
BE!!HumanFactorsinComputingSystems CHI’94* “Cekbv7iIIglruedepde~~ce”

The Movable Filter as a User Interface Tool

Maureen C. Stone, Ken Fishkin, Eric A. Bier

Xerox PARC, 3333 Coyote Hill Rd., Palo Alto CA 94304

E-mail: {stone, jishkin, bier} @pare.xerox.com

ABSTRACT

Magic LensT’l filters area new user interface tool that combine

an arbitrarily-shaped region with an operator that changes the

view of objects viewed through that region. These tools can be

interactively positioned over on-screen applications much as a

magnifying glass is moved over a newspaper. They can be

used to help the user understand various types of information,

from text documents to scientific visualizations. Because

these filters are movable and apply to only part of the screen,

they have a number of advantages over traditional window-

wide viewing modes: they employ an attractive metaphor

based on physical lenses, show a modified view in the context

of the original view, limit clutter to a small region, allow easy

construction of visual macros and provide a uniform paradigm

that can be extended across different types of infomlation and

applications. This paper describes these advantages in more

detail and illustrates them with examples of magic lens filters

in use over a variety of applications.

CR Categories and Subject Descriptors: 1.3.6 [Computer
Graphics]: Methodology and Techniques—interaction
techniques; H.5.2 [Information Interfaces and
Presentation]: User Interfaces—interaction styles; 1.3.3

[Computer Graphics]: Picture/Image Generation—viewing
algorithms; 1.3.4 [Computer Graphics]: Graphics Utilities—
graphics editors

Key Words: viewing filter, lens, transparent, visualization,

editing, macro, graphics

INTRODUCTION

In many applications, users are faced with the problem of

quickly exploring and modifying data through a graphical user

interface. In this paper, we present a new type of tool for this

task, called the magic lens filter. A magic lens filter is a

movable, arbitrarily shaped region plus a filter that affects the

appearance of structures viewed through it. This operator can

be quite general, accessing the underlying data structures of

the application and reformatting the information to generate a

modified view. Overlapping lenses compose their filters,

providing a direct-manipulation way to produce customized
views. Magic lens filters can be combined with click–t/v-ougJr

tads,spatially bounded regions that modify input directed

through the region. Magic lens filters and click-through tools

have been previously introduced as components of the See-

Through Interface systemT’l [5]. This paper will focus on the

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date eppear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

CH194-4/94 Boston, Massachusetts USA

Q 1994 ACM 0-89791 -650 -6/94 /0306 . ..$3.50

use of magic lens filters as a tool for exploring and modifying

information. We present a wider range of examples in this

domain than previously published, and emphasize the specific

advantages of lenses as a user interface tool beyond their use

in the see-through interface.

Magic lens filters have a number of potential advantages over

traditional methods of generating alternate views and filtering

information. Binding the filter to a spatially bounded,

mowrble region creates an easily understood user model based

on experience with physical lenses. Limiting the view to a

local region preserves context and can reduce clutter. Lenses

can be purameterized, and can have urbirrary shape. The user

can position different filters simultaneously over different

parts of the displayed information to get multiple,

simu/raneous views. Lenses that overlap compose their

effects, making it easy to create visua~ macros, These macros

can be temporary, or can be “’welded together” to create a

comDound lens that encatxwdates a set of filters and

parameters. Finally, the m~gic lens metaphor can be used

uniformly across applications.

Magic lens filters perform a wide variety of operations that are

currently performed by other user interface techniques,

including: modifying the way a picture or solid model is

rendered on the screen (e.g., wireframe versus shaded),

querying application state (e.g., what font is this?), querying a

database, activating alignment aids (e.g., turn on the grid), or

identifying a region of interest (e.g., identifying the rectangular

region of a VLSI drawing to work on next). By unifying these

operations into a single technique, magic lens filters can

reduce the time needed for users to learn to use a system and

increase the consistency of the user interface. Users will more

quickly learn to use new applications because familiar lenses

can be applied to them. Conversely, programmers can add

functionality to many applications at once by implementing a

new filter.

