Rigid body dynamics

Rigid body simulation

Rigid body simulation

- Unconstrained system
- no contact
- Constrained system
- collision and contact

Problems

Performance is important!

Problems

Control is difficult!

Particle simulation

$$
\begin{aligned}
& \mathbf{Y}(t)=\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{v}(t)
\end{array}\right] \quad \text { Position in phase space } \\
& \dot{\mathbf{Y}}(t)=\left[\begin{array}{c}
\mathbf{v}(t) \\
\mathbf{f}(t) / m
\end{array}\right] \quad \text { Velocity in phase space }
\end{aligned}
$$

Rigid body concepts

Translation

Rotation

Position
Linear velocity
Mass
Linear momentum
Force

Orientation
Angular velocity
Inertia tensor
Angular momentum
Torque

Position and orientation

- Linear and angular velocity
- Mass and Inertia
- Force and torques
- Simulation

Position and orientation

Translation of the body

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Rotation of the body

$$
\mathbf{R}(t)=\left[\begin{array}{lll}
r_{x x} & r_{y x} & r_{z x} \\
r_{x y} & r_{y y} & r_{z y} \\
r_{x z} & r_{y z} & r_{z z}
\end{array}\right]
$$

$\mathbf{x}(t)$ and $\mathbf{R}(t)$ are called spatial variables of a rigid body

Quiz

- True or False: Given an arbitrary rotation matrix R
- R is always orthonormal
- R is always symmetric
- $\mathrm{RR}^{\mathrm{T}}=\mathrm{I}$
- $\mathrm{R}_{\mathrm{x}}(30) \mathrm{R}_{\mathrm{y}}(60)=\mathrm{R}_{\mathrm{y}}(60) \mathrm{R}_{\mathrm{x}}(30)$

Body space

Body space

A fixed and unchanged space where the shape of a rigid body is defined

The geometric center of the rigid body lies at the origin of the body space

Position and orientation

Body space

Position and orientation

Use $\mathbf{x}(t)$ and $\mathbf{R}(t)$ to transform the body space into world space

World space

What are the world coordinates of an arbitrary point $\mathbf{r}_{0 i}$ on the body?

$$
\mathbf{r}_{i}(t)=\mathbf{x}(t)+\mathbf{R}(t) \mathbf{r}_{0 i}
$$

Position and orientation

- Assume the rigid body has uniform density, what is the physical meaning of $\mathbf{x}(t)$?
- center of mass over time
- What is the physical meaning of $\mathbf{R}(t)$?
- it's a bit tricky

Position and orientation

Consider the x-axis in body space, $(1,0,0)$, what is the direction of this vector in world space at time t ?

$$
\mathbf{R}(t)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
r_{x x} \\
r_{x y} \\
r_{x z}
\end{array}\right]
$$

which is the first column of $\mathbf{R}(t)$
$\mathbf{R}(t)$ represents the directions of x, y, and z axes of the body space in world space at time t

Position and orientation

- So $\mathbf{x}(t)$ and $\mathbf{R}(t)$ define the position and the orientation of the body at time t
- Next we need to define how the position and orientation change over time
- Position and orientation
- Linear and angular velocity
- Mass and Inertia
- Force and torques
- Simulation

Linear velocity

Since $\mathbf{x}(t)$ is the position of the center of mass in world space, $\dot{\mathbf{x}}(t)$ is the velocity of the center of mass in world space

$$
\mathbf{v}(t)=\dot{\mathbf{x}}(t)
$$

Angular velocity

- If we freeze the position of the COM in space
- then any movement is due to the body spinning about some axis that passes through the COM
- Otherwise, the COM would itself be moving

Angular velocity

We describe that spin as a vector $\omega(t)$
Direction of $\omega(t)$?
Magnitude of $|\omega(t)|$?

Using this representation, any movement of COM is due to the linear velocity and angular velocity spins the object around COM.

Angular velocity

Linear position and velocity are related by $\mathbf{v}(t)=\frac{d}{d t} \mathbf{x}(t)$
How are angular position (orientation) and velocity related?

