
Proceedings of the ML-93 Workshop on Knowledge Compilation and Speedup Learning, Amherst, MA, June 1993.

Knowledge Compilation and Speedup Learning
in Continuous Task Domains

Juan Carlos Santamarı́a
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

carlos@cc.gatech.edu

Ashwin Ram
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ashwin@cc.gatech.edu

Abstract

Many techniques for speedup learning and
knowledge compilation focus on the learning and
optimization of macro-operators or control rules
in task domains that can be characterized using a
problem-space search paradigm. However, such
a characterization does not fit well the class of
task domains in which the problem solver is re-
quired to perform in a continuous manner. For
example, in many robotic domains, the problem
solver is required to monitor real-valued percep-
tual inputs and vary its motor control parameters
in a continuous, on-line manner to successfully
accomplish its task. In such domains, discrete
symbolic states and operators are difficult to de-
fine. To improve its performance in continuous
problem domains, a problem solver must learn,
modify, and use “continuous operators” that con-
tinuously map input sensory information to ap-
propriate control outputs. Additionally, the prob-
lem solver must learn the contexts in which those
continuous operators are applicable. We propose
a learning method that can compile sensorimo-
tor experiences into continuous operators, which
can then be used to improve performance of the
problem solver. The method speeds up the task
performance as well as results in improvements in
the quality of the resulting solutions. The method
is implemented in a robotic navigation system,
which is evaluated through extensive experimen-
tation.

1 INTRODUCTION

Speedup learning deals with the issue of improving the per-
formance of a problem solver with its experience. Most
of the techniques that have been developed for speedup
learning fall in two broad categories: learning new “macro-
operators” by composing sequences of original operators
(e.g. Fikes, Hart, & Nilsson, 1972; Mitchell, Keller, &
Kedar-Cabelli, 1986; DeJong & Mooney, 1986), and learn-
ing some form of control knowledge that can be used to
select which operator to try next (e.g. Mitchell, Utgoff,
& Banerji, 1983; Laird, Rosenbloom, & Newell, 1986;

Minton, 1990). These techniques were designed under the
assumption that the problem solver conducts some form
of problem-space search (e.g., applying operators to trans-
form the current state into the goal state). However there are
some domains in which the standard problem-space search
paradigm does not fit well. This in turn is problematic for
the applicability of the techniques described above. In par-
ticular, consider the class of problem domains in which the
problem solver requires continuous performance in order to
accomplish its task. We call these continuous domains.

There are many continuous domains and tasks in the real
world. For example, consider driving a car on a highway.
The problem solver must continuously decide how much
pressure to apply to the gas to accelerate the car while en-
tering the highway, how and when to control the steering
of the car to change lines without colliding with other cars,
how to decelerate the car while exiting the highway, etc.
The problem solver is required to monitor different vari-
ables in its environment and to control several parameters
in an on-line, continuous manner to successfully accom-
plish its tasks.

The standard problem-space search paradigm does not ap-
ply well to continuous domains since discrete and explicit
states and operators are difficult to define. In the above ex-
ample, the positions and velocities of the car (the “states”),
and the actions of the driver such as the pressure on the
gas pedal (the “operators”), are real-valued functions that
continuously vary with time. In this paper, we address the
issue of speedup learning and knowledge compilation for a
problem solver performing in continuous task domains. We
claim that in order to improve the performance of a con-
tinuous task in a continuous problem domain, a problem
solver must be able to learn, modify, and use “continuous
operators” that map input sensory information to control
outputs. The difference between continuous operators and
traditional STRIPS-like operators is that the former provide
continuous control outputs (“results”) based on continuous
sensory information or, more generally, based on continu-
ous representations of the operators’ “preconditions”.