The lens metaphor provides a rich set of useful interface tools,

We have only begun to explore this area. Two exploratory

implementations exist within the Cedar programming
environment [20], which runs on SunOS; one focuses on

graphical editing, using the Multi-Device Multi-User Multi-

Editor (MMM) framework [6], and the other uses lenses for

visualizing structure in text documents. A third

implementation focused on visualizing maps is implemented in
C++ in the X window system [16].

After describing the basic principles of operation of lenses, we

describe in more detail each of the advantages their use

provides, illustrated with examples. Further sections then

describe the implementation, discuss related work, and present

our conclusions and plans for future work.

306

Boston,MassachusettsUSA* April24-28,1994 HumanFac(orsinComputiigSystems
I!$i?

PRINCIPLES OF OPERATION

The basic operation of a magic lens filter is to read an

underlying model of some data, create a new model based on

the lens viewing operation, and format the new model to

present a new view of the data within the lens boundary or

viewing region. The viewing region selects a portion of the

model to operate on, called the input region. The size and

shape of the input region is defined by the viewing region

together with the viewing operation. It may be the same size

as the input region, or different, as in a magnification lens. For

a 3D model, the input region is a cone-shaped volume defined

by the eye point and the viewing region.

Overlapping two lenses composes their functions in bottom to

top order. There are several ways to implement composition

[5]. For this paper, we assume that lenses compose by copying

and modifying a sequence of models. The model output by the

lower lens is the input to the upper lens.

In this context, model is defined quite broadly, including both

data structures and application state. Furthermore, a model

may incorporate a variety of data types from a variety of

applications. For example, if a lens lies atop three other lenses

and two applications, it receives input from five sources.

Many types of lenses are more effective if they can be

parameterized by the user. For example, a magnification lens

may have a slider along its edge, through which the user may

change the magnification factor,

To illustrate the operation of magic lens filters, figure 1 shows

two lenses for viewing a text document where each paragraph

and character can have attached properties that affect the

documents’ appearance. Therefore, a specific appearance can

be generated in a number of ways. For example, the word

“Selection” may appear in a bold typeface because the

paragraph style indicates it, or because there are “boldface”

properties attached to the characters. In the figure, the upper

lens boxes all characters that have properties attached, making

it easy to see that the word “Selection” has none, unlike the

words “MIDDLE” and “RIGHT” below. The lower lens marks

whitespace with its underlying representation. Spaces are

marked with small dots while tabs are marked with small

arrows, similar to the global mode in Microsoft Word.TM

Applying this operation locally reduces the visual clutter. The

lenses overlap, showing composition of their effects.

Selection

The mouse has three buttons named LEFT,

MIDDLE, and RIGHT c xresponding to their
ph sical la out. Here are the selection commands

~-n

Figure 1. The upper lens highlights text with
properties and the lower lens shows the
representation of whitespace.

EXAMPLES

In this section, we provide examples that illustrate the use of

lenses as a user interface tool. The examples are grouped into

categories based on the advantages provided by their use.

Most lenses incorporate more than one of these advantages so

we have placed our sample lenses within whichever category

we feel they best illustrate. These figures are intended to

emphasize the functionality of these examples as opposed to

the visual aspects of their design, There are many different

and better designs for these examples, especially as we have

deliberately avoided using color to accommodate the

limitations of these proceedings.

Most of the illustrations in this section are snapshots of actual

implemented examples, although the map examples have been

touched-up slightly with a graphics editor to improve the

presentation. Figures 1, 3, 4 and 15 are illustrations of

straightforward extensions to the existing text and graphical

editing implementations. The examples in figures 9 and 16

require access to external databases. We have not

implemented this type of tool, although we believe they would

be straightforward to produce.