Angular velocity

How are $\mathbf{R}(t)$ and $\omega(t)$ related?

Hint:

Consider a vector $\mathbf{c}(t)$ at time t specified in world space, how do we represent $\dot{\mathbf{c}}(t)$ in terms of $\omega(t)$

$$
\begin{aligned}
& |\dot{\mathbf{c}}(t)|=|\mathbf{b}||\omega(t)|=|\omega(t) \times \mathbf{b}| \\
& \dot{\mathbf{c}}(t)=\omega(t) \times \mathbf{b}=\omega(t) \times \mathbf{b}+\omega(t) \times \mathbf{a} \\
& \dot{\mathbf{c}}(t)=\omega(t) \times \mathbf{c}(t)
\end{aligned}
$$

Angular velocity

Given the physical meaning of $\mathbf{R}(t)$, what does each column of $\dot{\mathbf{R}}(t)$ mean?

At time t, the direction of x-axis of the rigid body in world space is the first column of $\mathbf{R}(t)$

$$
\left[\begin{array}{l}
r_{x x} \\
r_{x y} \\
r_{x z}
\end{array}\right]
$$

At time t, what is the derivative of the first column of $\mathbf{R}(t)$?

$$
\left[\begin{array}{c}
r_{x x} \\
r_{x y} \\
r_{x z}
\end{array}\right]=\omega(t) \times\left[\begin{array}{l}
r_{x x} \\
r_{x y} \\
r_{x z}
\end{array}\right]
$$

Angular velocity

$\dot{\mathbf{R}}(t)=\left[\omega(t) \times\left(\begin{array}{c}r_{x x} \\ r_{x y} \\ r_{x z}\end{array}\right) \quad \omega(t) \times\left(\begin{array}{c}r_{y x} \\ r_{y y} \\ r_{y z}\end{array}\right) \quad \omega(t) \times\left(\begin{array}{c}r_{z x} \\ r_{z y} \\ r_{z z}\end{array}\right)\right]$

This is the relation between angular velocity and the orientation, but it is too cumbersome

We can use a trick to simplify this expression

Angular velocity

Consider two 3 by 1 vectors: \mathbf{a} and \mathbf{b}, the cross product of them is

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
a_{y} b_{z}-b_{y} a_{z} \\
-a_{x} b_{z}+b_{x} a_{z} \\
a_{x} b_{y}-b_{x} a_{y}
\end{array}\right]
$$

Given a, let's define a* to be a skew symmetric matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right] } \\
& \mathbf{a}^{*} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\mathrm{a} \times \mathbf{b}
\end{aligned}
$$

Angular velocity

$$
\begin{aligned}
& =\omega(t)^{*} \mathbf{R}(t)
\end{aligned}
$$

Vector relation: $\dot{\mathbf{c}}(t)=\omega(t) \times \mathbf{c}(t)$
Matrix relation: $\dot{\mathbf{R}}=\omega(t)^{*} \mathbf{R}(t)$

Perspective of particles

- Imagine a rigid body is composed of a large number of small particles
- the particles are indexed from 1 to N
- each particle has a constant location $\mathbf{r}_{0 i}$ in body space
- the location of i-th particle in world space at time t is $\mathbf{r}_{i}(t)=\mathbf{x}(t)+\mathbf{R}(t) \mathbf{r}_{0 i}$

Velocity of a particle

$$
\begin{aligned}
\dot{\mathbf{r}}(t) & =\frac{d}{d t} \mathbf{r}(t)=\omega^{*} \mathbf{R}(t) \mathbf{r}_{0 i}+\mathbf{v}(t) \\
& =\omega^{*}\left(\mathbf{R}(t) \mathbf{r}_{0 i}+\mathbf{x}(t)-\mathbf{x}(t)\right)+\mathbf{v}(t) \\
& =\omega^{*}\left(\mathbf{r}_{i}(t)-\mathbf{x}(t)\right)+\mathbf{v}(t)
\end{aligned}
$$

$$
\dot{\mathbf{r}}_{i}(t)=\omega \times\left(\mathbf{r}_{i}(t)-\mathbf{x}(t)\right)+\mathbf{v}(t)
$$

angular component linear component

Velocity of a particle

$$
\dot{\mathbf{r}}_{i}(t)=\omega \times\left(\mathbf{r}_{i}(t)-\mathbf{x}(t)\right)+\mathbf{v}(t)
$$