One problem with continuous operators is that they are very
difficult to design precisely by hand, especially if accurate
models of the problem solver and of the environment are
not known in advance. It is desirable for the problem solver

to be able construct and refine continuous operators auto-
matically, for example, by first using general guidelines to
accomplish the task and then using the resulting experi-
ential knowledge to build continuous operators. Speedup
learning in continuous domains can then be achieved by
grouping continuous operators together into what may be
thought of as “continuous macro-operators”, and by learn-
ing heuristic applicability conditions for continuous oper-
ators and macro-operators. Knowledge compilation, then,
can be thought of as the process of learning, through expe-
rience, operationalized knowledge about the environmental
conditions (or sensory inputs) that should be associated with
particular control outputs, while at the same time grouping
sequences of sensory inputs and associated control outputs
into larger chunks that can guide performance in future
situations.1

Thus, a continuous problem-solving system operating in
continuous domains accomplishes speedup learning when
it can, through experience, begin to directly apply continu-
ous operators that were successful in the past without going
through the search process of finding useful control outputs
for the current environmental situation. Such a system sys-
tem also accomplishes knowledge compilation when it can
compile its sensorimotor experiences into relevant contin-
uous operators and macro-operators and, at the same time,
find the conditions under which they are applicable.

We present a system that is able to learn continuous op-
erators through experience and use them to improve the
performance of its task. Our system performs autonomous
robot navigation in unstructured and unknown terrains. It
consists of a reactive navigation module which is continu-
ously tuned by an adaptation and learning module according
to sensory information perceived by the system. As the sys-
tem navigates through a terrain, the adaptation and learning
module compiles its experiences into reliable mappings be-
tween input sensory information and control outputs, and
uses these mappings to modify the behavior of the reac-
tive module. These mappings represent the “continuous
operators” discussed above.

The reader is referred to Ram and Santamaria (1993a) for
a detailed explanation of the system and for the description
of the evaluation procedures used to verify the validity of
our approach. In this paper, we provide a brief description
of the problem domain and the methods used for acting,
adapting, and learning, focussing on the speedup learning
and knowledge compilation aspects of the research. It is
interesting to note that our system is not only able to perform
speedup learning, that is, to reduce the time taken by the
performance task, but it can also improve the “quality”
of the performance task as well. Since problem solving
occurs continuously during the performance of the task,
improving the quality of the performance usually results

1While we have used problem-space search terminology in
this discussion to emphasize the similarities with the standard
techniques for speedup learning and knowledge compilation, it
should be noted that continuous states and operators are different
in several fundamental respects from the more familiar discrete
states and operators, in particular, in the details of the methods for
learning, adapting, matching, and acting.

in speeding up the problem solving time as well. In robot
navigation, for example, reducing the number of collisions
during navigation (a qualitative improvement) results in a
reduction in the total time spent on reactive control of the
robot.

This paper is organized as follows. Section 2 provides a
general description of the architecture of the system. Sec-
tion 3 describes the operation of the learning and adaptation
module, which is responsible for the speedup learning and
knowledge compilation of continuous operators. Section 4
describes our evaluation of the system, and section 5 con-
cludes the paper.

2 SYSTEM DESCRIPTION

The Self-Improving Navigation System (SINS) consists of a
navigation module, which uses schema-based reactive con-
trol methods, and an on-line adaptation and learning mod-
ule, which uses case-based reasoning and reinforcement
learning methods. The navigation module is responsible
for moving the robot through the terrain from the starting
location to the desired goal location while avoiding obsta-
cles along the way. A set of control parameters can be
used to change the behavior of the navigation module. The
adaptation and learning module is responsible for chang-
ing the behavior of the navigation module in such a way
that the performance of the navigation task is improved. In
particular, the adaptation and learning module constructs
mappings from sensory input information to appropriate
control parameters, which are then used to modify the be-
havior of the navigation module in an effective manner.
These mappings are represented as “cases” that encapsu-
late the system’s navigational experiences, and correspond
to what one might think of as the “continuous operators”
for this problem domain.

The learning and adaptation module, therefore, performs
two main functions. The adaptation sub-module performs
on-line adaptation of the navigation module by continu-
ously supplying the appropriate control parameters required
to get the best performance from the navigation module.
The adaptation is based on recommendations from cases
that contains specific mappings between sensory input and
control outputs. With such mappings, SINS is able to pre-
dict future consequences of its actions and act appropriately.
The learning sub-module monitors the progress of the sys-
tem and incrementally modifies the content of the cases
through experience so that they are able to provide more
reliable recommendations on how to adapt the navigation
module in the future. Figure 1 shows the SINS functional
architecture.

