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Abstract

We describe a method for constructing a structural model of an unlabeled target two-dimensional line drawing by analogy to
a known source model of a drawing with similar structure. The source case is represented as a schema that contains its line
drawing and its structural model represented at multiple levels of abstraction: the lines and intersections in the drawing, the
shapes, the structural components, and connections of the device are depicted in the drawing. Given a target drawing and a
relevant source case, our method of compositional analogy first constructs a representation of the lines and the intersections
in the target drawing, then uses the mappings at the level of line intersections to transfer the shape representations from the
source case to the target; next, it uses the mappings at the level of shapes to transfer the full structural model of the depicted
system from the source to the target.

Keywords: Analogical Reasoning; Case-Based Reasoning; Design; Diagrammatic Reasoning; Drawings; Visual
Reasoning

1. MOTIVATION AND GOALS

Drawings, that is, external two-dimensional (2-D) graphical
representations, are a central component of the design process
(e.g., Ferguson, 1992). Larkin and Simon (1987) describe
some of the advantages of using drawings in problem solving
in general: drawings focus search, afford perceptual infer-
ences, and enable easy recognition of elements such as shapes
(e.g., circle) and spatial relations (e.g., between). According
to them, these cognitive advantages accrue because drawings
use location to group information about a single element,
avoiding the need to match symbolic labels; drawings group
all information that is used together, which helps avoid
large amounts of search; and drawings automatically support
perceptual inferences that are easy for humans. Ullman et al.
(1990) analyze the importance of drawings in engineering
design.

Recognition of shapes and spatial relations in a design
representation enables classification and indexing of the
representations, and retrieval of appropriate design knowl-
edge. In CAD, shape similarity among three-dimensional
(3-D) design representations is a major research issue in in-

dexing and retrieval of design and manufacturing knowledge.
Cardone et al. (2003) and Iyer et al. (2005) survey the state-
of-the-art in computational techniques for 3-D shape search.
In contrast, we are interested in computational techniques for
deeper semantic analysis of 2-D CAD drawings generated
with vector-graphics tools. In particular, in addition to recog-
nition of shapes and spatial relations in an unlabeled 2-D de-
sign drawing, we are interested in the recognition and labeling
of structural components and connections depicted in the
drawing. Labeling of the structural components and connec-
tions should enable deeper classification and indexing of de-
sign drawings and indexing and retrieval of the functions and
behaviors of the components and connections.

This theory is implemented in a program called Archytas,
which analogically infers shape and structure in a target draw-
ing (the input) from that given in a source (or base) case. This
program reads in a 2-D unlabeled drawing and, given the
source drawing and associated teleological model, attempts
to infer by analogy a representation of the shapes and spatial
relations in the target drawing and a representation of the
structural components and interconnections of the device de-
picted in the drawing. This method of compositional analogy
works iteratively to successively higher levels of abstraction,
interleaving mapping, and transfer at various levels to con-
struct a new structural model.
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Let us consider the task of mapping the source drawing
illustrated in Figure 1a to the similar target drawing illustrated
in Figure 1b. If we treat the problem as one of first recogniz-
ing the geometric elements and spatial relations among them,
then we can treat this representation as a labeled graph: A con-
tains B, C is adjacent to D, and so on. A graph-theoretic
method for analogy-based recognition may then be used to
find a consistent mapping between the graphs representing
the source and target drawings. However, the method runs
into difficulty for the target drawing shown in Figure 1c or
1d with 1a as the source drawing. In this problem, the number
of components, and thus the number of shapes, is different,
and either the graph-theoretic method would have to relax
the constraint of one-to-one mapping, or else the analogy
would have to be performed twice to transfer a model suc-
cessfully from Figure 1a to 1c or 1d. Figure 2 illustrates a sim-
ilar example from the domain of door latches.

To address the above difficulties, our method of composi-
tional analogy performs analogy at multiple levels of abstrac-
tion. The analogical mapping and transfer at these levels is

enabled by organizing knowledge of the source case at multi-
ple levels. Figure 3 illustrates the knowledge organization in a
source case. The structure, shape, and drawing in a source
case form an abstraction hierarchy, where structure is a speci-
fication of components and structural relations along with
properties (height, width, etc.) and variable parameters
(e.g., position or angle of moving components). These mod-
els are based on the structural portion of structure–behavior–
function (SBF) models (Goel & Chandrasekaran, 1989; Goel,
1991, 1996).

