

Sound and Non-Speech Interfaces:
Going Beyond Conventional GUIs

Audio Basics

2

How sound is created
 Sound is created when air is

disturbed (usually by vibrating
objects) causing ripples of
varying air pressure propagated
by the collision of air molecules

3

Why Use Audio?
 Good support for off-the-desktop interaction

 Hands-free (potentially)

 Display not necessary

 Effective at a (short) distance

 Can add another information channel over visual presentation

4

How Sound is Perceived
 Characteristics of physical phenomenon (the sound wave):

 Amplitude

 Frequency

 How we perceive those:
 Volume

 Pitch

5

Complex Sounds
 Most natural sounds are more complex than simple sine waves

 Can be modeled as sums of more simple waveforms; or, put another way:

 More simple waveforms mix together to form complex sounds

6

Sampling Audio
 Sampling rate affects

accurate representation of
sound wave

 Nyquist sampling theorem
 Must sample at 2x the

maximum possible frequency
to accurately record it

 E.g., 44,100 Hz sampling
rate (CD quality) can
capture frequencies up to
22,050 Hz

7

Additional Properties of Audio
that can be Exploited to Good
Effect
 Sound localization
 Auditory illusions

8

Sound Localization
 We perceive the location of where a sound originates from by using a number

of cues
 Inter-aural time delay: the difference between when the sound strikes left versus

right ears
 Perhaps most important: head-related transfer function: how the sound is modified as

it enters our ear canals

 We can take a normal sound and process it to recreate these effects
 Calculate and add precise delay between left and right channels

 Apply a filter in realtime to simulate HRTF

 Requires ability to pipe different channels to left and right ears

 Problematic: each person’s HRTF is slightly different
 Because of external ear shape

 Still, can do a reasonably good job
 Generally need head tracking to keep apparent position fixed as head moves

9

Auditory Illusions
 Example: Shepard Tone

 Sound that appears to move continuously up or down in pitch, yet which
ultimately grows no higher or lower

 Identified by Roger Shepard at Bell Labs (1960’s)

 Useful for feedback where you have no bounded valuator?

10

Speech versus non-speech audio
 Speech is just audio; why consider them separately?

 Uses in interfaces are actually vastly different (more on this later)

 Actually processed by different parts of the brain

 Understanding the physical properties of audio, you can create new
interaction techniques
 Example: “cocktail party effect” -- being able to selectively attend to one

speaker in a crowded room

 Requires good localization in order to work

 In this lecture, we’re focusing largely on non-speech audio

11

Using Audio in Interfaces
 That’s all fine...
 ... but what special opportunities/challenges does audio present in an

interface?

12

13

Changing the assumptions

 What happens when we step outside the conventional GUI /
desktop / widgets framework?
 Topic of lots of current research
 Lots of open issues

 But, a lot of what we have seen is implicitly tied to GUI concepts

14

Example: “Interactive TV”

 WebTV and friends
 Idea is now mostly dead, but was attempt to add a return

channel on cable and allow the user to provide some input
 Basic interaction, though, is similar for Tivo and other “living

room interfaces”

 Is this “just another GUI?” Why or why not?

15

Not just another GUI because...

 Why?

16

Not just another GUI because...

 Remote control is the input device
 Not a (decent) pointing device!
 (Despite having many dimensions of input--potentially one for

each button)
 Context (& content) is different

 “Couch potato” mode
 only a few alternatives at a time
 simple actions
 the “ten foot” interface -- no fine detail (not that you have the

resolution anyway)
 Convenient to move in big chunks

17

Preview:
Leads to a navigational approach

Have a current object

Act only at current object
 Typically small number of things that can be done at the object

 Often just one

Move between current objects

Example: Tivo
 UP/DOWN

 Moves between programs

 LEFT/RIGHT
 Moves to menus/submenus

 At each item, there are a small,
fixed set of things you can do:
 SELECT it

 DELETE it

 ... maybe a few others depending
on context

18

19

Generalizing: Non-pointing input

 In general a lot of techniques from GUIs rely on pointing
 Example: a lot of input delivery

 What happens when we don’t have a pointing device, or we
don’t have anything to point to?
 Extreme example: Audio only

20

The Mercator System
 http://www.acm.org/pubs/citations/proceedings/uist/
142621/p61-mynatt/

 Designed to support blind users of GUIs
 GUIs have been big advance for most
 Disaster for blind users

