
inserted to enhance training and testing. Exporting the
classifier (the output arrow) is trivial. Since our
implementation is written in Java, our classifier is simply
serialized.

Figure 2 – The classification design loop

The most interesting issues with the development of
Crayons lie in the interactive loop displayed in Figure 2.
To accomplish the fast and focused UI principle, this loop
must be easy and quick to cycle through. The cycle can be
broken down into two components: the UI and the
Classifier. The UI component needs to be simple so the
user can remain focused on the classification problem at
hand. The classifier creation needs to be efficient so the
user gets feedback as quickly as possible, so they are not
distracted from the classification problem.

USER INTERFACE
In designing a classifier interface there are four pieces of
information that the designer must be able to manipulate.

1. The set of classes or “crayons” to be recognized,
2. The set of training images to be used and in

particular, the current training image that the
designer is trying to classify,

3. The classification of pixels as defined by the
designer (the manual classification),

4. The classifier’s current classification of the pixels
(the feedback).

The primary metaphor for Crayons is painting with user-
defined classes as “crayons”. [To emphasize the paint
metaphor, we use the verb “paint” rather than the
traditional “color” with crayons.] The designer can create
as many crayons as desired, associate a color to that
crayon, and then paint with them over training images in
the same fashion as a typical paint program.
Suppose we are trying to create a hand tracker [21, 33].
Figure 3 shows the control interface that allows the
designer to create classes. For the hand tracker we have
two output classes or crayons: Skin and Background. The
Crayons tool always provides a “Nothing” crayon, which is
completely transparent. The paint layer is initialized to
“Nothing” for every pixel. The “Nothing” crayon can also
be used to undo or erase errant manual classifications. As
previously stated, the designer can create as many classes
or crayons as desired by giving each a name and an
associated color.

Figure 3 – Creating Class Crayons

In order to understand the classification process, the
designer needs to see the underlying image, the pixels
classified by the designer, and the pixel classification of the
currently trained classifier. This information is provided in
three layers where the training class layer and classifier
feedback layer are semi-transparent. All three of these are
layered on top of each other, so the user can easily see how
they coincide. This helps the user remain focused on the
task, and constantly reminds the user of the goal to have a
correctly classifying classifier.

Figure 4 – The Crayons User Interface

Figure 4 shows the designer having painted some
Background in a dark blue and some Skin in a light pink.
Note that the user does not need to color the entire image.
By coloring only a few pixels as in Figure 4, the classifier
then generates its best classification for all of the pixels in
the image. In Figure 4, the classifier feedback is quite
transparent and therefore hard to see unless you know what
you are looking for. We resolve this by allowing the user
to control the opacity of the paint layer and the classifier
feedback layer. The user may want to see more of the
underlying image, to paint with the crayons, or perhaps,
they would just like to get an overall idea of what the
classifier looks like.

Figure 5 – Varying layer opacity

In the left-most image of Figure 5 it is easy to see the
training paint but the classification is obscure. In the center
image, paint and classification are all visible and one can
still see that the edges of the hand are not correctly

