A deterministic TM is said to be in \(\text{SPACE}(s(n)) \) if it uses space \(O(s(n)) \) on inputs of length \(n \). Similarly, it is in \(\text{TIME}(t(n)) \) if it uses time \(O(t(n)) \) on such inputs.

A language \(L \) is polynomial-time decidable if \(\exists \) \(K \) and a TM \(M \) to decide \(L \) s.t.

\[M \in \text{TIME}(n^K) \]

Note that \(K \) is independent of \(n \).

E.g., PATH, i.e. does there exist a path between \(s \) and \(t \) in a given graph, has a polynomial-time decider.

Median

Min/Max weight spanning tree.
P is the class of languages with polynomial time TMs.

$P = \bigcup_{k} \text{TIME}(n^k)$

Do all decidable languages belong to P?

$\underline{HAM\ PATH}$ \exists path from s to t that visits every vertex in G exactly once?

\underline{SAT} Given a boolean formula, \exists a setting of its variables that makes the formula true?

$f = (x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor x_3 \lor \overline{x_2}) \land (x_1 \lor \overline{x_3} \lor x_2)$

No polytime algorithms known for these problems. They can be solved (decided) by nonpolytime nondeterministic TMs.

"guess" the path

"guess" the assignment
Recall that a NTM accepts iff any one of its computation paths accepts. The path amounts to a verification of the YES answer.

We have \(\text{NSPACE}(4(n)) \) and \(\text{NTIME}(t(n)) \)

\(\text{NP} \) is the class of languages that can be decided by polynomial-time NTMs.

\[
\text{NP} = \bigcup_k \text{NTIME}(n^k)
\]

Alternatively, \(\text{NP} \) is the class of languages with the property that membership ("YES") can be verified in polynomial-time using a polynomial-sized certificate.

E.g. \(\text{SAT} \): if \(\Phi \) is satisfiable, a valid assignment is the certificate.

\(\text{HAMPATH} \): if \(G \) has a HAM path then the sequence of vertices visited is the certificate.
Clearly $P \subseteq NP$

From Savitch’s theorem,

$$NPSPACE = PSPACE$$

Since the space requirement only squares.

Also $NTIME(t(n)) \subseteq DTIME(2^{O(t(n))})$

EXPTIME := Languages that can be decided in exponential time.

$$P \subseteq NP \subseteq PSPACE \subseteq EXP$$

Amazingly, we do not know if these containments are strict, i.e., if a language L

- $L \in EXP$ and $L \notin PSPACE$
- $L \in PSPACE$ and $L \notin NP$
- $L \in NP$ and $L \notin P$

We know that $P \subseteq EXP$ from the hierarchy theorem.
\[L \in \text{NP} \iff \exists \text{NTM } M \text{ s.t. } \exists x \mid L = \{ x \mid \exists \text{accepting path in } M \text{ on input } x \}\]

The class of languages that are complements of languages in NP is called CoNP.

\[L \in \text{CoNP} \iff \exists \text{NTM } M \text{ s.t. } \exists x \mid L = \{ x \mid \text{an accepting path of } M \text{ is accepting for } x \}\]

\[L \in \text{CoNP} \iff \exists L \in \text{NP} \iff \exists x \mid L = \{ x \mid x \notin L \}\]

— L is rejected on every path —

How to verify membership in a CoNP language?

Short (polynomial-size) certificate that \(x \notin L \), e.g. \(x \) does not have a HAM PATH?

\(\exists \) does not satisfy assignment?
SAT: \(\exists F \; / \; \exists x : F(x) = 1 \)

\(\overline{\text{SAT}} : \exists F \; / \; \forall x : F(x) = 0 \)

\(\Sigma_2 \text{SAT} : \exists F \; / \; \exists x \forall y : F(x, y) = 1 \)

\(\Pi_2 \text{SAT} : \exists F \; / \; \forall x \exists y : F(x, y) = 0 \)

\(\Sigma_i \text{SAT} : \exists F \; / \; \exists x, \forall x_2, \ldots \; F(x_1, \ldots) = 1 \)

\(\Pi_i \text{SAT} : \exists F \; / \; \forall x_1, \ldots \; F(\ldots) = 0 \)

Alternating Turing Machines that can at each node of computation accept if any or all paths emanating from the node accepts or if all paths accept.

\(\mathcal{P} \cup \sum_i \cup \Pi_i \text{TIME}(n^k) = \cup_i \Pi_i \text{TIME}(n^k) \)

\(\mathcal{P} \cup \mathcal{P} \subseteq \mathcal{PSPACE} \).
How hard are problems in \(\text{PSPACE} \)? We don't know, but we can define the hardest problems.

A language \(L \) is said to be \(\text{PSPACE-complete} \) if

(a) \(L \in \text{PSPACE} \)

(b) \(\forall B \in \text{PSPACE} \)

\(\exists \) polynomial-time reduction \(B \rightarrow L \)

i.e., using \(L \) as an oracle/procedure and polynomial additional time, \(B \) can be solved in \(\text{PSPACE} \)

"\(L \) is at least as hard as any problem in \(\text{PSPACE} \)."

(If only (b) holds, \(L \) is \(\text{PSPACE-hard} \)).

Do there exist complete languages for \(\text{PSPACE} \)?

TQBF: True Quantified Boolean Formula

\[
F = \forall x_1 x_2 \exists x_3 \forall x_4 \ldots P(x_1, x_2, \ldots, x_n)
\]

TQBF = \(\exists F : F \) is true
TQBF is PSPACE-complete.

Proof:

TQBF ∈ PSPACE

For this we just give an ATM that matches the quantifiers of a given formula and the depth of the tree is the # variables.

Any problem $B ∈ PSPACE$ has a reduction $B → L$.

Since $B ∈ PSPACE$, ITM M that decides B.

Examine the computation tableau of M on input x.

We can write a boolean formula ϕ_x to check that the computation is valid, the start is valid and the end state is ACCEPT. We $B \iff \phi_x$ is true.

But ϕ_x has exponential size!
F_{stat, accept, t} : formula that checks tableau from start to accept using at most t steps.

\[F_{a, t} = \exists u \left(\phi_{s, u, \left[\frac{t}{2} \right]} \land \phi_{m, a, \left[\frac{t}{2} \right]} \right) \]

if \(t = 1 \) or \(0 \), we can write an explicit formula.

\[F_{a, 1} \]

Does this work? No! still exponential size.

We can use universal quantifiers.

\[F_{a, t} = \forall x, y, z \exists u \left(x, y \in E(x, u), (u, a)^y \right) \quad F_{x, y, \left[\frac{t}{2} \right]} \]

\(\forall x, y, z \exists u \left(x, y \in E(x, u), (u, a)^y \right) \quad F_{x, y, \left[\frac{t}{2} \right]} \]

\(\forall x, y, z \exists u \left(x, y \in E(x, u), (u, a)^y \right) \quad F_{x, y, \left[\frac{t}{2} \right]} \]

Every boolean \(F \rightarrow \text{AND/OR/NOT}. \) Now size \((F) = O(n^{2k}) \).