Quiz

- True or False
- If a cube has non-zero angular velocity, a corner point always moves faster than the COM
- If a cube has zero angular velocity, a corner point always moves at the same speed as the COM
- If a cube has non-zero angular velocity and zero linear velocity, the COM may or may not be moving
- Position and orientation
- Linear and angular velocity
- Mass and Inertia
- Force and torques
- Simulation

Mass

The mass of the i-th particle is m_{i}

$$
\text { Mass } \quad M=\sum_{i=1}^{N} m_{i}
$$

Center of mass in world space

$$
\frac{\sum m_{i} r_{i}(t)}{M}
$$

What about center of mass in body space? ($0,0,0$)

Quiz

Proof that the center of mass at time t in word space is $\mathbf{x}(t)$

$$
\frac{\sum m_{i} \mathbf{r}_{i}(t)}{M}=
$$

$$
=\mathbf{x}(t)
$$

Inertia tensor

Inertia tensor describes how the mass of a rigid body is distributed relative to the center of mass

$$
\begin{aligned}
& \mathbf{I}=\sum_{i}\left[\begin{array}{ccc}
m_{i}\left(r_{i y}^{\prime 2}+r_{i z}^{\prime 2}\right) & -m_{i} r_{i x}^{\prime} r_{i y}^{\prime} & -m_{i} r_{i x}^{\prime} r_{i z}^{\prime} \\
-m_{i} r_{i y}^{\prime} r_{i x}^{\prime} & m_{i}\left(r_{i x}^{\prime}+r_{i z}^{2}\right) & -m_{i} r_{i y}^{\prime} r_{i z}^{\prime} \\
-m_{i} r_{i z}^{\prime} r_{i x}^{\prime} & -m_{i} r_{i z}^{\prime} r_{i y}^{\prime} & m_{i}\left(r_{i x}^{2}+r_{i y}^{\prime 2}\right)
\end{array}\right] \\
& \\
& \mathbf{r}_{i}^{\prime}=\mathbf{r}_{i}(t)-\mathbf{x}(t)
\end{aligned}
$$

$\mathbf{I}(t)$ depends on the orientation of a body, but not the translation
For an actual implementation, we replace the finite sum with the integrals over a body's volume in world space

Inertia tensor

- Inertia tensors vary in world space over time
- But are constant in the body space
- Pre-compute the integral part in the body space to save time

Inertia tensor

Pre-compute $\mathbf{I}_{\text {body }}$ that does not vary over time

$$
\begin{aligned}
& \mathbf{I}=\sum_{i}\left[\begin{array}{ccc}
m_{i}\left(r_{i y}^{\prime 2}+r_{i z}^{\prime 2}\right) & -m_{i} r_{i x}^{\prime} r_{i y}^{\prime} & -m_{i} r_{i x}^{\prime} r_{i z}^{\prime} \\
-m_{i} r_{i y}^{\prime} r_{i x}^{\prime} & m_{i}\left(r_{i x}^{\prime 2}+r_{i z}^{\prime 2}\right. & -m_{i} r_{i y}^{\prime} r_{i z}^{\prime} \\
-m_{i} r_{i z}^{\prime} r_{i x}^{\prime} & -m_{i} r_{i z}^{\prime} r_{i y}^{\prime} & m_{i}\left(r_{i x}^{\prime 2}+r_{i y}^{\prime 2}\right)
\end{array}\right] \\
& \mathbf{r}_{i}^{\prime}=\mathbf{r}_{i}(t)-\mathbf{x}(t)
\end{aligned}
$$

$$
\mathbf{I}(t)=\mathbf{R}(t) \mathbf{I}_{b o d y} \mathbf{R}(t)^{T} \quad \mathbf{I}_{b o d y}=\sum_{i} m_{i}\left(\left(\mathbf{r}_{0 i}^{T} \mathbf{r}_{0 i}\right) \mathbf{1}-\mathbf{r}_{0 i} \mathbf{r}_{0 i}^{T}\right)
$$

