

Welcome to CS6452!

Keith Edwards
keith@cc.gatech.edu

Introductions!

! Name
! What program
! Why this class?

Some Preliminaries

Nuts and Bolts

! This is the second required class in the HCC Ph.D. program
! Designed to ensure a basic level of competency in building medium-

scale programs
! Understanding of software architectural design considerations
! Best thought of as the second part of CS4452 (which is CS1315++)
! In HCC terms, should give you the skills needed to do your

computation portfolio requirement
! Technical reading
! Technical writing
! Technical doing
! Technical talking

! Also substantial HCI MS representation

Setting Expectations

! What does ÒPrototyping Interactive SystemsÓ mean, anyway?
! The course title has caused a lot of confusion:

! Not about using prototyping tools (e.g., Director)
! Not about evaluating prototypes (take the HCI class for this)
! Instead, about the rapid creation of interactive systems through

programming

! Emphasis on scripting languages and common technical idioms that
are useful across a breadth of CS

! Covers both theory and practice of pragmatic systems building...
! ... as well as skills in describing/arguing/defending your design

choices

Programming and Prototyping

! What does programming have to do with prototypes?
! ItÕs the Þnal (and most time consuming) stage of the prototyping

lifecycle
! Gives you the most high-Þdelity approximation of a ÒrealÓ system
! Useful for communicating with end-users, other developers, etc.

! How is prototype programming different than other programming?
! Focus on rapid creation of basic functionality, appearance, behavior
! Less on dealing with errors, boundary conditions, performance, etc.

Focus on Practice

! Software development with a focus on breadth, not depth
! Skills to produce high-Þdelity interactive prototypes
! Skills to produce code that makes an argument: demonstration of

concepts
! HCC: skills to complete the computation portfolio requirement
! Skills in talking and writing about code
! Pragmatic development:

! Scripting languages (Jython)
! Integration with non-scripting languages (Java)
! Multi-Þle development
! Command line tools
! GUIs, networking, threads, databases, web services, security, ...

What Do We Mean By Theory?

! Understanding why things work the way they do
! Understanding competing architectures and approaches

! E.g., client-server versus peer-to-peer
! E.g., different models for GUI programming

! Not just building systems for you to evaluate...
! ... but understanding the design choices embedded in systems, and

what those implications are for HCC
! Reading and understanding technical papers for their (often implicit)

design choices

My Goals for this Class:
HCC and HCI students

! Hone your programming chops to the point where a medium-sized
project (say, 5000 lines of code) is not a terrifying prospect
! Learn how to decompose a problem into manageable chunks
! Learn enough of the ÒidiomsÓ of programming to be able to do more

than just simple, straight-line programs
! Impart a few Òmeta skillsÓ in the process

! Communicating about software
! Communicating through software
! How to appropriate (read: steal) othersÕ code and adapt it
! Basic software project management

! Basic understanding of a range of systems architectural choices

Course Structure

Course Structure

! Course is structured as a set of ÒmodulesÓ
! Each module covers a subject area in CS
! Modules align with topics needed to complete a part of the project
! Readings cover advanced topics related to each module

! Each module is roughly 2-3 weeks, but weÕll adapt as needed
! Roughly:

! First half of class is lecture, mostly focused on practical concepts
! Second half is either paper discussion, or problem solving/lab
! Occasional: invited guest lectures on topics of interest

! Everybody works individually, but weÕll share experiences
! Short in-class presentations toward the end of each module
! Describe the architecture of a portion of your prototype, how you

solved a problem, what design choices were available, etc.

Modules

I. Asynchronous Programming
! Event-based programming, callbacks, polling

II. Distributed Applications
! Idioms of networking, client-server, peer-to-peer

III. Web Services
! XML, SOAP, using web services in practice, integration with Java code

IV. Data Management
! Logging, instrumentation, data storage and querying, databases

V. Advanced Topics (if time)
! TBD, but candidates include: security, hardware, research in prototyping

The Project

! This is a project class
! We will do one project that lasts the duration of the semester

! IM/Chat program, probably 2000-3000 lines of code
! Single-person ÒteamsÓ

! Assumes Jython knowledge at about the level of CS4452
! Good mastery of control ßow, variables, scoping
! Basic object-oriented programming concepts
! How to use JES (or another development environment, preferably the

command line)

Readings and Homeworks

! WeÕll have a number of readings through the semester
! Papers selected to build on topics covered in each module
! Technical papers: UI software, networking, applications, etc.