Our method of compositional analogy first constructs a
representation of individual lines and circles and intersection
points in the target drawing, and then analogically infers
shapes over this representation by grouping multiple symmet-
ric mappings at the level of lines and intersections. Using
these groups it infers shape patterns in the target and sets
up a mapping at the level of whole shapes. This shape-level
mapping then informs the transfer of structural elements
from source to target, resulting in a full structural model for
the depicted device in the target drawing as well as a

Fig. 1. (a) A sample source drawing of a piston and crankshaft assembly, (b) a target drawing of the same device with the piston now at the
top of its range of motion, (c) a sample target drawing of a double piston and crankshaft assembly, and (d) a sample target drawing with two
crankshafts and a single piston. In all cases the task is to transfer and adapt the model of the device in the first drawing to the target.

P.W. Yaner and A.K. Goel118



component-level mapping of the source model onto this
target model.

2. THE STRUCTURE OF SHAPES

Because the task is the analogical comparison of drawings,
and drawings contain shapes that depict model elements
(components etc.), these shapes must be represented in a
way that facilitates this comparison. Note that the shape repre-

sentation of the source drawing is given; the issue here is what
must we calculate from the input drawing to facilitate ana-
logical comparison with the source at the level of shape. When
a drawing is represented symbolically for analogical compari-
son, symbols are typically associated with shapes. In this
symbolic representation, the shape—which is a composite
geometric structure, a point set in the real plane—becomes
an atomic entity. If analogy involves the alignment of symbol
structures, then analogical comparison between two drawings
can only be successful when these symbol structures are
isomorphic. However, whether two symbol structures are
aligned depends on how the shapes in the symbol structures
are decomposed. In particular, an intelligent agent cannot
compose line segments into shapes unless it already knows
what shapes are supposed to be there. To address this issue,
we represent shapes in the source case at multiple levels of
abstraction, and use the shape representation in the source
to help resolve ambiguities in constructing a representation
of shapes in the target.

2.1. Lines, arcs, circles, and intersections

The first step of the process is to match each shape in the
source to the whole target drawing, searching for occurrences
of that shape in the target. To do this we need a robust and ca-
nonical representation of shapes, and in particular, one that is
robust in the face of the visual binding problem: line seg-
ments should match regardless of whether they are drawn in
the vector graphics file as a single vector or as multiple vec-
tors. For instance, the rectangle corresponding to the upper
half of the cylinder in Figure 1a might be drawn as four per-
pendicular lines, or it might be six lines (if the edge touching
the piston is regarded as three segments instead of one); the
shape must match either way. This is achieved by using
what we call the augmented line intersection graph of the
drawing (Yaner & Goel, 2007).

Archytas thus represents the intersections between the most
basic elements of a 2-D line drawing—line segments, circles,
and circular arcs—using this graph. It first reads in a drawing,
fill patterns, and layering are ignored, so after preprocessing
the drawing looks to Archytas like that of Figure 4a. Line
segments are taken as maximally connected collinear seg-
ments, and likewise for cocircular connected arcs, whereas
Archytas calculates all the intersection points between
them. These elements form the vertices V of the line intersec-
tion graph, and the intersection points form the labels on the
edges. Figure 4b shows an example of a line intersection
graph.

The line intersection graph represents the most basic topo-
logical information in the drawing. To reduce the search space
for analogical mapping, Archytas augments this graph with
additional spatial information. First, because each intersec-
tion is a pair of line (or arc) sets, Archytas adds a flag on
each edge (i.e., intersection) indicating when those lines are
perpendicular. This prevents Archytas from matching, say,
a rectangle to a rhombus. Second, each topological face in

Fig. 2. (a) A door latch mechanism consisting of a cam that turns (e.g., from
the turning of a door handle, not shown) and pulls back on a shaft, which in
turn pulls back the bolt (or latch) that pulls back through the door. (b) The
same door latch but with the latch pulled back. (c) A double door latch
with latches on both sides of the door. Part (a) is a source drawing, and (b)
and (c) are target drawings.

Fig. 3. The multilevel hierarchy of drawing, shape, and structure. Basic and
composite shapes are patterns of line intersections, which depict components
and structural relations, respectively.
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the drawing bounded by a cycle of line and arc sets is repre-
sented as a special vertex linked to the points and lines on its
boundary. This represents the planar dual of the input drawing
(regarded as a plane graph). Archytas represents the intersec-
tions between the basic elements of a 2-D line drawing (line
segments, circles, and circular arcs) using this augmented line
intersection graph, which takes lines and arcs and circles
nodes and intersections between them as labeled arcs.

