
CS 4455:
Video Game Design &

Implementation
March 31, 2006: Audio

(Insert Disclaimer Here)

Overview

Today’s Lecture

What I’m talking about now

Audio Theory

Digitizing Sound

Game Implementation

High Level APIs

Why is Audio
important?

What is audio?

Inside your ear is an eardrum

A thin piece of skin

When it vibrates, your brain
interprets this as sound

Changes in air pressure often cause
this vibration

How Audio Works

An object produces sound when it
vibrates

This moves air particles

Those particles in turn move other
particles

Terms to Note:

Wavelength - distance between
repeating points

Amplitude - non-negative height of
the wave

Audio Terminology

Terms:

Period - How long it takes between
cycles

Frequency - How many cycles occur

(These are inverses)

Audio Terminology

The faster they loop,
the higher their frequency.

The SI unit for this is Hertz (Hz).
1 Hz = once a second,

1 KHz = one thousand times a second

Audio Terminology

Intensity = the “power” of the sound

A fairly large scale, so usually
expressed logarithmically:

With Sound, I0 ~= 10^-12 W/m^2

Common DB Levels
0dB Threshold of hearing
10dB Human breathing at 3 meters
30dB Theatre, no talking
60dB Inside of office or restaurant
70dB Busy traffic at 5m
90dB Loud factory, heavy truck at 1m
100dB Jack Hammer at 2m; inside disco
120dB Rock Concert
150dB Jet engine at 3m
250dB Inside tornado; nuclear bomb @ 5m
+10dB means 10 times as powerful
+3dB roughly twice as powerful

Fun facts about
audio strength

85dB potentially harmful to hearing
120dB unsafe
150dB physical damage to body
163dB windows break
19xdB eardrums rupture
200dB can cause death

Digitizing Sound

Sampling

At a given interval, “sample” the
amplitude of the wave

Sampling:
Nyquist Limit

Nyquist Limit - a given sampling rate
can only represent frequencies up to
one-half that rate

Sampling

Typical factors on a computer

How many times per second?

How many levels can we
differentiate between?

How many channels?

Sampling
CD Quality audio

44kHz (44,100 samples/sec)

16-bit (65,536 possible levels)

2 channels (left and right)

176,400 bytes/sec

This is approximately 6 seconds per
megabyte!

Sampling

Low Quality Audio

8kHZ (8 samples per second)

8-bit (1 byte)

1 channel

8,000 bytes/sec

About two minutes per megabyte

Sampling Comparison

Sampling Comparison

What can we do?
(Or, a brief history of computer audio)

FM synthesis
Used in early systems like the GameBoy

Hardware continually produced one or
more sine waves (sometimes other
shapes, too)

Software could modify frequency and
amplitude

Can be done in very little space (the
BIGGEST GameBoy games were about
1/2MB)

FM synthesis demo

MIDI synthesis
Common in PC sound cards and many
consoles, such as the Super Nintendo
(SNES), Genesis, your cellphone...

MIDI files contain instructions to
turn on or off various instruments

Instruments are externally defined

Therefore, small file format

Sound can differ player-to-player

MIDI synthesis demo

Module Audio
Like MIDI, but you can (or are
required to) supply your own
instruments

.MOD/.S3M/.XM/.IT file formats

Used in the PlayStation, also common
on the GameBoy Advance

Usually still small, if you can share
instruments

Module Audio Demo

RedBook Audio

Music is streamed from CD

Commonly used on the SegaCD

May need to buffer or avoid when
you need to read from the CD!

Takes a lot of space

RedBook Audio Demo

(Realistic Depiction of Bonus Stage)

Compressed Audio

General Compression

Lossy - small changes okay

Loseless - must be 100% preserved

Compressed Audio

Audio Compression

Bit Reduction

DPCM encodes the differences
between subsequent samples (the
D is for differential or delta)

ADPCM is a more advanced version

Compressed Audio

Audio Compression

Psycho-acoustic

Designed with human hearing in
mind

MP3, AAC, OGG, WMA, .etc

Compressed Audio
Demo

Nah.