The navigation module is based on the AuRA architecture
(Arkin, 1989), and consists of a set of motor schemas that
represent the individual motor control behaviors available
to the system. Each schema reacts to sensory information
from the environment, and produces a velocity vector rep-
resenting the direction and speed at which the robot is to
move given current environmental conditions. The veloc-
ity vectors produced by all the schemas are then combined
to produce a velocity vector (or potential field) that directs

��������� ��� � 	�

��	����� �
�������
��
�����
��

������� ����� � 	�

��	����� �

����� ����� � ��� �
 "!$# ���%�

&(' �) ' � �
*(+$� +��

, -�) ' � �
 ��-$��+�� .

/(��� 0���� ����� ��0�� ���� 	��

1325476�8:9;2=<?>@2BA

CEDGFHDHIGJEKHLNMGI

Figure 1: System architecture.

the actual movement of the robot. Simple behaviors, such
as wandering, obstacle avoidance, and goal following, can
combine to produce complex emergent behaviors in a par-
ticular environment. Different emergent behaviors can be
obtained by combining and modifying the simple behaviors.

A detailed description of schema-based reactive control
methods can be found in Arkin (1989). For the research pre-
sented in this paper, we used three motor schemas: AVOID-
STATIC-OBSTACLE, MOVE-TO-GOAL, and NOISE. AVOID-
STATIC-OBSTACLE directs the system to move itself away
from detected obstacles. MOVE-TO-GOAL schema directs
the system to move towards a particular point in the ter-
rain. The NOISE schema makes the system wander in a
random direction. Each motor schema has a set of parame-
ters that controls the velocity vector generated by the motor
schema. For this paper, we used the following parameters:
Obstacle-Gain, associated with AVOID-STATIC-OBSTACLE,
determines the magnitude of the repulsive field generated
by the obstacles perceived by the system; Goal-Gain, as-
sociated with MOVE-TO-GOAL, determines the magnitude
of the attractive field generated by the goal; Noise-Gain,
associated with NOISE, determines the magnitude of the
wandering behavior; and Noise-Persistence, also associ-
ated with NOISE, determines the duration for which a noise
value is allowed to persist.

Different combinations of schema parameters produce dif-
ferent navigational behaviors (see figure 2). Traditionally,
schema parameters have been fixed and determined ahead
of time by the system designer. However, on-line selec-
tion and modification of the appropriate parameters based
on the current environmental situation can enhance navi-
gational performance, as in the ACBARR system (Ram,
Arkin, Moorman, & Clark, 1992). ACBARR can dynami-
cally modify its behavioral parameters in order to perform
successfully in different environmental configurations re-
quiring different navigational “strategies”. SINS adopts
this approach by allowing schema parameters to be modi-
fied continuously and dynamically. However, in ACBARR,
navigational strategies are supplied ahead of time by the de-
signer using hand-coded “cases” which specify the appro-
priate parameter values for different environmental situa-
tions. SINS, in contrast, can learn and modify its own cases
through experience. The representation of cases in SINS
is also considerably different and is designed to support
continuous adaptation and learning; in particular, the repre-
sentation encodes continuous operators that are constructed

O�P Q R S T U R�V�W X U T Y Z R [\ T] ^_T ^ Q"`�P Q R S T U R�a�P T Z [\ T] ^bc] \ d_P W X U T Y Z R [\ T] ^�T ^ Q"Z P e%a$P T Z [\ T] ^ f g
X U R `%e�] U d_h T S] T W Z R_X Y d R `�T_i T S T `_R U R S X

f g
X U R `%e�] U d�Y P ^ X U T ^ U X Y d R `_T�i T S T `_R U R S X

j$Z R T S T S R T

j$Z k U U R S R Q�T S R T

j$Z R T S T S R T

Figure 2: Typical navigational behaviors of different tunings of
the reactive control module. The figure on the left shows the
non-learning system with high obstacle avoidance and low goal
attraction. On the right, the learning system has lowered obstacle
avoidance and increased goal attraction, allowing it to “squeeze”
through the obstacles and then take a relatively direct path to the
goal.

and modified through experience.

3 LEARNING AND ADAPTATION
MODULE

The navigation module in SINS can be adapted to exhibit
many different behaviors. The learning and adaptation
module improves the performance of the system by learning
how and when to tune the navigation module. In this way,
the system can use the appropriate behaviors in each envi-
ronmental situation encountered during navigation, and can
continuously tune these behaviors as it moves through the
terrain. The learning module, therefore, must learn about
and discriminate between different environments, and asso-
ciate with each the appropriate adaptations to be performed
on the motor schema parameters. This requires a represen-
tational scheme to model, not just the environment (as in,
say, a map-learning system), but the interactions between
the system and the environment. In addition, to ensure that
the system does not get bogged down in extensive high-
level reasoning, the knowledge represented in the model
must be based on perceptual and motor information easily
available at the reactive level.