2.2. Basic and composite shapes

Depending on the perspective of a drawing, a particular com-
ponent may be depicted by an actual shape, regarded as a set
of connected lines or arcs, or not at all. Each component in the
structural model is linked to a subgraph of the intersection
graph called a “basic shape.” A connection between compo-
nents in the model is a union of several entities, and so each
connection is linked to a subgraph called a “composite
shape.” A composite shape is a union of two or more basic
shapes, forming a larger subgraph of the intersection graph.
This forms the right half of the multilevel hierarchy shown
in Figure 3. Figure 5 shows the decomposition of the drawing
in Figure 4a into basic and composite shapes.

The purpose of this two-level distinction, which will become
clearer in Section 3 when we describe the algorithms, is to facil-
itate the reconstruction of a structural model from the informa-
tion gleaned from overlapping shape mappings. It is because of
this two-level distinction between basic and composite shapes,
mirroring the two-level distinction between components and
structural relations as shown in Figure 3, that we can reconstruct
the model at all. Generally speaking, only one level of pattern
(the shape patterns here) is insufficient to reconstruct a structural
model: although we can match each pattern individually, the re-
lationships between these instances of matched patterns are left
open by the representation. Adding a higher level of composi-
tion over these patterns (the composite shapes, composed of ba-
sic shapes) allows the reasoner to fix not only the basic-level
patterns in the target but their relationships as well. This process
is described below in Section 3 in more detail.

2.3. Structural models

The structural model is a schema describing the components
of a design, their properties, and their interrelationships.
Structural relations are important: that two components
have a certain physical relationship, say that a cylindrical

Fig. 4. (a) The piston and crankshaft drawing from Figure 1a with fill patterns and layering ignored as they are in Archytas and (b) its
corresponding line intersection graph representation, where L stands for line segment, C for circle, and A for circular arc segment.
Edge labels have been omitted to avoid clutter. In addition to what is shown, each bounded region (or face) is represented as a separate
node (not shown) linked to the vertices and edges on its boundary. The dotted lines indicated collinear disconnected segments.
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piston is contained in a hollow cylinder, is an important fact
that enables these two components to contribute to the overall
functioning of the device. Thus, the ability to infer these
relationships from a drawing is of critical importance to the
task described in this paper. Therefore, our target representa-
tion is one of components, structural relations, and their prop-
erties and variable parameters.

Figure 6 shows the structural model for the source drawing
in Figure 1a, in which four of the five components and three
of the five structural relations are linked respectively to basic
and composite shapes in the drawing. The drawing depicts the
following components, linking each component with a basic
shape in the drawing:

† piston
† connecting rod

† crankshaft
† cylinder

The crankcase is not depicted in this particular drawing.
The following structural relations are depicted by composite
shapes in the drawing:

† cylindrical joint between the piston and cylinder
† revolute joint between the piston and connecting rod
† revolute joint between the connecting rod and crankshaft

Each composite shape is again a union of the basic shapes of
the components involved in the depicted structural relation.
Thus, for instance, the revolute joint between piston and
rod is depicted by the combination of those two shapes (the
piston shape and the connecting rod shape). Because the

Fig. 5. The breakdown of basic and composite shapes depicting the respective components and structural relations in the piston and crank-
shaft example of Figure 1a. The hollowed out shapes are as shown in Figure 4a. The hierarchy here mirrors that of the left-hand side of the
model hierarchy in Figure 2.
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crankcase is not depicted, the structural relations involving it
are as well.

Table 1 shows an outline of the specification of the compo-
nents. Each component has properties, which take static val-
ues (e.g., height, width, mass, etc.) and variable parameters,
which have a type of either scalar or vector, and represent
variables whose values change in the causal processes by
which the device operates.

Connections are represented as schemas. Connections also
have types indicating their degrees of freedom, if any (revo-
lute joint, prismatic joint, fused or adjoined, etc.). Figure 6
shows the connections in the model of the piston and crank-
shaft example from Figure 1a.

3. ANALOGICAL MAPPING AND TRANSFER

The goal of the mapping stage is to align shapes in the source
and target to facilitate the transfer of structure. However, at
the start there are no shapes in the target, and so first Archytas
attempts to align the individual shape patterns from the source
with the augmented line intersection graph of the target. In

particular, Archytas attempts to find mappings from each
basic and composite shape to some subgraph of the target
drawing’s line intersection graph. Here, the mappings must
be exact: each element of the shape pattern from the source
must match, and so the algorithm is computing subgraph
isomorphisms.

Recall the depicted components and the depicted structural
relations from Figure 1a that are shown in Figure 5. To match
these basic and composite shapes to Figure 1b, 1c, or 1d,
Archytas begins by first finding subgraph isomorphisms for
the composite shapes. If two composite shapes with a basic
shape (i.e., a component) in common overlap as well in the
target, then three connected components can be inferred in
the target drawing by dividing the mapped composites into
basic shapes.