Local Views

A common problem in applying viewing operations to data is

restricting the area of effect for that operation to a “selected

region” or “region of interest”. Since all magic lens filters

have a restricted region of operation, the “region of interest”

becomes a special case of the lens metaphor. Some of the

advantages of local views as implemented by magic lens filters

are described in this section.

Details in context

Magic lens filters can show detail within a restricted region

without losing the context provided outside the region. For

example, figure 2 shows a map of the major roads in a section

of Santa Clara county created from the TIGER/Line TM format

provided by the U.S. Census Bureau [8]. The lens shows all of

the roads in its region.

‘“’-’ ‘—””-”””~”- ?f

I L
~.

::?’%.< ., ., .
‘, Y

-..= >.*.’G+-W - , : *=.*.*, . ..-.-” w $W?.-’

Figure 2. A lens that provides a more detailed
roadmap.

Reduce clutter

As a lens affects only a local area, its filter can generate a view

that would be too cluttered if applied globally. For example,

consider figure 3, which shows the font associated with each

text string. It is difficult to position the labels without
obscuring the underlying text, and it is difficult to read the text

and labels together. With a bounded region, the layout

problem can be simplified. While the static view is difficult to

read, such a filter dynamically applied is easy to interpret

because the user can easily switch between the filtered and the

unfiltered view by moving the lens.

307

HumanFactorsinComputiigSystems CHI’940 “Celebruri)~gi)~(erdepewiwce”

for each button:

Figure 3. Labels to identify the font in a text
document. The underlying text is from figure 1.

Figure 4 also shows the advantage of a locally bounded filter.

This lens was designed to visualize the gravity algorithm used

in snap-dragging [7]. Each dot indicates a potential cursor

position. The line from the dot to the underlying shape

indicates the point that would be selected using gravity.

Applying this filter globally would be computationally

expensive and would lose any context provided by the area

colors of shapes.

Figure 4. Gravity algorithm debugging lens. Lines
show where cursor positions will snap.

Other clutter-reducing lenses are magnification lenses or

tisheye lenses that increase the amount of detail as well as

increasing the size of the view. Such a lens could control the

zooming feature of Pad [15] that makes it possible, for

example, to read notes written “between the lines” of a

document. Another variation would adjust the level of detail

to control access to sensitive information.

Multiple simultaneous views

Magic lens filters go beyond regions of interest in that there

may be several of them active simultaneously, possibly

showing different effects. Figure 5 shows two lenses

positioned over an application showing map data. Each shows

local detail. Such a map would be useful for illustrating how

to get from one location to another.

Multiple lenses need not be of the same type. For example, a

user who wishes to copy an object from one part of a

document to another could have a magnification lens over the

current object location to help in selection, and a grid lens over

the destination location to help in placement.

Queries have a built-in geometric attribute

The input region of a lens serves as a built-in geometric

attribute, allowing the user to specify an operand for an

operation, the operation, and the output region for that

operation simultaneously. For example, the user could

position a lens over a portion of a map and show only roads

that cross the lens boundary. As the lens region influences the

query, the user may wish to alter the lens shape to further tune

the query. To extend the above example, the user may wish to

only show roads which exit an irregularly shaped housing

subdivision. Accordingly, lenses can be sized and shaped to

refine their semantics. We have implemented lenses that can

be arbitrarily shaped, although we have not yet provided a

general, interactive user interface for controlling shape; the

user may select from a small palette of pre-defined shapes, and

can resize shapes by dragging the corners or edges.

Figure 5. Lenses showing detail in two different
locations.

We have also experimented with shaped lenses for artistic

effects. Figure 6 shows the words “Magic Lenses” overlaid by

a magnification lens and a lens that shows a wireframe view.

In this situation, the lenses are intended to remain as a
permanent part of the scene. However, the fact that the
illustration is constructed of text plus two lenses makes it

easier to edit the text than if the text geometry had been

modified to produce the lens effects.

Da ic Lens~

Figure 6. The Magic Lenses logo.