The learning and adaptation module uses a combination of
ideas from case-based reasoning and learning, which deals
with the issue of using past experiences to deal with and
learn from novel situations (e.g., see Kolodner, 1993; Ham-
mond, 1989), and from reinforcement learning, which deals
with the issue of updating the content of system’s knowl-
edge based on feedback from the environment (e.g., see
Sutton, 1992). SINS starts out with no knowledge about
how and when to modify the schema parameter values,
relying purely on reactive control to navigate through the
terrain. While navigating, the system identifies useful as-
sociations between sensory inputs and schema parameter
values by applying sequences of schema parameter values
that have worked in the past (initially, schema parameter
values are adapted randomly), and remembering the re-
sults that these sequences produce. Sequences that produce
consistent input-output associations are reinforced. The
method is similar to case-based reasoning in the sense that

new sequences of associations are learned by remembering
and adapting previous sequences that have been used in the
past in similar environmental situations. The method is also
similar to reinforcement learning in the sense that it tends
to reinforce and perform those actions that are considered
“good” according to a utility reward metric.

It is the combination of case-based reasoning and reinforce-
ment learning that allows the system to remember its ex-
periences and to identify and reinforce the useful aspects
of these experiences. However, the combination, and the
nature of the continuous task domain, required us to deviate
from the standard algorithms for case-based reasoning and
reinforcement learning (see Ram & Santamaria, 1993b, for
a discussion of our method for “continuous case-based rea-
soning”). The main responsibility of the case-based reason-
ing method is to (continuously) tune the navigation module
using control outputs based on the (continuous) sequences
of control outputs used in past similar situations. The main
responsibility of the reinforcement learning method is to
(continuously) adapt these sequences based on the results of
applying them to the current situation, so that they provide
better predictions in future situations. The system is able
to improve its navigational performance because the case-
based method directs the system to use similar sequences
of schema parameter values under similar environmental
situations, while the reinforcement learning directs the sys-
tem to remember only those mappings that were successful
according to a utility reward metric. With experience, the
system is able to capture and apply only those sequences of
associations that actually improve the performance of the
navigation task; these associations, then, come to represent
the continuous operators for this task domain and can be
used across a wide range of navigational terrains.

The learning and adaptation module uses a model consist-
ing of sequence of associations between the sensory inputs
and schema parameters values. Each sequence of asso-
ciations is represented as a case. Sensory inputs provide
information about the environmental situation, and schema
parameter information specifies how to adapt the values
of the control parameters used by the navigation module in
the environments to which the case is applicable. Each type
of information is represented as a vector of analog values.
Each analog value corresponds to a quantitative variable (a
sensory input or a schema parameter) at a specific time. A
vector represents the trend or recent history of a variable. A
case captures a sequence of associations between sensory
inputs and schema parameters by grouping their respective
vectors together. Thus a case encodes what we earlier called
a continuous macro-operator, since each single association
can be considered as a continuous operator that, if applied
under its specified environmental situation, should produce
the environmental situation encoded in the next association
of the sequence. Figure 3 show an example of this repre-
sentation. Note that the applicability conditions of these
continuous operators do not specify just the current envi-
ronmental “state” but rather the recent history or trend of
the individual state descriptors.

For the results presented in this paper, we used four in-
put vectors to characterize the environment and discrimi-

results in
use ofAssociation

value

time

Motion Towards Goal

Relative Motion

Absolute Motion

Obstacle Density

Sensory Inputs

Obstacle Gain

Goal Gain

Noise Persistance

Noise Gain

Control Outputs

Figure 3: Sample representations showing the time history of ana-
log values representing perceived inputs and schema parameters.
Associations between sensory inputs and control outputs are ar-
ranged vertically and the sequence of associations are arranged
horizontally.

nate among different environmental situations: Obstacle-
Density provides a measure of the occupied areas that im-
pede navigation; Absolute-Motion measures the activity
of the system; Relative-Motion represents the change in
motion activity; and Motion-Towards-Goal specifies how
much progress the system has actually made towards the
goal. These input vectors are constantly updated with the
information received from the sensors.

