
CS 1803
Pair Homework 4 – Greedy Scheduler (Part I)
Due: Wednesday, September 29th, before 6 PM
Out of 100 points

Files to submit: 1. HW4.py

This is a PAIR PROGRAMMING Assignment: Work with your partner!
For pair programming assignments, you and your partner should turn in identical
assignments. List both partners names at the top. Your submission must not be
substantially similar to another pairs' submission. Collaboration at a reasonable level will
not result in substantially similar code. Students may only collaborate with fellow
students currently taking CS 1803, the TA's and the lecturer. Collaboration means talking
through problems, assisting with debugging, explaining a concept, etc. You should not
exchange code or write code for others.

For Help:
- TA Helpdesk – Schedule posted on class website.
- Email TA's or use T-Square Forums

Notes:
• Don’t forget to include the required comments and collaboration

statement (as outlined on the course syllabus).
• Do not wait until the last minute to do this assignment in case you run into

problems.
• Read the entire specifications document before starting this assignment.

Premise
In this assignment, you will be tasked with reading in data about meeting times for
various courses. Once you read in this data, you will be required to insert the data into
the given data structure which consists of a Dictionary, lists, and tuples. After inserting
all of the data into the data structure, you will be required to print out the structure in a
readable format. Details about the file you will be reading, the data structure you will be
creating, and the output format will be covered later in this specification. In this
assignment, you will be required to write the following four functions:

1. insertIntoDataStruct()
2. parseLine()
3. readCSVFile()
4. printDataStruct()

File Format Information

For this assignment, you will be given a comma separated value (CSV) file. This file will
contain the following information: The name of a course, followed by pairs of start times
and end times. All of this data is separated by commas, as is standard in a CSV file.
Take the following example line:

CS 1803,1505,1555,1405,1455

CS 1803 is the course name. After the course name, there will be some number of start
time and end time pairings, listed in 24 hour format with no punctuation (1:30 PM would
be listed as 1330 in the file). In the example above, there are two times this course meets:
1505 – 1555 and 1405 – 1455. You do not need to convert the times into any other
format. You may safely assume that every start time will have an end time and that all
times are properly formatted (i.e. there are no bad times such as 1660 in the file, or times
which contain anything other than digits). You should, however, ignore lines which
contain only whitespace characters (The strip() function may be useful).

Data Structure Information

The primary data structure for this assignment will be a dictionary. Remember that
dictionaries contain a key which is how you look up information in the dictionary, and
each key has an associated value with it. In this particular dictionary, the key will be the
name of the course and the value will be a list which contains the course time pairs. The
course time pairs are stored as a tuple where the first element in the tuple is the start time
(represented as an integer) and the second element in the tuple is the end time (also
represented as an integer).

An example of this structure with actual data looks something like this:

“CS 1803”  [(1505,1555),(1405,1455)]
“CS 4400”  [(1305,1335),(1405,1435),(1505, 1535)]

Note that the list can have any number of course start/stop times in it, but each key will
have at least one set in its value list.

Function Name: insertIntoDataStruct
Parameters:

string – A string which contains the name of the course.
string – A string which contains the start time of the course.
string – A string which contains the end time of the course.

Return Value:
none

Description:
Write a function that will accept three parameters: the first parameter is a string which is
the name of the course; this will serve as the key when you actually add the tuple you will
create to the list of times the course meets. The second parameter is a string representing
the start time of the class, and the third parameter is a string representing the end time of
the class. Using the two times you are given, you must first construct a tuple containing
the start and end times of the course, in that order (see the Data Structure Information
above). Then you must add the tuple you just created to the list of tuples which
represents the times when the given course meets. You will need to create this list in the
event that you are not adding a time pairing to a course which is already in the dictionary.
Otherwise, you should add the tuple to the existing list.

Function Name: parseLine
Parameters:

string – A string which contains the contents of one line from the file
Return Value:

none

Description:
Write a function that will accept one parameter, a string which contains the contents of
one line from the file you are reading in the function readCSVFile(). The parseLine()
function will then separate out the parts of the file, then make the appropriate calls to
insertIntoDataStruct() to put the information it has extracted from the line of the file into
the data structure. You must call insertIntoDataStruct() to put the data into the structure;
do not insert the parsed data directly into the data structure inside of parseLine().

