a single experience (which is less
significant on worlds of this size anyway). The
execution isterminated when the navigation sys-
tem reaches its destination or when the number
of steps reaches an upper limit (3000 in the cur-
rent evaluation). Thelatter condition guarantees
termination since someworldsare unsolvable by
one or both systems.

In this paper, we discuss the results from the
following sets of experiments:

Experiment set 1: Effect of the multistrategy
learningmethod. Wefirst evaluated the effect
of our multistrategy case-based and reinforce-
ment learning method by comparing the perfor-
mance of the SINS system against the static and
random systems. SINS was allowed to learn

up to 10 cases (max-cases = 10), each of case-
length = 4. Adaptation occurred every control-
interval = 4 steps. Figure 5 shows the results
obtained for each estimator over the 200 worlds.
Each graph compares the performance on one
estimator of each of the three systems, static,
random and adaptive, discussed above.

Experiment set 2: Effect of case parameters.
This set of experiments evaluated the effect
of two parameters of the case-based reasoning
component of the multistrategy learning system,
that is, max-cases and case-length. control-
interval washeld constant at 4, while max-cases
wasset to 10, 20, 40 and 80, and case-length was
setto 4, 6, 10 and 20. All these configurations of
SINS, and the static and random systems, were
evaluated using all six estimators on 200 ran-
domly generated worlds of 25% and 50% clutter.
Theresults are shown in figures6 and 7.

Experiment set 3: Effect of control inter-
val. This set of experiments evaluated the ef-
fect of thecontr ol-inter val parameter, which de-
termines how often the adaptation and learning
module modifies the schema parameters of the
reactive control module. max-cases and case-
length were held constant at 10 and 4, respec-
tively, while control-interval wassetto 4, 8, 12
and 16. All systemswere evaluated using al six
estimators on 200 randomly generated worlds of
50% clutter. The results are shown in figure 8.

Experiment set 4. Effect of environmental
change. Thisset of experimentswas designed
to evaluate the effect of changing environmen-
tal characteristics, and to evaluate the ability of
the systems to adapt to new environments and
learn new regularities. With max-cases set to
10, 20, 40 and 80, case-length set to 4, 6 and 10,
and control-interval set to 4, we presented the
systems with 200 randomly generated worlds of
25% clutter followed by 200 randomly generated
worlds of 50% clutter. The results are shown in
figure 9.

3.2 Discussion of Experimental Results

Theresultsin figures5 through 9 show that SINS
does indeed perform significantly better than its
non-learning counterpart. To obtain a more de-
tailed insight into the nature of the improvement,
let us discuss the experimental results in more
detail.
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Figure 4: Sample runs of the static and adaptive systems on arandomly generated world. The system starts at thefilled
box (towards the lower right side of the world) and tries to navigate to the unfilled box. The figure on the left shows
the static system. On the right, the adaptive system has learned to “balloon” around the obstacles, temporarily moving
away from the goal, and then to “squeeze” through the obstacles (towards the end of the path) and shoot towards the
goa. The graphs at the top of the figures plot the values of the schema parameters over the duration of the run.

Experiment set 1: Effect of the multistrategy
learning method. Figure 5 shows the results
obtained for each estimator over the 200 worlds.
As shown in the graphs, SINS performed bet-
ter than the other systems with respect to five
out of the six estimators. Figure 10 shows the
fina improvement in the system after all the
worlds. SINS successfully navigates 93% of
the worlds, a 541% improvement over the non-
learning system, with 22% fewer virtual colli-
sions. Although the non-learning system was
39% faster, the paths it found required over 4
times as many steps. On average, SINS' solu-
tion paths were 25% shorter and required 76%
fewer steps, an impressive improvement over a
reactive control method which is already good
at navigation.

The average time per world was the only esti-
mator in which the self-improving system per-
formed worse. The reason for this behavior is
that the case retrieval processis very time con-
suming. However, since in the physical world
the time required for physical execution of a

motor action outweighs the time required to se-
lect the action, the time estimator isless critical
than the distance, steps, and solved worlds esti-
mators. Furthermore, as discussed below, bet-
ter case organization methods should reduce the
time overhead significantly.

The experiments also demonstrate an somewhat
unexpected result: the number of worlds solved
by the navigation system isincreased by chang-
ing the values of the schema parameters evenin
arandom fashion, although the random changes
lead to greater distances travelled. This may be
due to the fact that random changes can get the
system out of “local minima’ situationsinwhich
the current settings of its parameters are inade-
guate. However, consistent changes (i.e., those
that follow the “regularities’” captured by our
method) lead to better performance than random
changes alone.

Experiment set 2: Effect of case parameters.
All configurations of the SINS system navigated
successfully in a larger percentage of the test
worlds than the static system. Regardless of the
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| static | random | adaptive |

Percentage of worlds solved | 14.5% | 41.5% 93%
Average steps per world 2624.6 | 2046.8 618.4
Average distance per world | 350.5 | 696.5 261.2
Average %ﬁ% distance 8.6 17.1 6.4
Average virtual collisions 46.1 264 35.7
Averagetime per world, ms | 2947.8 | 23525 | 4878.3

Figure 10: Fina performance results.

max-cases and case-length parameters, SINS
could solve most of the 25% cluttered worlds
(as compared with 55% in the static system) and
about 90% of the 50% cluttered worlds (as com-
pared with 15%inthestatic system). Althoughit
could be argued that an alternative set of schema
parameters might lead to better performance in
the static system, SINS would also start out with
those same settings and improve even further
upon itsinitial performance.