We also used four output vectors to represent the schema
parameter values used to adapt the navigation module, one
for each of the schema parameters (Obstacle-Gain, Goal-
Gain, Noise-Gain, and Noise-Persistence) discussed ear-
lier. The values are set periodically according to the rec-
ommendations of the case that best matches the current
sequence of environmental situations. The new values re-
main constant over a “control interval” until the next setting
period.

While solving a navigation problem, SINS keeps track of
a history of the sequence of environmental situations and
schema parameter values used in the recent past. After each
control interval, the case-based reasoning method retrieves
the case encoding the sequence of associations most similar
to the current one. At that point, the learning and adap-
tation module tends to select the schema parameter values
that the next association in the sequence suggests, which are
handed to the reactive navigation module. The selection of
schema parameter values is performed using a probabilis-
tic function based on a utility reward and on the schema
parameter values suggested by the next association in the
case. The function is similar to the corresponding func-
tion used in standard reinforcement learning methods, that
is, the probability that the selection of schema parameter
values is similar to the ones encoded in the next associa-
tion in the case increases with the reward utility. After the
schema parameters values have been applied, the learning
and adaptation module watches the results (i.e., the result-
ing environmental situation) and adapts the association in
the case that was just used based on the extent to which
its predictions were met. Technical details of the learning

methods can be found in Ram and Santamaria (1993a).

One difference in our methods from standard reinforcement
learning is that SINS uses a utility reward that only used
“internal” information about the operation of the system.
That is, we do not encode explicit information in the utility
reward which signals that goals are “good” and obstacles
are “bad”. Instead, the utility reward is based on a “relative
similarity metric” which measure quantifies how similar the
current sequence of associations is to the sequence of as-
sociations encoded by the case relative to how similar the
case’s sequence of associations has been in previous utiliza-
tions of the case. Intuitively, if a case matches the current
situation better than it matched previous situations it was
used in, it is likely that the sequence of associations encoded
in the case will provide good predictions in situations simi-
lar to the current one; thus, it is worthwhile reinforcing the
associations in the case in the direction of the current asso-
ciation because the current association is representative of
the class of situations to which the case should be applied.
Alternatively, if the match is not quite as good, the case
should not be modified because the predictions will not be
quite as good in future similar situations; although it may
still be used to guide performance if no better case can be
found, it is likely that the continuous operators that the case
is beginning to capture are not the ones that ought to be
refined based on this experience.

Since the reinforcement formula is based on a relative sim-
ilarity measure, the overall effect of the learning process
is to cause the cases to converge on stable associations be-
tween environment configurations and schema parameters.
Stable associations represent regularities in the world that
have been identified by the system through its experience,
and provide the predictive power necessary to navigate in
future situations. The assumption behind this method is
that the interaction between the system and the environ-
ment can be characterized by a finite set of causal patterns
or associations between the sensory inputs and the behav-
ioral parameters that define the actions performed by the
system. The method allows the system to learn these causal
patterns and to use them to modify its actions by updating
its schema parameters as appropriate. The system improves
its performance, not because it is being reinforced directly
for reaching the goal, but because it has a tendency to repli-
cate and reinforce consistent behavior. Since the motor
schemas used in the navigational module have an implicit
goal to move the robot towards the goal while avoiding
obstacles, the system gets better at performing that task be-
cause its cases capture and use the sequence of associations
that involve just those causal patterns that are used for the
task. In other words, SINS is simply learning all the input-
output patterns that correspond to the continuous operators
in its domain; improvement in performance results from
the fact that the navigation module generates what might be
thought of as good “training data” for the learning module.

