[c 2455
Video Game Design &
Implementation

| March 31, 2006: Audio

(Insert Disclaimer Here)

Overview

® Today’s Lecture

- S What I’m talking about now
2 Audio Theory

S Digitizing Sound

® Game Implementation

S High Level APIs

Why 1s Audio
Lmportant?

- What 1s audio?

S Inside your ear is an eardrum
%A thin piece of skin

2 When it vibrates, your brain
1hterprets this as sound

® Changes in air pressure often cause
this vibration

How Audio Works

“*An object produces sound when 1t
v1brates

® This moves air particles

® Those particles in turn move other
particles

Wave

5. = wavelength

V' = amplitude

=
=
i
=
=
b
d
o]
e |
=
]
3

distance — »

e Terms to Note:

S Wavelength - distance between
repeating points

® Amplitude - non-negative height of
the wave |

Audio Terminology

S Terms:

4 Period - How long it takes between
cycles

® Frequency - How many cycles occur

S (These are inverses)

The faster they Loop,
the higher their frequency.

The SI unit for Ithis; i1s Herétz (Hz).
1 Hz = once a second,
1 KHz = one thousand times a second

Audio Terminology

S Intensity = the “power” of the sound

S A fairly large scale, so usually
expressed logarithmically:

Iig = 10log,, (Ii) or Fjg =10log,, (;) ,
iy

S With Sound, I0 ~= 10A-12 W/mA2

Common DB Levels

0dB Threshold of hearing

| 10dB Human breathing at 3 meters
30dB - Theatre, no talking
00dB Inside of office or restaurant
70dB Busy traffic at 5m |
99dB | Loud factory, heavy truck at 1m
100dB | Jack Hammer at 2m; inside disco
120dB | Rock Concert
150dB | Jet endine at 3m
250dB | Inside tornado; nuclear bomb @ 5m

+10dB means 10 times as powerful
+3dB roughly twice as powerful

Fun facts about
audio strength

35dB potentialiy'harmful to hearing

120dB | unsafe

150dB | physical -damage to body
163dB - windows break
19xdB | eardrums rupture

200dB | can cause death

Digitizing Sound

Sampling

S At a given interval, “sample” the
amplitude of the wave

: Sampling:
Nyquist Limit

égNyquist Limit - a given sampling rate
can only represent frequencies up to
one-half that rate

Sampling

G*Typlcal factors on a computer |
S How many times per second7

% How many levels can we
differentiate between?

S How many channels?

Sampllng
% CD Quality audio
2 44kHz (44 100 samples/sec)
¢q16 bit (65,536 possible 1evels)
m2 channels (left and right)
176,400 bytes/sec

$ This is approximately 6 seconds per
- megabyte!

Sampling

® Low Quality Audio

- 8 8kHZ (8 samples per second)
2 8-bit (1 byte) -
S 1 channel

€ 8,000 bytes/sec

S About two minutes per megabyte

' '-L_..m. gl

c-nli‘__gf;'fmr‘i -

| S T P S . —— e

i f—....c. Jrﬁlﬂﬁh‘—
o :". 2 .&rnﬁu.nrri_ S —ig ’H-ﬂﬂ. T

' H{_.-‘:-_.__ﬂ - by . :-.-'ic._ \-
r‘f T ﬁ it mtﬂ:ﬁgwmwww e

'I B R T T

5, .-_ . -‘L-‘.J"H L‘_:t‘ =
; dc-nli‘n

; Ilh.l'—I'- e ———— T o
E ;H.ﬂn‘,—‘_

: .r;;f'— e N _} AT

o a-"-"- ? #P-H”ﬂ'l‘ﬂ '._:—l'-_.-, =, ’H-'-“ . ::, -. ity
ST fh
o f_;] ﬁ ﬂ# mﬁﬁwmww -:3:"-"5:"--.:-" ::.__. -

--l . "" Fah Ao s =ty B e

What can we do?

(Or, a brlef hlstory of computer audlo)

FM synthesis

% Used in early systems like the GameBoy

® Hardware continually produced one or
more sine waves (sometimes other
shapes, too) |

& Software could modify frequency and
amplitude

® Can be done in very little space (the
- BIGGEST GameBoy games were about
1/2MB)

 FM sy .
o fynthesis deu, -

- MIDI synthesis

® Common in PC sound cards and many
consoles, such as the Super Nintendo
(SNES), Genesis, your cellphone...

& MIDI files contain instructions.to
turn on or off various instruments

% Instruments are externally defined
% Therefore, small file format

% Sound can differ player-to-player

~ MIDI synthesis demo

Module Audio

® Like MIDI, but you can (or are
required to) supply your own
1instruments

® _MOD/.S3M/.XM/.IT file formats .

® Used in the PlayStation, also common
on the GameBoy Advance

® Usually still small, if you can share
- 1nstruments

‘Module Audio Demo

RedBook Audio

® Music is streamed from CD
2 Commonly used on the SegaCD

% May need to buffer or avoid when
you heed to read from the CD!