Lenses can be included as a semi-permanent part of the

presentation in domains other than graphics. One common use

of data visualization systems is to make illustrations of the data

(e.g. exploded or wire-frame views). Carefully shaped lenses

can be used to create these illustrations. These illustrations

can be displayed statically (e.g. printed), or presented

interactively.

Coordinated Alternate Views

There are many ways to display complex information.

Traditionally these display modes are applied either globally or

to the current selection. In the latter case, the new view is

often displayed in a second window. Magic lens filters can be
used to encapsulate these modes in movable regions, making it

easier to coordinate the different views. For example, a lens

could be used in two-view editing systems such as Juno [13]

or Tweedle [1] or two-view user interface editors [2] to

visualize one representation in the context of the other.

Magic lens filters can also be used as a debugging tool for

programs that display data by displaying a textual description

of the data. The text may be either the original representation

or an intermediate form designed for debugging. Figure 7

shows a lens that displays the description of a selected segment

of road.

308

Boston,MassachusettsUSAo April24-28,1994
l!%?!

HumanFactorsinComputiigSystems ,

Figure 7. The Iens shows the text tags for the
indicated segment of road.

In applications such as astronomy, medical imaging,

comparative cartography and structural analysis, multiple

images of the same object are compared to evaluate different

characteristics of the object. Magic lens filters can be used to

provide coordinated views of these images. Figure 8 showsa

pseudo-color view indicating the sign and relative magnitude

of curvature in the context of a shaded view of a 3D object.

In a hypertext system [14], lenses cotddbe used to highlight

links and enable their operation. This provides a solution to

the visual clutter caused by making the links always visible.

Lenses could also be used to activate the links. In this case,

the lens could display either the attributes or contents of the

destination node.

Visual Macros

If two lenses overlap one another, their effects compose in the

area of intersection. For example, if a lens filters a database

for certain characteristics then the ability to overlap and

compose lenses provides a way to incrementally and visually

construct complex database queries by direct manipulation.

The advantage of lenses over conventional methods of

defining these queries is their visual nature. The resulting

visual macro can then be saved as a compound lens. For

example, figure 10 contains two lenses, one which emphasizes

water, and another which emphasizes major roads. In their

area of overlap, they emphasize both.

Figure 8. Gaussian curvature pseudo-color lens.
(Original images courtesy of Steve Mann)

Another example of alternate views that benefit by being

shown in context is views that display temporal changes. For

example, a lens could be used to show a region of a map as a

function of time, making it easy to compare the current

geography with that of ten years ago. Similarly, a lens could

be used to show previous versions of text in an edited

document. Lenses could be placed over a video frame in a

video exploration application [12], each showing part of that

frame at some temporal displacement.

An alternate view may provide a link to a separate but related

object in a different model. For example, figure 9 shows a lens

that displays the definition of the word selected through it.

The lens starts out transparent and at any convenient size. The

user clicks through the lens to select a word. The lens then

resizes itself to display the definition underneath the line

containing the selection, as shown in the figure. The original

line of text is visible, but the text under the definition is

obscured.

Selection

The mouse has three buttons named LEFT,

MIDDLE .&MJ&E.IQ#T, OAwe.nno din o tn.thp~r~,--,---”-e =,. ,-”-’0 .“ ------ -,,

physical layout. Here are the~ com~ands

for each sellecltion n. La. The act of selectingor ;
the fact of being selected:choosing: choice. i
b. That which is selected.
r,w.<,,,-,>>-.,,,9,,.7,,- ,“. :$.,“,,/,,, .. ,,.. / , ,,,,,,!

Figure 9. A iens displaying the definition of a word
selected through it.

A similar lens positioned over a function call could display the

function definition, or the function code itself. One positioned

over a bibliographic reference could show the full reference.

%+ kLIM ‘.
~~p& ,

* ‘“”--”i - Rtii~hlight Water ‘~. -., ~, J

Figure 10. Composing lenses to show waterways
(dashed lines) and major roads (bold lines).