Our experiments revealed that, in both 25% and
50% cluttered worlds, SINS needed about 40
worldstolearn enough to be ableto perform suc-
cessfully thereafter using 10 or 20 cases. How-
ever, with higher numbers of cases (40 and 80),
it took more trials to learn the regularities in
the environment. It appears that larger num-
bers of casesrequire moretrials to train through
trial-and-error reinforcement learning methods,
and furthermore thereisno appreciableimprove-
ment in later performance, The case-length pa-
rameter did not have an appreciable effect on
performance in the long run, except on the aver-
age number of virtual collisions estimator which
showed the best resultswith caselengthsof 4 and
10.

Asobserved earlier inexperiment set 1, SINSre-
quires atime overhead for case-based reasoning
and thusloses out on the average time estimator.
Due to the nature of our current case retrieval
algorithm, the time required increases linearly
with max-cases and with case-length. In 25%
cluttered worlds, values of 10 and 4, respec-
tively, for these parameters provide comparable
performance.

Experiment set 3: Effect of control inter-
val. Although all settingsresultedinimproved
performance through experience, the best and
worst performance in terms of average number

of worlds solved was obtained with control-
interval set to 12 and 4, respectively. For
low control-interval values, we expect poorer
performance because environment classification
cannot occur reliably. Weal so expect poorer per-
formance for very high values because the sys-
tem cannot adapt its schema parameters quickly
enough to respond to changes in the environ-
ment. Other performance estimators also show
that control-interval = 12 is a good setting.
Larger control-intervals require less case re-
trievals and thus improve aver age time; how-
ever, this gets compensated by poorer perfor-
mance on other estimators.

Experiment set 4: Effect of environmental
change. The results from these experiments
demonstrate the flexibility and adaptiveness of
the learning methods used in SINS. Regardless
of parameter settings, SINS continued to be able
to navigate successfully despite asudden change
in environmental clutter. It continued to solve
about 95% of the worlds presented to it, with
only modest deterioration in steps, distance, vir-
tual collisions and time in more cluttered envi-
ronments. The performance of the static system,
in contrast, deteriorated in the more cluttered
environment.

Summary: Theseand other experimentsshow
the efficacy of the multistrategy adaptation and
learning methods used in SINS across a wide
range of qualitative metrics, such as flexibility
of the system, and quantitative metrics that mea-
sure performance. The results also indicate that
agood configuration for practical applicationsis
max-cases = 10, case-length = 4, and control-
interval = 12, although other settings might be
chosen to optimize particular performance es-
timators of interest. These values have been
determined empirically. Although the empirical



results can be explained intuitively, more theo-
retical research is needed to analyze why these
particular values worked best.

4 Conclusions

We have presented anovel method for augment-
ing the performance of areactive control system
that combines case-based reasoning for on-line
parameter adaptation and reinforcement learning
for on-line case learning and adaptation. The
method is fully implemented in the SINS pro-
gram, which has been evaluated through exten-
sive simulations.

The power of the method derives from its abil-
ity to capture common environmental configura-
tions, and regularities in the interaction between
the environment and the system, through an on-
line, adaptive process. The method adds con-
siderably to the performance and flexibility of
the underlying reactive control system because
it alows the system to select and utilize dif-
ferent behaviors (i.e., different sets of schema
parameter values) as appropriate for the particu-
lar situation at hand. SINS can be characterized
as performing akind of constructive representa-
tional changein which it constructs higher-level
representations (cases) from low-level sensori-
motor representations (Ram, 1993).

In SINS, the perception-action task and the
adaptation-learning task are integrated in a
tightly knit cycle, similar to the “anytime learn-
ing” approach of Grefenstette & Ramsey (1992).
Perception and action are required so that the
system can explore its environment and detect
regularities; they also, of course, form the basis
of the underlying performance task, that of nav-
igation. Adaptation and learning are required
to generalize these regularities and provide pre-
dictive suggestions based on prior experience.
Both tasks occur simultaneoudly, progressively
improving the performance of the system while
allowingitto carry outitsperformancetask with-
out needing to “stop and think.”

In contrast to traditional case-based reasoning
methods which perform high-level reasoning in
discrete, symbolic problem domains, SINS is
based on a new method for “continuous case-
based reasoning” in problem domains that in-
volve continuous information, such as sensori-

motor information for robot navigation (Ram &
Santamaria, 1993). There are till several unre-
solved issuesin thisresearch. The caseretrieval
processis very expensive and limits the number
of casesthat the system can handle without dete-
riorating the overall navigational performance,
leading to a kind of utility problem (Minton,
1988). Our current solution to this problem is
to place an upper bound on the number of cases
allowed in the system. A better solution would
be to devel op amethod for organization of cases
in memory; however, conventional memory or-
ganization schemes used in case-based reason-
ing systems (see Kolodner, 1992) assume struc-
tured, nomina information rather than contin-
uous, time-varying, analog information of the
kind used in our cases.

Another openissueisthat of thenature of thereg-
ularities captured in the system’s cases. While
SINS' cases do enhance its performance, they
are not easy to interpret. Interpretation is de-
sirable, not only for the purpose of obtaining of
a deeper understanding of the methods, but also
for possibleintegration of higher-level reasoning
and learning methods into the system.

Despitetheselimitations, SINSisacompleteand
autonomous self-improving navigation system,
which can interact with its environment with-
out user input and without any pre-programmed
“domain knowledge” other than that implicit in
its reactive control schemas. Asit performs its
task, it builds a library of experiences that help
it enhance its performance. Since the system is
alwayslearning, it can cope with maor environ-
mental changesaswell asfinetuneitsnavigation
module in static and specific environment situa-
tions.
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