Function Name: readCSVFile
Parameters:

 string – A string which contains the name of the file to read in
Return Value:

none

Description:
Write a function that will accept one parameter, a string which contains the name of the
CSV file you wish to parse (for example, “coursetimes.csv”). Your function will then
read in this file and call parseLine() on each line to parse the information contained
within that line. You must call parseLine() inside of readCSVFile() to parse each line of

the file; the only thing that this function should do is read in the contents of the file and
pass each line to parseLine(). In the event that the user provides an invalid file name, you
should print a message such as “Invalid file name.” and force the user to enter a valid file
name. Remember to close the file when you’re done reading in the information.

Function Name: printDataStruct
Parameters:

none
Return Value:

none

Description:
This function will display the contents of your data structure in a format which is more
easily readable than Python’s built-in dictionary printing format. The format should look
like the following:

Course Name:
Start time – End time
Start time – End time
…
Start time – End time

Course Name:
Start time – End time
Start time – End time
…
Start time – End time

The order in which the courses and their times are printed is unimportant so long as each
start time and end time pair is printed under the proper course. You do not need to
convert the times to 12 hour format or add colons between the hours and minutes; simply
print out the integer values as they are stored in your data structure.

Testing Your Code (Test Cases)

insertIntoDataStruct:
Assuming at the beginning of this test the dictionary is empty and the dictionary is
named courses.

insertIntoDataStruct(“CS 1803”, “1505”, “1555”)
insertIntoDataStruct(“CS 1803”, “1405”, “1455”)
insertIntoDataStruct(“CS 1803”, “1305”, “1355”)
insertIntoDataStruct(“CS 4400”, “1405”, “1455”)
insertIntoDataStruct(“CS 4400”, “1605”, “1655”)
print(courses)

{'CS 1803': [(1505, 1555), (1405, 1455), (1305, 1355)], 'CS 4400': [(1405,
1455), (1605, 1655)]}

Note that your results may be in a slightly different order as there is no defined
order for dictionaries. Just ensure that all of the data has been successfully
placed into the dictionary.

parseLine:
Note that the functionality of the parseLine() function depends heavily on
insertIntoDataStruct() working correctly; it is advisable that you have
insertIntoDataStruct() coded before testing parseLine().

Assuming at the beginning of this test the dictionary is empty and the dictionary is
named courses.

parseLine(“CS 1803,1505,1555,1405,1455,1305,1355”)
print(courses)

{'CS 1803': [(1505, 1555), (1405, 1455), (1305, 1355)]}

parseLine(“CS 4400,1405,1455,1605,1655”)
print(courses)

{'CS 1803': [(1505, 1555), (1405, 1455), (1305, 1355)], 'CS 4400': [(1405,
1455), (1605, 1655)]}

readCSVFile:
Note that the functionality of the readCSVFile() function depends heavily on
parseLine() working correctly; it is advisable that you have parseLine() coded
before testing readCSVFile().

Assuming at the beginning of this test the dictionary is empty and the dictionary is
named courses. This test uses the included courseTimes.csv file.

readCSVFile(“courseTimes.csv”)
print(courses)

{'CS 1803': [(1505, 1555), (1405, 1455), (1305, 1355)], 'CS 4400': [(1405,
1455), (1605, 1655)], 'MATH 2402': [(1405, 1525)]}

printDataStruct:
Assuming at the beginning of this test the dictionary is empty.

insertIntoDataStruct(“CS 1803”, “1505”, “1555”)
insertIntoDataStruct(“CS 1803”, “1405”, “1455”)
insertIntoDataStruct(“CS 1803”, “1305”, “1355”)
insertIntoDataStruct(“CS 4400”, “1405”, “1455”)
insertIntoDataStruct(“CS 4400”, “1605”, “1655”)
printDataStruct()

CS 1803:
1505 – 1555
1405 – 1455
1305 – 1355

CS 4400:
1405 – 1455
1605 – 1655

It is strongly recommended you also write your own additional test cases which include
blank (whitespace) lines in the CSV file, as well as a longer set of inputs.

Grading:
You will earn points as follows for each function that works correctly
according to the specifications.

insertIntoDataStruct() 30
Converts start and end times to integers 5
Properly handles input when course already exists 13
Properly handles input when course does not exist 12

parseLine() 20

Properly handles the course name 5
Properly handles all time pairs in the line 10
Properly calls insertIntoDataStruct() 5

readCSVFile() 30
Properly handles invalid file name 6
Properly handles multiline files 6
Properly ignores whitespace lines 6

 Properly passes lines in file to parseLine() 6
Closes the file before exiting the function 6

printDataStruct() 20
Output properly formatted 10
Output contains all entries in dictionary 15