Safe Exploration

Magic lens filters allow users to preview changes to a model,

and to explore different views of that model without

destroying or modifying the underlying data. For example, the

lens in Figure 11 reverses the depth order of objects in a 2.5D

graphical editor. Under the lens we can see hidden objects

while simultaneously seeing the standard presentation outside

of the lens.

Figure 11. (a) An illustration made of layered shapes.
(b) The lens shows the shapes in reverse order.

Similarly, the lens in Figure 12 scales objects based on their

depth. The effect is to provide a 3D perspective view of their

relative positions, enabling the user to see around the objects

309

HumanFactorsinComputingSystems

in front to the ones behind. Because the view changes with the

position of the lens, this lens is especially effective in motion.

Magic lens filters can also be used to explore true 3D scenes.

For example, an exploding parts lens would show an exploded

view of the objects viewed through it, or be used in molecular

visualization as in the VIEW system [4].

Figure 12. 3D depth filter applied to three overlapping
objects. (a) The large rectangle is the filter. (b) The
filter moves right, changing the view.

Enhance Editing Operations

So far, we have described only the use of magic lens filters to

modify output. However, the filter can also be used as part of

a c[ick-througk tool, which handles input events such as

mouse clicks. To use such a tool in our system, the user first

positions it over an object of interest with the non-dominant

hand using a trackball. Next, the user points at an object

visible in the tool’s output region, using a cursor controlled by

a mouse in the dominant hand. The tool inverts the effect of

the filter to allow the user to select the actual object behind the

filter. In addition, the tool may apply an operation to the

selected object. In the resulting tool, the filter and input

handling work together; the filter provides a customized view

that makes it easier to perform the tool’s operation.

Click-through tools with magic lens filters can be used to

select objects that would otherwise be difficult to select. For

example, figure 13 shows a lens that locally shrinks each

object to separate coincident edges. A user wishing to select

one edge of a particular shape can click through this lens to

select the edge unambiguously.

Figure 13. The local scaling lens. (Tiling
Wyatt)

by Doug

Figure 14 shows a tool with three lenses that display grids.

Clipping the grids to a lens reduces visual clutter. Combining
the three grids into one tool makes it easy to switch between

them; the user just moves the tool to apply a different grid.

Figure 14. Three grid lenses.

Figure 15 demonstrates a lens that shows recently deleted

objects in a graphical editor: the leftmost shrub, deleted from

the scene (a), appears under the lens (b). The user can click

t
t
t

1

,

1

1

hrough the lens to restore the object to the scene (c). Other

:xamples of lenses and click-through tools for editing have

)een previously published [5].

Figure 15. The previously deleted bush in front of the
house (a) is visible in the lens (b) and can be restored
by clicking on it (c).

Platform for Inter-application Tools

Magic lens filters can be moved from one application to

mother. As a result, the investment that a user puts into

learning to use a filter will pay off in many contexts. Filters

[hat work well across many applications include filters that
magnify, change colors, or highlight objects based on

graphical properties such as size and color.

Filters may also tune their effect based on the specific

application in which they are applied. For example, figure 16

illustrates a “highlight schools” lens positioned over two

different applications. In the map viewer on the left, school

buildings are shown shaded, with bold outlines. In the text

viewer on the right, words that refer to schools are shaded.

------- -------
1’ 4 I

Figure 16. A “highlight schools” lens (dashed
rectangle) over two different applications.

In addition to providing a consistent interface for performing

operations in both of these applications, the lenses allow the

user to strongly decouple the conceptual effect of an operation

from the i)jtple}}le]~r(~tio~~ of that operation. The “highlight

schools” operation may be implemented quite differently

within the two applications.

IMPLEMENTATION

In this section, we give a general outline of S’oftware
architectures that support magic lenses. The architectures vary

depending on which types of lens filters they support, and on
the lens user interface.