 Same techniques useful for e.g., cell phone access to desktop
 Converting GUI to audio

21

Challenge: Translate from visual
into audio

 Overall a very difficult task
 Need translation on both input and output

22

Output translation
 Need to portray information in audio instead of graphics (hard)

 Not a persistent medium
 Much higher memory load

 Sequential medium
 Can’t randomly access

 Not as rich (high bandwidth) as visual
 Can only portray 2-3 things at once

 One at a time much better

23

Mercator solution

 Go to navigational strategy
 only “at” one place at a time
 only portray one thing at a time

 But how to portray things?
 Extract and speak any text
 Audio icons to represent object types

24

Audio icons

 Sound that identifies object
 e.g. buttons have characteristic identifying sound

 Modified to portray additional information
 “Filtears” manipulate the base sound

25

Filtear examples

 Animation
 Accentuate frequency variations
 Makes sound “livelier”
 Used for “selected”

 Muffled
 Low pass filter
 Produces “duller” sound
 Used for “disabled”

26

Filtear examples

 Inflection
 Raise pitch at end
 Suggests “more” -- like questions in English
 Used for “has sub-menus”

 Frequency
 map relative location (e.g., in menu) to change in pitch (high at

top, etc.)

27

Filtear examples

 Frequency + Reverberation
 Map size (e.g., of container) to pitch (big = low) and reverb (big

= lots)

 These are all applied “over the top of” the base audio icon
 Can’t apply many at same time

28

Mapping visual output to audio

 Audio icon design is not easy
 But once designed, translation from graphical is relatively straight

forward
 e.g. at button:

 play button icon, speak textual label

 Mercator uses rules to control
 “when you see this, do that”

29

Also need to translate input

 Not explicit, but input domain also limited
 Nothing to point at (can’t see it)!
 Pointing device makes no sense

 Again, pushes towards navigation approach
 limited actions (move, act on current)
 easily mapped to buttons

30

Navigation

 What are we navigating?
 Don’t want to navigate the screen

 very hard (useless?) w/o seeing it
 Navigate the conceptual structure of the interface

 How is it structured (at UI level)
 What it is (at interactor level)

31

Navigation

 But, don’t have a representation of the conceptual structure
to navigate
 Closest thing: interactor tree
 Needs a little “tweaking”

 Navigate transformed version of interactor tree

32

Transformed tree

 Remove purely visual elements
 separators and “decoration”

 Compress some aggregates into one object
 e.g. message box with OK button

 Expand some objects into parts
 e.g. menu into individual items that can be traversed

33

Traversing transformed tree

 Don’t need to actually build transformed tree
 Keep cursor in real interactor tree
 Translate items (skip, etc.) on-the-fly during traversal

 Traversal controlled with keys
 up, first-child, next-sibling, prev-sibling, top

34

Traversing transformed tree

 Current object tells what output to create & where to send
input
 upon arrival: play audio icon + text
 can do special purpose rules

 Have key for “do action”
 action specific to kind of interactor
 for scrollbar (only) need two keys

35

Other interface details

 Also have keys for things like
 “repeat current”
 “play the path from the root”

 Special mechanisms for handling dialog box
 have to go to another point in tree and return
 provide special feedback

36

Mercator actually has to work a
bit harder than I have described

 X-windows toolkits don’t give access to the interactor tree!
 Only have a few query functions + listening to the “wire

protocol”
 protocol is low level

 drawing, events, window actions

37

Mercator actually has to work a
bit harder than I have described

 Interpose between client and server
 query functions get most of structure of interactor tree
 reconstruct details from drawing commands
 catch (& modify) events

38

Why not just use a toolkit that
gives access to the tree?

 To be really useful Mercator needed to work on existing “off
the shelf” applications without modification (not even
recompile or relink)
 critical property for blind users

Audio Input
 Most audio input has focused on speech input
 However, some work on non-speech input

 Example:
 “Voice as Sound: Using Non-verbal Voice Input for Interactive Control,” Igarashi

and Hughes, UIST 2001

39

40

Question for the class

 How would you do drag and drop in audio?

Resources
 JavaSound architecture

 Insanely good (and under-utilized)
architecture for doing powerful
audio processing

 Build on technology licensed
from Beatnik, Inc.

 Company started by Thomas
Dolby (the “blinded me with
science” guy)

 http://java.sun.com/products/java-media/sound/
 http://www.jsresources.org/

41

42