Inertia tensor

Pre-compute $\mathbf{I}_{\text {body }}$ that does not vary over time

$$
\begin{aligned}
\mathbf{I}(t) & =\sum m_{i} \mathbf{r}_{i}^{\prime T} \mathbf{r}_{i}^{\prime}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
m_{i} \mathbf{r}_{i x}^{\prime 2} & m_{i} \mathbf{r}_{i x}^{\prime} \mathbf{r}_{i y}^{\prime} & m_{i} \mathbf{r}_{i x}^{\prime} \mathbf{r}_{i z}^{\prime} \\
m_{i} \mathbf{r}_{i y}^{\prime} \mathbf{r}_{i x}^{\prime} & m_{i} \mathbf{r}_{i y}^{\prime 2} & m_{i} \mathbf{r}_{i y}^{\prime} \mathbf{r}_{i z}^{\prime} \\
m_{i} \mathbf{r}_{i z}^{\prime} \mathbf{r}_{i x}^{\prime} & m_{i} \mathbf{r}_{i z}^{\prime} \mathbf{r}_{i y}^{\prime} & m_{i} \mathbf{r}_{i z}^{\prime 2}
\end{array}\right] \\
\mathbf{I}(t) & \left.=\sum m_{i}\left(\mathbf{r}_{i}^{\prime T} \mathbf{r}_{i}^{\prime}\right) \mathbf{1}-\mathbf{r}_{i}^{\prime} \mathbf{r}_{i}^{\prime T}\right) \\
& =\sum m_{i}\left(\left(\mathbf{R}(t) \mathbf{r}_{0 i}\right)^{T}\left(\mathbf{R}(t) \mathbf{r}_{0 i}\right) \mathbf{1}-\left(\mathbf{R}(t) \mathbf{r}_{0 i}\right)\left(\mathbf{R}(t) \mathbf{r}_{0 i}\right)^{T}\right) \\
& =\sum m_{i}\left(\mathbf{R}(t)\left(\mathbf{r}_{0 i}^{T} \mathbf{r}_{0 i}\right) \mathbf{R}(t)^{T} \mathbf{1}-\mathbf{R}(t) \mathbf{r}_{0 i} \mathbf{r}_{0 i}^{T} \mathbf{R}(t)^{T}\right) \\
& =\mathbf{R}(t)\left(\sum m_{i}\left(\left(\mathbf{r}_{0 i}^{T} \mathbf{r}_{0 i}\right) \mathbf{1}-\mathbf{r}_{0 i} \mathbf{r}_{0 i}^{T}\right)\right) \mathbf{R}(t)^{T} \\
\mathbf{I}(t) & =\mathbf{R}(t) \mathbf{I}_{b o d y} \mathbf{R}(t)^{T} \quad \mathbf{I}_{b o d y}=\sum_{i} m_{i}\left(\left(\left(\mathbf{r}_{0 i}^{T} \mathbf{r}_{0 i}\right) \mathbf{1}-\mathbf{r}_{0 i} \mathbf{r}_{0 i}^{T}\right)\right.
\end{aligned}
$$

Approximate inertia tensor

- Bounding boxes
- Pros: simple
- Cons: inaccurate

Approximate inertia tensor

- Point sampling
- Pros: simple, fairly accurate
- Cons: expensive, requires volume test

Approximate inertia tensor

- Green's theorem

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\nabla \times \mathbf{F}) \cdot d \mathbf{a}
$$

- Pros: simple, exact
- Cons: require boundary representation

- Position and orientation
- Linear and angular velocity
- Mass and Inertia
- Force and torques
- Simulation