Types of Lens Filters

There are three types of lens filters to implement: appearance-

altering, application-specific, and multiple-application.

Appearance-altering

Applications in a graphical environment typically produce

their output by a set of procedure calls to a low-level graphics

library that draws lines, polygons, circles, text, and so forth.

The X server, the Cedar Imager, and the Microsoft Windows

GDI are examples of such packages. Filters whose semantics

can be expressed as modifications to calls to these primitive

310

Boston,MassachusettsUSA~ April24-28,1994 HumanFactorsinComputiigSystems

drawing procedures can be implemented by extending the

drawing package. A lens is implemented as a monitor which

traps or “ambushes” drawing calls within a region

corresponding to the output region of the lens and alters the

graphics calls within that region. For example, a “turn red”

lens would ambush a “set color” command and set its

parameter to “red,” within the given region. This architecture

supports composition by recursively calling the modified

display routines.

Such lenses are invisible to applications that move under them;

the application(s) need not be modified. However, this

architecture does require the modification of a fundamental

part of the system, and lenses of this type cannot perform

higher-level semantics. For example, the “highlight major
roads” lens of figure 10 could not be implemented as the

concept of a “road” is application-specific.

Application-specific

Lenses can be implemented entirely within a single

application, with lens filters unique to it. The application is

responsible for computing lens semantics and drawing lens

output .

Multiple-application

The most difficult class of lens to implement is portable across

applications, yet has semantics specific to each. The

“highlight schools” lens of figure 16 is such a lens. Its

implementation requires knowledge of the semantics of the

data structures within two different applications.

The lens semantics can be implemented in two very different

ways. If a standard language exists for reading and writing

application objects, then the lens filter can be implemented as

a single entity. If it is over two applications, it will receive

two data models as input, describing two semantically distinct

sets of data, but both expressed in the same format. This is

similar to what windowing systems presently require of

applications which support clipboards, but lenses with more

powerful semantics may require a richer object description

than that presently found in clipboards.

If no such standard language exists, then the lens may be

represented to the user as a single lens, but imp[emenfed as a

set of application-specific lenses, one for each application

region over which the lens finds itself. For example, in figure

16 (a lens whose left half is over a map viewer, and whose

right half is over a text editor), the left half of the lens would

be presented as a lens to the map viewer, and the right half of

the lens would be presented as a second lens to the text editor.

The parts of the lens which are not over an application must be

handled specially.

User Interface

The user interface of a lens may either be supported by a

specific application, or by the windowing system. With the

first approach, the application is responsible for creating,

placing and moving the lenses, and determining when lenses

must be repainted. Typically, such lenses cannot be moved

outside the application boundary. With the second approach,
the window system creates, places, and moves the lenses.

However, the messages provided by the windowing system

must be augmented to incorporate the more complicated

semantics required by magic lens filters. Multiple-application

lenses require the second approach so that the lens may be

moved outside of any particular application.

Our current implementations incorporate all of these

implementation classes. The Cedar environment has a

common address space and data format for all applications and

a ubiquitous, easily-modified graphics library, that makes it

easy to explore lenses that operate across applications. The

UnixlX environment, with its multiple address spaces and

standard window manager, has been the testbed for exploring

application-specific lenses in the context of a multi-address

space window environment.

RELATED WORK

The concept of using a filter to change the way information is

visualized in a complex system has been introduced before

[10, 11, 21]. Recent image processing systems support

composition of overlapping filters [18]. However, none of

these systems combine the filtered views with the metaphor of

a movable viewing lens.

The Pad system [15] contains the idea of portals, magnifying

glasses that provide access to different parts of the Pad

information plane. Portals can also contain filters that modify

the view of objects below them, making them similar to magic

lens filters. Portals provide similar functionality to some of

our lenses, but are presented primarily as a metaphor for

navigation in Pad as opposed to a general purpose tool for

exploring and modifying information.