S Takes a lot of spdce

e .EHsnmccn

RedBook AUle Demo

Game Options Help

SCORE ':a"l N

IME 7'53
INGS 78 ﬂ].r
]

j{ﬁgh;

3| e

| o
e rIW""fl*'flia;lf'l'l5"""f"fl*'1f| L'll"ll”"""

| YYYYYYYYYYYYYYYYYYY [;
| A Yy A

(Redlistic Depictioﬁ'QFBonusStage)

Compressed Audio

® General Compression
® Lossy - small changes okay

% Loseless - must be 100% preserved

Compressed Audio

€ Audio Compression

& Bit RedUction

=3

DPCM encodes the differences
petween subsequent samples (the

D 1s for differential or delta)

S ADPCM is a more advanced version

Compressed Audio

S Audio Compression
€ Psycho-acoustic

® Designed with human hear'ing- 1n
mind |

S MP3, AAC, 0GG, WMA, .etc

Compressed Audio
' - Demo

S Nah.

Gamlng
Implementatlon

Gaming
- Implementation

S Sound in most games is divided into
two parts:

® Background music

S Sound Effects

Background Mu51C

2 8 Un11ke mov1es and TV, not_‘tklmed-

- S Am_bl_ent- and _100p1_ng

2 (an be s"czlfde_-amed-

' ."11'!.
A d
; L i

L - A 1*3};.1!’-

: .mm;l_lﬂl-l.l.l-l .
"E'H'H B B N E N ENE NN
I-l.l.l.l:l-:::l.l.l R | o
o o

Sound Effects

® Characteristics -
% Typically very short
S Often tied to an event

® Examples: Gun fire, character is
hit, explosion, speech, .etc

€ Generally stored in memory

Mix1ng

® In many game consoles, separate HW
for these functions i1is not unusual

 Hardware MIDI standard in some

S If not, convert to sampled in
software |

Mix1ng

$ Software mixing 1s easy
S If sample rates. are the same
€ Just add!

S Beware of exceeding the max

Mixing Example

def m1xSound(dest source):
for 1 1n range(1l, min(getlLength(dest), getLength(source)))
sourceValue = getSampleValueAt(source, 1)
destValue = getSampleValueAt(dest, 1)

setSampleValueAt(dest, i, sourceValue + destValue)

Buffering

S When reading or converting sound, you
need to stay ahead of the audio out
device but can e convert the whole
song |

S Two techniques for buffers:

® Circular buffers - read and write
1n same buffer |

& Buffer chaining - write to buffer,
read from the other, swap

High Level APIs

® Audio is a lot simpler than graphics
(in a game). | |

% A lot of APIs can be condensed to:

] Play(sample, loops)
® Stop(sample)

S SetPan
&8 SetVolume

€ SetSpeed

Example Sound APIs

® Cross platform 2D APIs
% Java Sound
% SDL '
2 QuickTime
® Sound APIs with 3D support
4 OpenAL
S DirectSound (NOT crossplatform)

Example (JavaSound)

Sequence sequence'= |
MidiSystem.getSequence(new java.net.URLCurl));

// Create a sequencer for the ‘sequence

Sequencer- sequencer = MidiSystem.getSequencer();
sequencer.open(); ;
sequencer.setSequence(sequence);
sequencer.start(); '

See packages underfjavax.sound
such as javax.sound.midi and
javax.sound.sampled

Positional Audio

® Basic Theory

® Sound distance and volume are
Lnversely related

% Sound differences in the ears help
determine position

3D Audio

® Problem with traditional two spedker-
or headphone setup

2 Forward vs. Behind

* Speaker setups available that have 5,
6, or 7 speakers

S Speaker setup tends to differ, so
this 1s difficult!

- 3D Audio Example

// Load wav data into a buffer.
alGenBuffers (l, &Buffer);

if (alGetError() != AL NO ERROR)’
return AL FALSE;

alutLoadWAVFile("wavdata/Footsteps.wav", &format, &data, -&size, "&freq, &loop):;
alBufferData (Buffer, format, data, size, freq);
alutUnloadWAV (format, data, size, freq):

Y. aRind B feerawihbh alrsouraey

alGenSources (1, &Source) ;

1t (alGetError () != AL NO ERROR)
retuen AL FALSES

alSourcel (Source, AL BUFFER, Buffer Yy
arSourcef - {Solirce, AL PTECH; JESErP Vi
alSourcef (Source, AL GAIN, 1.0f T
alsourcetvisScuree AL BOSTTION, sSourcePosy i
gl Sourcetv{sSource; - AL WELQCITY,.:SourceVel) ;
adsoUrced g gonrae AL T OORENG &5 TATS ERUESS 257

rDe g e rTroT .check —and metlirhn:

Bt talGetEryror () =l= ‘AL NO ERROR)
return AL FALSE;

// Initialize OpenAL and clear the error bit.
alutInit (NULL, Q) ;
alGetError{)y;

// Load the wav data.
i f - (LeddALData () == AL FALSE)
return. Uy

SetlListenerValuesi);

// Begin the source playing.
~alSourcePlay (Source) ; :

// Loop
ALint time = 0;
ALint elapse = 0;
while (!kbhit ()) ;
{ -
elapse += clock() - time;

time += elapse;

- 1f {elapse > 50)
{

elapse. = 0;

SonrcePostOlas= SourcéVel[O];
SourcePosl] += SeurceVel|l]:
SourceRosf2d #=. SeurceVel 2]

alSourcefv (Source, AL POSITION,
SourcePos)3
t
}

Resources

S OpenAL tutorials:

S http://www.devmaster.net/articles/
openal-tutorials/lessonl.php

€ Sound Editing Software:

S http://audacity.sourceforge.net/

& Sound Effects
2 /net/dvfx/hol lywood_edge

S http://www. sounddogs . com/