Gaming
Implementation

Gaming
Implementation

Sound in most games is divided into
two parts:

Background music

Sound Effects

Background Music
Unlike movies and TV, not timed

Ambient and looping

Can be streamed

Sound Effects

Characteristics

Typically very short

Often tied to an event

Examples: Gun fire, character is
hit, explosion, speech, .etc

Generally stored in memory

Mixing

In many game consoles, separate HW
for these functions is not unusual

Hardware MIDI standard in some

If not, convert to sampled in
software

Mixing

Software mixing is easy

If sample rates are the same

Just add!

Beware of exceeding the max

Mixing Example

def mixSound(dest, source):
 for i in range(1, min(getLength(dest), getLength(source))):
 sourceValue = getSampleValueAt(source, i)
 destValue = getSampleValueAt(dest, i)

 setSampleValueAt(dest, i, sourceValue + destValue)

Buffering
When reading or converting sound, you
need to stay ahead of the audio out
device but can’t convert the whole
song

Two techniques for buffers:

Circular buffers - read and write
in same buffer

Buffer chaining - write to buffer,
read from the other, swap

High Level APIs
Audio is a lot simpler than graphics
(in a game).

A lot of APIs can be condensed to:

Play(sample, loops)

Stop(sample)

SetPan

SetVolume

SetSpeed

Example Sound APIs
Cross platform 2D APIs

Java Sound

SDL

QuickTime

Sound APIs with 3D support

OpenAL

DirectSound (NOT crossplatform)

Example (JavaSound)
Sequence sequence =
 MidiSystem.getSequence(new java.net.URL(url));

// Create a sequencer for the sequence
Sequencer sequencer = MidiSystem.getSequencer();
sequencer.open();
sequencer.setSequence(sequence);
sequencer.start();

See packages under javax.sound
such as javax.sound.midi and

javax.sound.sampled

Positional Audio

Basic Theory

Sound distance and volume are
inversely related

Sound differences in the ears help
determine position

3D Audio

Problem with traditional two speaker
or headphone setup

Forward vs. Behind

Speaker setups available that have 5,
6, or 7 speakers

Speaker setup tends to differ, so
this is difficult!

3D Audio Example
 // Load wav data into a buffer.

 alGenBuffers(1, &Buffer);

 if (alGetError() != AL_NO_ERROR)
 return AL_FALSE;

 alutLoadWAVFile("wavdata/Footsteps.wav", &format, &data, &size, &freq, &loop);
 alBufferData(Buffer, format, data, size, freq);
 alutUnloadWAV(format, data, size, freq);

 // Bind buffer with a source.

 alGenSources(1, &Source);

 if (alGetError() != AL_NO_ERROR)
 return AL_FALSE;

 alSourcei (Source, AL_BUFFER, Buffer);
 alSourcef (Source, AL_PITCH, 1.0f);
 alSourcef (Source, AL_GAIN, 1.0f);
 alSourcefv(Source, AL_POSITION, SourcePos);
 alSourcefv(Source, AL_VELOCITY, SourceVel);
 alSourcei (Source, AL_LOOPING, AL_TRUE);

 // Do an error check and return.

 if (alGetError() != AL_NO_ERROR)
 return AL_FALSE;
}

 // Initialize OpenAL and clear the error bit.
 alutInit(NULL,0);
 alGetError();

 // Load the wav data.
 if (LoadALData() == AL_FALSE)
 return 0;

 SetListenerValues();

 // Begin the source playing.
 alSourcePlay(Source);

 // Loop
 ALint time = 0;
 ALint elapse = 0;

 while (!kbhit())
 {
 elapse += clock() - time;
 time += elapse;

 if (elapse > 50)
 {
 elapse = 0;

 SourcePos[0] += SourceVel[0];
 SourcePos[1] += SourceVel[1];
 SourcePos[2] += SourceVel[2];

 alSourcefv(Source, AL_POSITION,
SourcePos);
 }
 }

Resources
OpenAL tutorials:

http://www.devmaster.net/articles/
openal-tutorials/lesson1.php

Sound Editing Software:

http://audacity.sourceforge.net/

Sound Effects

/net/dvfx/hollywood_edge

http://www.sounddogs.com/