Other systems provide special-purpose lenses that provide

more detailed views in the context. For example, a fisheye

lens [9] can enhance the presentation of complicated graphs

[17]. The bifocal display provides similar functionality for

viewing a large space of documents [19]. The MasPar Profiler

uses a tool based on the magnifying lens metaphor to generate

more detail (including numerical data) from a graphical

display of a program [3]. The VIEW system moves a spherical

probe around a molecule, revealing associated state [4].

CONCLUSIONS

Bounded, movable filters can serve many roles in enhancing a

user’s interaction with software applications. In particular,

these filters can modify rendering style, query application

state, display alignment aids and identify regions of interest.

By unifying these and other functions into a single user

interface paradigm, magic lens filters can increase user

interface consistency. In addition, because they can be moved

from application to application, these filters provide

functionality that can be used in many application contexts,

like that of the Copy and Paste keys of many keyboards.

Magic lens filters have many advantages over application-

wide viewing modes. They can show local details in the

context of larger-scale information, limit clutter to small

regions, apply different filters in different places at the same

time, and query features locally. Arbitrarily shaped filters can

be used to refine queries, create dynamic illustrations, or

produce artistic effects. They provide easy customization

through visual macros and a way to explore models without

modifying them. When combined with click-through tools,

they provide enhanced editing operations including views of

hidden objects, a reliable way to select objects, and a visual
way to switch modes.

The direct-manipulation metaphor of physical lenses on

overlapping layers seems to significantly enhance the

usefulness of these local filters. The combination of user

control and the animation inherent in the interactive motion

helps the user create the context needed to interpret the

311

I$lii!!HumarrFactorsinComputimgSystems CHI’94* “Cekbru/i/fRhfkrdewderlce”
.

potential y complex visualizations produced by these tools.

While we have no formal evidence for this observation, the

anecdotal evidence is interesting. People who have seen static

pictures find a videotape of the tools in action much easier to

understand. Furthermore, we have personally observed that

examples which seem confusing when passively viewed on the

videotape are easily understood when we are actively

operating the system.

Magic lens filters areanimportant part of anew see-through

user interface paradigm that allows the user to bring tools to

the data instead of loading data into tools. This paper

describes some of the benefits to the user of including filters in

this kind of interface, and presents examples of useful tools in

a number of domains including text editing, debugging,

graphical editing, and map visualization. We anticipate that

these filters will prove useful in many forms and in many

applications beyond those described here.

FUTURE WORK

We are working to extend magic lens filters to new problem

domains (3D, word processing), to new computing

environments (Macintosh, PC), and to extend the quantity and

quality of the existing lenses. We also intend to more formally

study the effectiveness of these tools by including them in real

applications and by performing user studies.

ACKNOWLEDGMENTS

We would like to acknowledge Tony DeRose as one of the

original inventors of the magic lens metaphor, Matt Conway

for his contributions to the implementation of the map browser

application, and the following people for ideas, suggestions

and enthusiasm: Andrew Glassner, Jock Mackinlay, Ken Pier

and Polle Zellweger.

Trademarks and Patents: Magic Lens and See-Through
Interface are trademarks of the Xerox Corporation. Postscript
is a trademark of Adobe Systems, Inc. UNIX is a trademark of
AT&T. TIGEIVLine is a trademark of the Bureau of the
Census. Patents related to the concepts discussed in this paper
have been applied for by the Xerox Corporation.

REFERENCES

1. Paul Asente, Editing Gruphica/ Objects Using

procedural Representu~ions, Stanford University Ph.D.

dissertation, 1987.

2. Gideon Avrahami, Kenneth P. Brooks, and Marc H.

Brown. A two-view approach to constructing user

interfaces. Proceedings of Siggraph ’89 (Boston, MA,

July), Computer Graphics Annual Conference Series,

ACM. 1989, pp. 137-146.