Force and torque

$\mathbf{F}_{i}(t)$ denotes the total force from external forces acting on the i-th particle at time t

$$
\begin{aligned}
& \mathbf{F}(t)=\sum_{i} \mathbf{F}_{i}(t) \\
& \tau(t)=\sum_{i}\left(\mathbf{r}_{i}(t)-\mathbf{x}(t)\right) \times \mathbf{F}_{i}(t)
\end{aligned}
$$

Force and torque

- $\mathbf{F}(t)$ conveys no information about where the various forces acted on the body
- $\tau(t)$ contains the information about the distribution of the forces over the body
- Which one depends on the location of the particle relative to the center of mass?

Linear momentum

$$
\begin{aligned}
\mathbf{P}(t) & =\sum_{i} m_{i} \dot{r}_{i}(t) \\
& =\sum_{i} m_{i} \mathbf{v}(t)+\omega(t) \times \sum_{i} m_{i}\left(\mathbf{r}_{i}(t)-\mathbf{x}(t)\right) \\
& =M \mathbf{v}(t)
\end{aligned}
$$

Total linear moment of the rigid body is the same as if the body was simply a particle with mass M and velocity $\mathbf{v}(t)$

Angular momentum

Similar to linear momentum, angular momentum is defined as

$$
\mathbf{L}(t)=\mathbf{I}(t) \omega(t)
$$

Does $\mathbf{L}(t)$ depend on the translational effect $\mathbf{x}(t)$?
Does $\mathbf{L}(t)$ depend on the rotational effect $\mathbf{R}(t)$?
What about $\mathbf{P}(t)$?

Derivative of momentum

Change in linear momentum is equivalent to the total forces acting on the rigid body

$$
\dot{\mathbf{P}}(t)=M \dot{\mathbf{v}}(t)=\mathbf{F}(t)
$$

The relation between angular momentum and the total torque is analogous to the linear case

$$
\dot{\mathbf{L}}(t)=\tau(t)
$$

Derivative of momentum

Proof $\dot{\mathbf{L}}(t)=\tau(t)=\sum \mathrm{r}_{i}^{\prime} \times \mathbf{F}_{i}$

$$
\begin{aligned}
& m_{i} \ddot{r}_{i}-\mathbf{F}_{i}=m_{i}\left(\dot{\mathbf{v}}-\dot{\mathbf{r}}_{i}^{\prime *} \omega-\mathbf{r}_{i}^{\prime *} \dot{\omega}\right)-\mathbf{F}_{i}=\mathbf{0} \\
& \sum \mathbf{r}_{i}^{\prime *} m_{i}\left(\dot{\mathbf{v}}-\dot{\mathbf{r}}_{i}^{\prime *} \omega-\mathbf{r}_{i}^{\prime *} \dot{\omega}\right)-\sum \mathbf{r}_{i}^{\prime *} \mathbf{F}_{i}=\mathbf{0} \\
& -\left(\sum m_{i} \mathbf{r}_{i}^{\prime *} \dot{\mathbf{r}}_{i}^{\prime *}\right) \omega-\left(\sum m_{i} \mathbf{r}_{i}^{\prime *} \mathbf{r}_{i}^{\prime *}\right) \dot{\omega}=\tau \\
& \sum-m_{i} \mathbf{r}_{i}^{\prime *} \mathbf{r}_{i}^{\prime *}=\sum m_{i}\left(\left(\mathbf{r}_{i}^{\prime T} \mathbf{r}_{i}^{\prime}\right) \mathbf{1}-\mathbf{r}_{i}^{\prime} \mathbf{r}_{i}^{\prime T}\right)=\mathbf{I}(t) \\
& -\left(\sum m_{i} \mathbf{r}_{i}^{\prime *} \dot{\mathbf{r}}_{i}^{\prime *}\right) \omega+\mathbf{I}(t) \dot{\omega}=\tau \\
& \dot{\mathbf{I}}(t)=\frac{d}{d t} \sum-m_{i} \mathbf{r}_{i}^{\prime *} \mathbf{r}_{i}^{\prime *}=\sum-m_{i} \mathbf{r}_{i}^{\prime *} \dot{\mathbf{r}}_{i}^{\prime *}-m_{i} \dot{\mathbf{r}}_{i}^{\prime *} \mathbf{r}_{i}^{\prime *} \\
& \dot{\mathbf{I}}(t) \omega+\mathbf{I}(t) \dot{\omega}=\frac{d}{d t}(\mathbf{I}(t) \omega)=\dot{\mathbf{L}}(t)=\tau
\end{aligned}
$$