4 EXPERIMENTS AND RESULTS
The methods presented above have been evaluated using
extensive simulations across a variety of different types
of environment, performance criteria, and system configu-

rations. The objective of these experiments is to measure
qualitatively and quantitatively improvement of the naviga-
tion performance of SINS, and to compare this performance
against a non-learning schema-based reactive system (the
“static system”) and a system that changes the schema pa-
rameter values randomly after every control interval (the
“random system”). We chose these systems because they
represent successive stages in the complexity of a complete
navigational system. The static system cannot adapt the
schema parameter values as it navigates, which makes it
efficient only on those environmental situation for which
the schema parameters were explicitly designed. If the
environment changes too widely, the system’s performance
deteriorates rapidly. The random system is able to cope with
environmental changes because it can randomly happen to
chance upon the appropriate schema parameter values, but
it is not able to compile knowledge from experiences it has
had in the past that could be useful in the current situation.
In effect, every time the random system faces a new situ-
ation it must search, using random selection, for a specific
combination of schema parameter values that can be useful
for the current situation. Finally, SINS can not only change
the schema parameter values, it can also compile knowl-
edge in terms of sequences of associations that have been
successful in the past and use these sequences directly to
improve its performance on the task. In this way, the sys-
tem avoids the search for specific combinations of schema
parameter values in new situations, resulting directly in
performance speedup.

The three systems were tested on randomly generated envi-
ronments consisting of rectangular bounded worlds. Each
environment contains circular obstacles, a start location,
and a destination location, as shown in figure 2. The loca-
tion, number, and radius of the obstacles were randomly de-
termined to create environments of varying amounts of clut-
ter, defined as the ratio of free space to occupied space. We
tested the effect of three design parameters in SINS: max-
cases, the maximum number of cases that SINS is allowed
to create; case-length, representing the maximum number
of associations in a case; and control-interval, which de-
termines how often the schema parameters in the reactive
control module are adapted.

We used six estimators to evaluate the navigation perfor-
mance of the systems. These metrics were computed using
a cumulative average over the test worlds to factor out the
intrinsic differences in difficulty of different worlds. Aver-
age number of worlds solved indicates in how many of the
worlds posed the system actually found a path to the goal
location. The optimum value is 100% since this would in-
dicate that every world presented was successfully solved.
Average steps indicates the average of number of steps that
the robot takes to terminate each world; smaller values in-
dicate better performance. Average distance indicates the
total distance traveled per world on average; again, smaller

values indicate better performance. Average actual
optimal dis-

tance per world indicates the ratio of the total distance
traveled and the Euclidean distance between the start and
end points, averaged over the solved worlds. The optimal
value is 1, but this is only possible in a world without ob-

Figure 4: Final performance results

static random adaptive (SINS)
Worlds solved 14.4% 41.3% 94.5%
Steps per world 2626.5 2051.5 708.8
Distance per world 350.2 697.9 216.9
Actual

Optimal distance 8.6 17.2 5.5

Virtual collisions 45.9 26.3 26.3
Time per world (ms) 2946.7 2359.4 1757.2

stacles. Average virtual collisions per world indicates the
total number of times the robot came within a pre-defined
distance of an obstacle. Finally, average time per world
indicates the total time the system takes to execute a world
on average.

The data for the estimators was obtained after the systems
terminated each world. This was to ensure that we were
consistently measuring the effect of learning across experi-
ences rather than within a single experience (which is less
significant on worlds of this size anyway). The execution
is terminated when the navigation system reaches its desti-
nation or when the number of steps reaches an upper limit
(3000 in the evaluation presented here). The latter condition
guarantees termination since some worlds are unsolvable by
one or more systems.

Detailed experimental results may be found in Ram and
Santamaria (1993a). Table 4 shows the final results after
the execution of 200 randomly generated worlds, based on
the design parameters max-cases l 10, max-cases l 4, and
control-interval l 12. SINS successfully navigates almost
95% of the worlds, a 555% improvement over the static sys-
tem, with 43% fewer virtual collisions, 271% fewer steps,
38% shorter distance travelled, 36% better actual

optimal ratio,

and 40% speedup in performance time. SINS also solves
each world on average 20% faster than the random system.

Figure 5 shows the history of the performance metrics over
successive problem worlds to demonstrate the speedup per-
formance of SINS. Note that SINS improves its perfor-
mance even though it is working on different problems each
time (recall that each of the 200 worlds were randomly gen-
erated). This is because the system is not learning about
a particular world but rather is learning continuous opera-
tors for navigation that are generally applicable to a wide
range of possible navigational problems. Since not all the
worlds have the same level of “difficulty”, the performance
figures are not strictly monotonic and show peaks at dif-
ferent points; however, the tendency towards cumulative
performance improvement is evident in the graphs.