3. Kent Beck, Jon Becher, and Liu Zaide. Integrating

profiling into debugging. Proceeding.y of the 1991

Itlternutiomd Col@rence on Purullel Processing, Vol. II,

S’oj%vure, August 1991. pp. II-284-II-285.

4. Lawrence D. Bergmen, Jane S. Richardson, David C.

Richardson, and Frederick P. Brooks, Jr.. VIEW—An

exploratory molecular visualization system with user-

definable interaction sequences. Proceedings of Siggraph

’93 (Anaheim, CA, August), Co/i~puter Grophics Annual

Conference Series, ACM, 1993, pp. 57-64.

5. Eric A. Bier, Maureen C. Stone, Ken Pier, William

Buxton, and Tony D. DeRose. Toolglass and Magic

Lenses: The See-Through Interface. Proceedings of

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Siggraph ’93 (Anaheim, CA, August), Computer

Graphics Annual Conference Series, ACM, 1993, pp.

73-80.

Eric A. Bier and Steve Freeman. MMM: a user interface

architecture for shared editors on a single screen.

Proceedings of the ACM SIGGRAPH Symposium on

User lnterfuce So@ware und Technology (South Carolina,

November), ACM, 1991, pp. 79-86.

Eric A. Bier and Maureen Stone. Snap-dragging.

Proceedings of Siggraph ’86 (Dallas, August), Computer

Graphics, Vol. 20, No. 4, ACM, 1986, pp. 233-240.

Bureau of the Census. TIGER/LineTM Census Files,

1990. Washington, 1991.

George Furnas. Generalized Fisheye Views.

Proceedings of CHI ’86, (Boston, MA, April 1986), pp.

16-23.

Adele Goldberg and Dave Robson. A Metaphor for User

Interface Design, Proceeding,! of the University of Hawaii

Twefth An71ual Symposium on System Sciences,

Honolulu, January 4-6, (1979), pp. 148-157.

Glenn Krasner and Stephen Hope. A Cookbook for

Using the Model-View-Controller User Interface

Paradigm in Smalltalk-80, .lourm[of Object-Oriented

Programming, 1, 3, (1988), pp. 26-49.

Michael Mills, Jonathen Cohen and Yin Yin Wong. A

magnifier tool for video data. Proceedings of CHI ’92,

(Monterey, CA, May 3-5, 1992) ACM, New York,

(1992), pp. 93-98.

Greg Nelson. Juno, a constraint-based graphics system.

Proceedings of Siggraph ’85 Computer Graphics, Vol.

19, No. 3, ACM, 1985, pp. 235-243.

Jakob Nielsen. HYPERText & Hypermedia.

Academic Press. 1990.

Ken Perlin and David Fox. Pad: an alternative approach

to the computer interface. Proceedings of Siggraph ’93

(Anaheim, August), Computer Graphics Annual

Conference Series, ACM, 1993, pp. 57-64.

Robert W. Scheifler, James Gettys, and Ron Newman. X

Window System. Digital Press, Bedford MA, 1988.

Manojit Sarkar and Marc H. Brown. Graphical Fisheye

Views of Graphs. Proceedings of CHI ’92, (Monterey,

CA, May 3-5, 1992) ACM, New York, (1992), pp.

83-91.

ImugeVision, Silicon Graphics Inc., Mountain View, CA.

Robert Spence and Mark Apperley. Data Base

Navigation: An Office Environment of the Professional.

Beha}’iour and Invomarion Technology, 1, 1,(1982),

43-54.

Daniel C. Swinehart, Polle T. Zellweger, Richard J.

Beach, and Robert B. Hagmann. A structural view of the

Cedar programming environment. ACM Trcrnsacriom on

Programming Languages and Sysrems, Vol. 8, No. 4,

ACM, 1986, pp. 419-490.

Stephen A. Weyer and Alan H. Borning. A Prototype

Electronic Encyclopedia, ACM Transactions on O~ce

Systems, 3, 1, (1985), pp. 63-88.

312