! Homework: written, one-page summaries of each paper
! IÕll provide a list of criteria IÕd like you to touch on in your summaries

Take Home Writing Assignments

! Exact number TBD
! Longer written assignments based on either the readings or the

project
! Possible examples:

! Write an Òimplementation sectionÓ describing the design choices
inherent in your project

! Take three of the assigned papers and contrast/critique the technical
assumptions made in each

! Will likely be take-home

Grading Criteria
Project Implementation: how functional is your prototype? How
well does it work? How well does it demonstrate the concepts
taught in class?

50%

Reading Summaries 20%

Written Assignments 20%

In-class presentations 10%

TodayÕs Class

! Outline for the remainder of todayÕs class:
! What is prototyping?
! Why prototype?
! The kinds of prototyping
! The Þrst project assignment
! Practicum: getting started

What is Prototyping?

! The creation of artifacts that can be used to:
! Assess the utility and usability of a proposed system, through evaluation
! Communicate design alternatives with various stakeholders

! The ÒcustomerÓ
! Engineers/builders
! Management

! Ideally, a prototype should
! ... be quick enough to build to allow easy experimentation
! ... have Þdelity appropriate to demonstrate the desired concepts

Why Prototype?

! In two words: risk mitigation
! From an evaluation perspective, allows you to get feedback on

designs before thereÕs a huge investment in it
! From a design perspective, allows you to quickly experiment with

alternatives, cheaply

An Example

! When interfaces go bad...

! WhatÕs wrong with this?

An Example

! When interfaces go bad...

! WhatÕs wrong with this?
! The ÒFromÓ Þeld is editable, but doesnÕt do anything!
! LetÕs you change the Þle extension without warning
! Is modal!

! Could this have been saved by prototyping?

Another Example

! Not just restricted to applications...

“If you are seated in an exit row and you
cannot understand this card or cannot
see well enough to follow these
instructions, please tell a crew member.”

One more...

! Alarm Clock, a la Terry GilliamÕs Brazil

Kinds of Prototypes

! There are a range of prototyping techniques, for a range of goals
! Ideally:

! Start with lightweight prototypes to communicate the Òbig pictureÓ
! Move to more realistic ones as risk factors are mitigated and you need

to communicate about the details

! Fidelity in prototyping
! Fidelity is the level of detail in a prototype
! Low-Þdelity: many details missing, maybe ÒsketchyÓ apperance
! High-Þdelity: prototype looks like the Þnal system on the surface

Low-Þdelity Prototyping

! The lowest of the lo-Þ: paper prototyping
! If youÕve ever designed a UI, this is probably something youÕve done

informally
! Capture overall layout

! Storyboards
! From the Þlm and animation arts
! Capture behavior, not just appearance

! Goal: keep the design/implement/evaluate cycle as tight as possible
! These techniques do it by keeping the implementation phase small

Example: Simple Paper Prototype

1. Get image of iPaq
2. Cut out screen area
3. Make lots of copies
4. Fill in copies as needed

! Can be turned into storyboard
! Annotate controls with numbers
! Numbers lead to other sheets

A Few More Examples

Developing and Evaluating
Low-Þdelity Prototypes

! Basic tools of the trade:
! Sketch large window areas on paper
! Put different screen regions (anything that changes) on cards
! Overlay cards on paper

! The copier is your friend:
! Can easily produce many design alternatives

! Evaluation: You can ÒrunÓ your paper prototype
! The designer ÒsimulatesÓ the computer in front of a user
! Need to be ready for any user action (drop-down menus, etc.)

High-Þdelity Prototyping

! Once again, a range of practices that give you higher Þdelity in
exchange for higher implementation time

! Tool-based approaches
! GUI builders
! Code-based approaches

! Downsides:
! Cost is the obvious one
! Also:

! Warp perceptions of the customer: elict more comments on color,
fonts, etc.