3.1. Symmetric mappings

In matching shape patterns point by point to a drawing, a
peculiar problem presents itself, one directly caused by
our need to combine basic-level patterns into composite-
level ones. In particular, shapes are often symmetric in var-
ious ways; for instance, a rectangle can be flipped or rotated
to produce exactly the same shape. If we are searching point
by point, what seems to be two different squares may actu-
ally be the same square discovered twice. That is to say,
when searching point by point for a square we may find
two different squares or we may find the same square we
have already found, but with the pattern rotated 908.
When combining these patterns into composite shapes, if
our composite pattern has two squares, it is important to
distinguish genuinely new occurrences of this pattern from
apparently different but actually symmetric matches to the
same square, so that we can distinguish one shape occur-
rence from two. Most important, if we wish to transfer the
representation of shapes from source to target (as we do in
this work), symmetric mappings will produce identical re-
sults and so are equivalent: we do not care in what sequence
we have discovered the four corners of a rectangle; as long as
we have the same four corners each time, we have the same
rectangle.

In Figure 5 the composite shape corresponding to the
piston/cylinder connection has four potential mappings
onto targets in Figures 1b and 1d and eight onto target 1c.
The piston/connecting rod composite also has four map-
pings onto the target in Figure 1b and eight onto 1c. Al-
though the points being mapped may be the same, not all
of these mappings in fact overlap as they should. Thus, if
our mapping algorithm happens to find a mapping for
each of these that do not overlap with each other, we will
find two pistons in Figure 1b instead of one, and four in
Figure 1c instead of two.

All of the various mappings of a single shape to one par-
ticular set of lines and edges in the target are symmetric in
the mathematical sense of that term, that is, they are permuta-
tions of each other. To see this, let m1 and m2 be two

Fig. 6. An illustration of the structural model of the piston and crankshaft,
where boxes represent components and ovals represent connections
between components. Properties and variable parameters of components
are specified in slot values for each component schema.

Table 1. The properties and variable parameters of each
component in the structural model of the piston and crankshaft
device from Fig. 1a and the connected components

Component Properties Variable Parameters Connected to

Piston Height,
diameter

Linear momentum Cylinder, rod

Crankshaft Diameter,
mass

Angular momentum Crankcase, rod

Connecting
rod

Length Angular & linear
momentum

Crankshaft, piston

Cylinder Diameter,
length

Piston, crankcase

Crankcase Cylinder, crankcase
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mappings from a single source shape. In general, these two
mappings may map that shape to different regions of the tar-
get, but even if they map to the same region they may still be
two different and therefore incompatible mappings. For in-
stance, if a, b, c, and d are the corners of a rectangle in the
source shape and w, x, y, and z are the corners of a similar
one in the target, we might have

m1:a! w m2:a! y
m1:b! x m2:b! z
m1:c! y m2:c! w
m1:d ! z m2:d ! x

These two mappings are mathematically symmetric (thus
permutations) and therefore equivalent: both are mapping
the same shape to the same points in the target but in different
orientations. This is important from the perspective of transfer,
because the resulting target shape will be identical in either
case.

This observation is critical: because of this transfer equiv-
alency, we can group symmetric mappings together into sets.
Archytas computes all mappings of each composite shape in
the target, and divide them into these sets of symmetric map-
pings. For each such set, Archytas can compute the sets of
symmetric basic shape mappings that each composite map-
ping can be divided into, and then transfer one composite
shape in the target for each composite shape mapping set,
and one basic shape for each basic shape mapping set. The
algorithms are presented in the next section.

3.2. Shape mapping and transfer

The goal of the shape transfer algorithm is to bring structure
to the target drawing, that is, to use patterns to divide the lines
and intersections into basic and composite shapes, which in-

form Archytas of the visual patterns in the target depicting
components and structural relations. It is important to find
all the mappings of a given shape so that all of the structural
elements and relationships can be found. Each mapping
group informs a new shape in the target, and the result is a
shape-level mapping: a new mapping at the level of whole
shapes rather than individual line segments and intersection
points, which can now be discarded. From here, the transfer
of structural elements (components and connections) can
take place. This process is illustrated in Figure 7.

The algorithm treats shape matching as one of satisfying
constraints (Yaner & Goel, 2006). Each composite shape in
the source is treated as a pattern, and the elements of the in-
tersection graph in the target are matched to that pattern.
Archytas attempts to find all consistent ways of matching a
given pattern to a drawing, grouping symmetric mappings
as discussed above so that “symmetric” means that the set
of mapped points in two mappings are equal.