5 Conclusions

SINS combines and extends case-based reasoning and rein-
forcement learning methods to provide a basis for speedup
learning in continuous domains. Learning corresponds
to building a library of experiential knowledge that can
help the system improve its performance. Since the sys-
tem is always learning, it can cope with major environ-

mental changes as well as fine tune its navigation module
in static and specific environment situations. The learn-
ing methods in SINS represent a novel kind of knowledge
compilation and speedup learning for continuous domains.
Knowledge compilation occurs through the compilation of
continuous experiences into higher-level (but still continu-
ous) knowledge structures (representing continuous opera-
tors and macro-operators) that guide performance in future
situations. This may be thought of as a kind of constructive
representational change in which raw sensorimotor experi-
ences are compiled into higher-level operators for naviga-
tion (Ram, 1993). The learning methods result in improve-
ments in the quality of performance in addition to its speed,
which are realized even when the system is faced with a
different problem situation each time.

References
Arkin, R.C. (1989). Motor schema-based mobile robot navigation.
International Journal of Robotics Research, 8(4):92-112.
DeJong, G.F. & Mooney, R.J. (1986). Explanation-based learning:
An alternative view. Machine Learning, 1(1):145-176.
Fikes, R.E., Hart, P.E., & Nilsson, N.J. (1972). Learning and
executing generalized robot plans. Artificial Intelligence, 3:251-
288.
Hammond, K.J. (1989). Case-Based Planning: Viewing Planning
as a Memory Task. Academic Press, Boston, MA.
Kolodner, J.L. (1993). Case-Based Reasoning. Morgan Kauf-
mann, San Mateo, CA (in press).
Laird, J.E., Rosenbloom, P.S., Newell, A. (1986). Chunking in
Soar: The anatomy of a general learning mechanism. Machine
Learning, 1:11-46.
Minton, S.N. (1990). Quantitative results concerning the utility of
explanation-based learning. Artificial Intelligence, 42:363-392.
Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986).
Explanation-based generalization: A unifying view. Machine
Learning, 1(2):47-80.
Mitchell, T. M., Utgoff, P. E. & Banerji, R. B. (1983). Learning by
experimentation: Acquiring and refining problem-solving heuris-
tics. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence Approach (Vol. I),
Morgan Kaufmann, San Mateo, CA.
Ram, A. Creative Conceptual Change. In Proceedings of the
Fifteenth Annual Conference of the Cognitive Science Society,
Boulder, CO, 1993.
Ram, A., Arkin, R.C., Moorman, K. & Clark, R.J. (1992). Case-
based reactive navigation: A case-based method for on-line selec-
tion and adaptation of reactive control parameters in autonomous
robotics systems. Technical Report GIT-CC-92/57, College of
Computing, Georgia Institute of Technology, Atlanta, GA.
Ram, A. & Santamaria, J.C. (1993a). A multistrategy case-based
and reinforcement learning approach to self-improving reactive
control systems for autonomous robotic navigation. In Pro-
ceedings of the Second International Workshop on Multistrategy
Learning, Harper’s Ferry, WV.
Ram, A. & Santamaria, J.C. (1993b). Continuous case-based
reasoning. In Proceedings of the AAAI Workshop on Case-Based
Reasoning, Washington, DC (to appear).
Sutton, R.S. (1992), editor. Machine Learning, 8(3/4), special
issue on Reinforcement Learning, 1992.

70

75

80

85

90

95

100

0 50 100 150 200
Worlds

Percentage of worlds solved on average

650

700

750

800

850

900

950

1000

1050

1100

1150

20 40 60 80 100 120 140 160 180 200
Worlds

Average number of steps per world

200

210

220

230

240

250

260

270

280

290

300

310

20 40 60 80 100 120 140 160 180 200
Worlds

Average distance travelled per world

5

5.5

6

6.5

7

7.5

8

20 40 60 80 100 120 140 160 180 200
Worlds

Average actual/optimal distance per world

25

30

35

40

45

50

55

60

65

20 40 60 80 100 120 140 160 180 200
Worlds

Average virtual collisions per world

1700

1800

1900

2000

2100

2200

2300

2400

2500

20 40 60 80 100 120 140 160 180 200
Worlds

Average time per world

Figure 5: Graphs showing improvement in performance with experience.