! Attending to details can lose the big picture

Tool-based Prototyping

! Examples: Director, Flash, the Web

! Pros:
! Faster than writing code
! Easier to incorporate changes
! Often more reliable (hit the back button, rather than program crash)

! Cons:
! No easy way to transition to a Þnished product
! May not allow access to the full range of features available to the

Þnished product (e.g., may not be able to prototype networking, or
certain platform-speciÞc features)

Example: Director

! Timeline editing, palettes of graphical widgets, etc.
! Emits a Þle that can be executed on any program that has the

required runtime engine

Example: OmniGrafße

! Drag graphics that depict GUI elements
onto canvases

! Canvases can be linked
! Example: Click on element A on canvas 3

goes to canvas 4
! Can emit an interactive set of web pages
! Mac only, unfortunately

Example: Web Prototyping

! Web-based version of lo-Þ prototype
shown earlier

! ÒControlsÓ simply link to another
page

! Allows Þne-tuning of text, graphic
size, after behavior has been tested
on paper

! Can be done by hand or by web
development tools

GUI Builders

! A special class of tool for creating GUI systems
! Drag-and-drop ÒwidgetsÓ from a palette
! Emit code that you then edit: Þll in the blanks

! Pros:
! Facilitate reasonably good transition to the Þnal product
! What you get looks exactly like what the Þnished product will look like

! Cons:
! Still have to know a lot about programming
! AND have to know about programming peculiarities in the GUI builder

itself (can be very opaque)

Example: BX Pro

! Drag and drop graphical ÒwidgetsÓ onto a screen canvas
! Set properties of widgets

Code-based Prototypes

! This is what weÕll be focusing on, after this week
! Many approaches:

! Production languages (Java, C++, etc.)
! Scripting languages (Jython, Python, Visual Basic, AppleScript, TCL)

! There is often a fuzzy line between code and the use of tools
! Can often Òdrop downÓ to code to augment behavior

! Pros:
! Very high Þdelity
! True interactivity
! Good transition to Þnal system

! Cons:
! Cost, learning curve

Evaluating Hi-Fi Prototypes

! Some hi-Þ prototypes are hi-Þ-enough that standard HCI-style
analyses work Þne

! But what if you donÕt have all the necessary behaviors implemented?
! Answer: fake it!
! Wizard of Oz technique

! You are the person Òbehind the curtainÓ
! Provide simulation of missing implementation details as necessary
! Especially important for features that are hard to implement

! E.g., speech or handwriting recognition, activity sensing, intelligent
interfaces, etc.

Example: WoZ

! Wizard watches human input and explicitly controls the computer

Wizard (behind the curtain) Unsuspecting User

This WeekÕs Assignment

! Create a lo-Þ paper or web prototype of the UI for the project
! This prototype will serve as the basis for the interactive UI we will

create in the Þrst module
! Prototyping as a design tool, not an evaluation tool

! Requirements:
! Should show every screen/window that is reachable in the UI
! Identify all graphical elements
! Identify transitions between elements
! Should be sufÞciently detailed that you could ÒrunÓ a user through it, by

playing computer

! Submit to me by next Monday

Requirements for IM GUI

! Provide list of all online users
! Allow selection of one (or optionally, more) users
! Provide some control to initiate a chat

! Requested users should receive an invitation window
! Allow them to accept or reject the invitation to chat

! For each chat a user is engaged in, one chat window
! Text area that shows chat transcript of all parties
! Area to enter your text
! Provide some control for disconnection

! Other members of chat should receive notiÞcation upon disconnect
of another chat member

Practicum

Getting set up for development
! Install Java, if you don’t already have it

! Macs: comes with OS X
! Windows, Linux: See class website for URL

! IÕll be using Java 1.5.0; youÕre welcome to use earlier versions at your
own risk

! Either the full Java Software Development Kit (JDK) or Java Runtime
Environment (JRE) should be sufÞcient

! Downloading Jython
! http://www.jython.org, click on Download (on the left)
! Jython 2.2.1 (or later)
! Should run on any platform that supports Java 1.2 or later

Practicum, contÕd

! Development environment
! IÕm agnostic about which (if any) development environment you use
! Eclipse: much more complicated, but more ÒrealÓ

! http://www.eclipse.org
! JEdit

! http://www.jedit.org -- used with some success last time
! Others:

! YouÕre more than welcome to use a simple text editor and command-
line Jython

! If youÕre unsure what to use, or new to programming, my suggestion
is to use JEdit