A constraint satisfaction problem is an assignment problem
in which values are assigned to variables under some con-
straints. The algorithm we employ is a basic backtracking
algorithm: potential values for each variable are tried in order,
and when a conflict is found, that variable assignment is re-
tracted and the algorithm backs up to the previous value or
variable. In this application, the variables are the intersection
points of the source composite shape. Two individual maps or
assignments are consistent when they have exactly one line or
arc set in common. Here, the map or assignment is actually a
two-level assignment: there are two edge maps that each con-
tain two line (or arc) set maps.

Basic backtracking is a robust method that has been discov-
ered many times (e.g., Bitner & Reingold, 1975), and has
many variants (Kondrak & Van Beek, 1997). One reason
for selecting it is precisely because of these many variants
and what is known about them: it is a straightforward matter

Fig. 7. The multilevel hierarchy shown in Figure 2 is transferred onto the target by iteratively applying mapping and transfer methods at
successively higher levels of abstraction, starting with basic and composite shapes and moving on to the transfer of structural components
and connections until the model is complete.
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to apply such optimization techniques as back-jumping or
forward checking to a backtracking algorithm should the
need arise to get additional performance from the search.

To constrain potential mappings, when two lines or inter-
section points are both on the boundary of a common face
or region in the drawing, so must those they map to in the tar-
get. There are two additional constraints: perpendicular
intersections map to perpendicular intersections but nonper-
pendicular intersections can map either to perpendicular or
nonperpendicular intersections, and lines only map to lines,
arcs to arcs, and circles to circles.

The outline of the algorithm is as follows:

1. Apply each composite shape, matching it to the target
drawing as many times as possible using backtracking
constraint satisfaction with the composite shape ele-
ments as variables, target intersection graph elements
as values, and matching graph structure as constraints.
Group symmetric composite shape mappings.

2. For each composite shape mapping, divide it into the
appropriate basic shape mappings. Group symmetric
basic shape mappings.

a. For each composite mapping set, record which basic
shape mapping sets compose it.

b. If the composite mapping can be divided into basic
shape mappings that are different from those of
previous mappings in this set, save this division as
a separate division of this mapping set into basic
shape mapping sets.

3. For each set of symmetric composite shape mappings:

a. For each basic shape mapping set composing this
composite shape mapping set, transfer one basic
shape and map the old basic shape to this new basic
shape.

b. Transfer the composite shape as a composition of the
already transferred basic shapes, and map the old
composite shape to this new composite shape.

4. Return this shape-level mapping.

Note that, in general, the shape-level mapping will not be
one-to-one, and this is how the mapping from Figure 1a to
1c and 1d could be found.

3.3. Transfer of structural elements

Once Archytas has a mapping between the basic and com-
positeshapesof thesourceandtargetdrawings, itneedstotrans-
fer the structural elements from the source to the target. From
these shape-level mappings one can hypothesize that if two
shapes match (i.e., are mapped) then they should therefore
depict the same component or connection. The steps are to
begin with the mapped shapes and transfer the components
and connections depicted by those mapped shapes, reconstruct-
ing the model iteratively.

As input to the structural transfer process, Archytas has a
set of shape-level maps (recall from above that a mapping
is composed of several individual maps of individual ele-
ments, in this case, whole shapes): basic shape maps and
composite shape maps. Each one associates a source shape
with a newly instantiated target shape. From each one we
can hypothesize a structural element along with all its proper-
ties and variable parameters. The only major difficulty is that
some components are undepicted. For instance, in Figure 1
none of the figures show the crankcase. Archytas transfers un-
depicted components based on their connections to depicted
components: the crankcase is connected to the crankshaft and
to the cylinder, which are depicted, so if we have a crankshaft
and a cylinder we can hypothesize a crankcase. The output of
this process is a new structural model of the target and a map-
ping from the source to the target that again may not be one-
to-one.

The algorithm outline is as follows:

1. For each basic shape map, propose a new component in
the target, and map the source component to this new
target component.

2. For each composite shape map, propose a new struc-
tural relation in the target, and map the source structural
relation onto this new target structural relation.

3. Transfer undepicted components: For each undepicted
component in the source, propose one such component
in the target and again map the source to the target com-
ponent in the structure-level mapping.

4. Transfer undepicted structural relations: For each
structural relation of a depicted and an undepicted com-
ponent, propose one such structural relation in the target
for every instance of that depicted component in the tar-
get. For instance, if component A is undepicted and con-
nected to depicted component B, and A maps to A1 and
B maps to B1 and B2, connect A1 in the target to both B1

and B2.
5. Remove disconnected chains: For each component C in

the target, remove it and all of its structural relations if
its source analog is connected to some other component
that does not map to any component connected to C.

6. Return: The resulting component- and structural rela-
tion-level mapping from the old structural model to
the newly instantiated target structural model.

Thus, the output of this process will be a new structural model
of the target and a mapping from the source to the target
model that may not be one-to-one.

There are two important constraints at work in this algo-
rithm. The first is that, when transferring undepicted compo-
nents, there is no guide as to how many times that component
should be transferred (because the algorithm, as it is, simply
iterates over the shape mapping but there are no maps for un-
depicted components!); thus, the system has little choice but
to transfer it just once. Here, it remains an open question as to
when one would transfer a given component more than once
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to a target. The answer must involve model-based reasoning
at the level of the model itself, which is beyond the scope of
this work.

The second issue has to do with what we term disconnected
chains. The shape-mapping algorithm sometimes matches a
shape more than once to overlapping patterns when it should
map just once. The result of this process will be a component
that is not properly connected to the rest of the model,
hanging off like an extra loop on a chain, and so can simply
be removed.

As an example of a disconnected chain, in transferring the
model from Figure 1a to 1b, there was confusion with the
connecting rod. In particular, because the intersections of
the two lines with the piston are perpendicular, but in fact
(although in the drawing it is hidden by layering), the rod
continues upward some distance more, there was more than
one mapping of the crankshaft/connecting-rod composite
shape to the target. The result was one piston, one crankshaft,
but two connecting rods, one of which connected the piston to
the crankshaft as expected, the other that simply hung off
the crankshaft and connected to nothing. This disconnected
one was then removed by Archytas in disconnected chain
removal.

4. EXPERIMENTAL RESULTS

Archytas has been implemented in Common Lisp. There were
18 test drawings (including the two source drawings) across
two domains: that of the piston and crankshaft (Fig. 1) and
that of the door latch (Fig. 2). These drawings represented a
range of kinds of differences between source and target,
and the results are summarized in Table 2. In general, the im-
plementation was quite fast, taking on average less than 20 s
per example (almost all of that time was spent calculating the
shape mappings in step 1 from Section 3.2). The drawings
that were tested represent differences in the following:

1. the state of the device (e.g., the door latch pulled back
vs. pushed out),

2. differences of the dimensions of particular shapes (e.g.,
thinner vs. thicker cylinder walls),

3. differences of orientation (such as a 908 rotation or a
mirror image of a drawing),

4. differences in the 3-D perspective of the drawing,
5. differences of shapes depicting components (e.g., the

cylinder as two parallel rectangles as in Fig. 1 or as
one U-shaped polygon), and even

6. differences in the number of components (Fig. 1a vs. 1c
or d, Fig. 2a vs. 2c).

In general, the success or failure of the shape analogy de-
termined the success or failure of the whole process because
the SBF models that were constructed tended to nearly reflect
the structure determined in this first stage. We found that dif-
ferences of device state, dimension, and orientation were
straightforward and presented little difficulty. This is to be

expected from the nature of the representation of shapes; as
such, changes do not alter the line intersection graph of a
drawing. Changes in perspective or component shapes,
however, were not handled, and changes in the number of
components were sometimes handled well but sometimes
were difficult. These were the most interesting cases that re-
vealed the most about the methods. In what follows, we
take 5 of the 16 target drawings for detailed analysis, the 5
shown in Figures 1b–d and 2b and 2c. We refer to these as
PC1, PC2, PC3, DL1, and DL2, respectively.

4.1. Results of shape transfer methods

In the evaluation of shape transfer, the question is whether the
“right” shapes are getting matched in the target drawing and
transferred so as to enable transfer of the structural model. For
instance, in the piston and crankshaft example, we would like
the rectangle representing the crankshaft in the source to
match the rectangles representing crankshafts in the target
drawings, but not those representing the cylinder or the pis-
ton. To measure this, it is possible here to borrow from the in-
formation retrieval literature and make use of precision and
recall (see Fig. 8). A “query” now is a source shape pattern,
and the “responses” are the matching shapes in the target
drawing. Thus, precision now asks, of those target shapes
that actually matched, what proportion were correct; and, of
those shapes in the target that should have matched, what pro-
portion actually did?

Formulating our questions this way, looking at the match-
ing of composite shapes alone (because the shape analogy
stage iterates over the composite shapes in the source), we
get the results shown in Table 3. In addition, the disconnected
chain removal stage of the structural transfer method also has
the effect of removing the associated basic and composite
shapes for the deleted components and connections. From
the perspective of precision, this should have the effect of
(hopefully) increasing the calculated precision. Thus, Table 3
also calculates a “Precision 2” from the modified numbers
after disconnected chain removal. This also evaluates the ef-
fectiveness of disconnected chain removal to some extent.

Table 2. The kinds of differences between
the source and target drawings that
Archytas can and cannot handle

Difference PC DL

Device state Yes Yes
Dimension Yes —
Orientation Yes —
Perspective No —
Component shapes No No
No. of components Yes No

PC refers to the differences tested in the piston
and crankshaft examples, and DL refers to the
door latch examples.
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Overall precision was 73% before disconnected chain re-
moval and 100% afterward, whereas recall was 85% across
both domains. Looking at the individual domains, we see
that the precision of 88% in the piston crankshaft examples
became 100% after disconnected chain removal and the recall
was 100%, which are perfect results for this domain. The door
latch domain had surprisingly low 57% precision, which then
jumped to 100% after disconnected chain removal; there were
apparently many spurious composite shape mappings that
were removed. The recall was, however, only 67%, so fully
one-third of the expected target shapes were not being found
by Archytas.

A precision or a recall of less than 100% in a system like
this causes great difficulty: the shape transfer algorithm
supplies a shape-level mapping to the structural transfer
algorithm, and if that mapping is incomplete or has spurious
correspondences, then the corresponding structural elements
will be missing or spuriously transferred. Thus, it is worth in-
vestigating these numbers in more detail to attempt to deter-
mine where and when the breakdown is occurring.

The total and expected shapes for the three piston and
crankshaft examples matched, as already established. The

only redundant transfers were two extra shapes in the first ex-
ample (PC1, removed by disconnected chain removal). In the
door latch example, there were some extra shapes transferred
in the first example (DL1, Fig. 2b, which showed a similar
door latch in a different state) but then got removed in discon-
nected chain removal, and so the totals are exactly as
expected. The poor performance comes in the second door
latch example (DL2, Fig. 2c), which showed the two latches
connected to a single cam.

It is worth investigating the door latch examples in more
detail. We first use the double door latch example, the target
in Figure 2b with 2a as the source. The cam/door composite
and the bolt/door composite had no matches at all. Among the
basic shapes the cam and the bolt did match (in the other com-
posite shapes), so the problem was obviously the door. In this
case, the shape of the door changed from source to target: in-
stead of a C-shaped outline with two rectangles representing
the plate through which the bolt moves, there were two such
rectangle pairs on either side and the outline was no longer C
shaped. No match was possible, so no match was found.
Although this merely demonstrates already summarized re-
sults, it is an interesting and instructive illustration of the lim-
itations of the method.

4.2. Results of structural transfer methods

In the transfer of structure, the algorithm iterates over the
shape mapping provided by the previous stage. Therefore,
if the shape mapping is correct, then the structural transfer
will be correct as well. Hence, there were only two things
to evaluate: the transfer of undepicted components and the re-
moval of spuriously transferred components and connections.

The first of these is not as complex an issue as it might
seem, and its limitations in Archytas were plainly established
by the piston and crankshaft examples (the only ones that had
undepicted components to transfer). In particular, in the third
example (PC3, the piston and double crankshaft example,
Fig. 1d) there were two crankshafts, but Archytas as always
transferred the crank case only once. The question is, should
there have been one or two crank cases in this example? It is
not clear on the face of it what the answer is, and it must in-
volve more complex model-based reasoning than Archytas
engages in. With a more complex method for dealing with un-
depicted components the evaluation would necessarily be
more complex. However, there is a single limitation and
this example illustrates it.

The second of these is more interesting, and the results can
be seen from the previous section. In particular, we see the
disconnected chain removal working perfectly in the first pis-
ton and crankshaft example (Fig. 1b), as it does in the first
door latch example. In the second door latch example, insofar
as some of the components were transferred correctly,
redundant transfers were removed successfully, so there
were no remaining redundancies except the pair of cams.
This is interesting: the component changed its shape as a re-
sult of performing two roles instead of simply one (that of

Fig. 8. Precision and recall are standard performance measures in informa-
tion retrieval and can be generalized here for analogical comparison. It is
possible to treat those forms in a target drawing that should have matched
a given source shape pattern versus those that actually matched it, analogous
to what should have versus actually did get retrieved for some particular
query in an information retrieval system.

Table 3. A count of the precision and recall in the shape
matching stage, for composite shapes only, by each domain

A B B0 C Precision Precision 2 Recall

PC 0 2 0 14 88% 100% 100%
DL 4 6 0 8 57% 100% 67%
Overall 4 8 0 22 73% 100% 85%

Here, as in Figure 8, column A counts the shapes that should have matched
the drawing but did not, B counts those that did match but should not have,
and C counts those that should have and did. Precision and recall are then
calculated accordingly. In addition, B0 counts the reduced value of B after
disconnected chain removal, and thus Precision 2 is the improved precision
after this removal.
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moving two shafts), so the shape overlapped itself twice, and
hence matched twice. The shapes overlapped means nothing
in Archytas, so two components were transferred. The miss-
ing inference, that these are really one component, is really a
very subtle inference and it is notclear when it should and
should not be made. The problem of disconnected chain
removal then appears to be more complex than has been
assumed.

5. RELATED WORK

Börner (2001), Gross and Do (2004), and Yaner and Goel
(2006) provide three methods for the task of analogical re-
trieval of drawings similar to a target drawing. In contrast,
Archytas addresses the tasks of analogical mapping between
a target and a source drawing, and transfer of the structural
model from the source to the target.

Jupp and Gero’s (2004) encoder–analyzer mechanism uses
qualitative feature-based representations to recognize shapes
and spatial relations in a 2-D drawing (the encoder) and deci-
sion tree learning for clustering design drawings (the ana-
lyzer). In contrast, Archytas not only recognizes shapes and
spatial relations in a 2-D drawing but also recognizes the
structural components and connections depicted by the
shapes and spatial relations, and it uses analogical reasoning
for this task.

Archytas addresses a different problem than Kramer’s
(1993) geometric constraint engine (GCE). GCE takes as in-
put a collection of geometric elements and a set of contraints
between them and gives as output a configuration of the ele-
ments that satisfies all the contraints. In contrast, as we men-
tioned earlier, Archytas takes as input a configuration of
geometric shapes and gives as output a label for each element
in the configuration. Analogy-based comprehension is often
presented as the problem of analogical mapping (e.g.,
Holyoak & Thagard, 1989; Falkenhainer et al., 1990), and spe-
cifically that of structural alignment (where “structure” in this
context means that of the representation itself, i.e., relational si-
milarity as opposed to similarity of features). Certainly the
transfer of some knowledge from source to target is always
the goal of analogical inference, but when analogy is treated
as structural alignment the tendency is to regard an analogy
as an alignment or mapping In Archytas we see that the use
of multiple levels of abstraction and aggregation requires a
change in this view and, in particular, a whole mapping at
one level can become a single match hypothesis (in structure-
mapping engine terminology) at the next level. The role of map-
pings with respect to transfer thus changes when we consider
working at several levels of abstraction simultaneously.

GeoRep (Ferguson & Forbus, 2000) is a diagrammatic rea-
soning system that takes an arbitrary 2-D line drawing as in-
put and gives as output a description of the physical system
depicted in the drawing. GeoRep is organized as a two-stage
forward-chaining reasoner in which a line drawing passes
through a domain-independent low-level relational describer
that recognizes lines and polygons, and from there a high-

level relational describer that applies a domain-specific rule
set to produce a final representation of the content of the dia-
gram. Applications of GeoRep typically derive structure from
shape in the high-level relational describer; some applications
have also used structure mapping (Falkenhainer et al., 1990)
for making further inferences by analogy largely at the level
of structure. By contrast, our work infers both shape and
structure by analogy.

Recently Klenk et al. (2005) developed a system for an-
swering questions about simple mechanical devices using
sketches. Their system has a user draw glyphs as separate en-
tities and provide conceptual labels for these glyphs, so that
the system need only compute the low-level visual relation-
ships between the glyphs. It then uses structure mapping
for making candidate inferences to complete the user-
specified model for use by a qualitative physical reasoner to
answer questions about the physical system. Unlike Archytas,
Klenk et al.’s system does not actually recognize sketches or
drawings. Further, their system does not use analogy to infer
the entire model, but only to make inferences about an incom-
plete model given by the user, and to aid in answering a
question.

6. CONCLUSIONS AND FUTURE WORK

In this paper we considered the task of acquisition of a
structural model of a kinematics device from a 2-D line draw-
ing of that device by constructing its model analogically. Our
method of compositional analogy first constructs a represen-
tation of the lines and the intersections in the target drawing,
then uses mappings at the level of line intersections to transfer
shape patterns from the source case to the target, and finally
uses the mappings at the level of shapes to transfer the struc-
tural model of the device. We demonstrated that by relaxing
the constraints of one-to-one mapping and by interleaving
the mapping and transfer processes at different levels of
abstraction, a model can be inferred of the device depicted
in a drawing by analogy without any predefined vocabulary
of shapes beyond those that are already present in a known
drawing.
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