Quiz

What is the direction of acceleration?

$\mathbf{v}=0$

$\mathbf{v} \neq 0$

- Position and orientation
- Linear and angular velocity
- Mass and Inertia
- Force and torques
- Simulation

Equation of motion

$$
\mathbf{Y}(t)=\left[\begin{array}{c}
\mathbf{x}(t) \\
\mathbf{R}(t) \\
\mathbf{P}(t) \\
\mathbf{L}(t)
\end{array}\right] \begin{aligned}
& \text { position } \\
& \text { orientation } \\
& \text { linear momentum } \\
& \text { angular momentum }
\end{aligned} \quad \frac{d}{d t} \mathbf{Y}(t)=\left[\begin{array}{c}
\mathbf{v}(t) \\
\omega(t)^{*} \mathbf{R}(t) \\
\mathbf{F}(t) \\
\tau(t)
\end{array}\right]
$$

Constants: M and $\mathbf{I}_{\text {body }}$

$$
\begin{gathered}
\mathbf{v}(t)=\frac{\mathbf{P}(t)}{M} \\
\mathbf{I}(t)=\mathbf{R}(t) \mathbf{I}_{\text {body }} \mathbf{R}(t)^{T} \\
\omega(t)=\mathbf{I}(t)^{-1} \mathbf{L}(t)
\end{gathered}
$$

Issues with 3D orientation

- After simulating for a while, the rotational matrix might no longer be orthonormal due to accumulated numerical errors.
- Rectifying a rotational matrix is not trivial.
- A better representation of 3D orientation is needed.

Types of orientation

1D orientation

2D orientation 3D orientation

3 Euler-angle representation

- An Euler angle is a rotation about a single Cartesian axis
- Create multi-DOF rotations by concatenating Euler angles
- Rotate each axis independently in a set order

Gimbal Lock

- A Gimbal is a hardware implementation of Euler angles used for mounting gyroscopes or expensive globes
- Gimbal lock is a basic problem with representing 3D rotation using Euler
 angles or fixed angles

Gimbal lock

- When two rotational axis of an object pointing in the same direction, the rotation ends up losing one degree of freedom

Gimbal Lock

Quałernion

- Quaternion is free from Gimbal lock.
- Quaternion experiences less numerical drift than matrix
- If it does become necessary to account for drift in a quaternion, it is easily correctable by re-normalizing the quaternion to unit length

Quaternion: geometric view

1-angle rotation can be represented by a unit circle

2-angle rotation can be represented by a unit sphere

- What about 3-angle rotation?

Quaternion: algebraic view

- 4 tuple of real numbers: w, x, y, z

$$
\mathbf{q}=\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
w \\
\mathbf{v}
\end{array}\right] \begin{aligned}
& \text { scalar } \\
& \text { vector }
\end{aligned}
$$

$$
\mathbf{q}=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) \mathbf{r}
\end{array}\right]
$$

Basic quaternion definitions

- Unit quaternion $|\mathbf{q}|=1$

$$
x^{2}+y^{2}+z^{2}+w^{2}=1
$$

- Inverse quaternion $\mathrm{q}^{-1}=\frac{\mathrm{q}^{*}}{|\mathbf{q}|}$

Conjugate

$$
\mathbf{q}^{*}=\left[\begin{array}{l}
w \\
\mathbf{v}
\end{array}\right]^{*}=\left[\begin{array}{c}
w \\
-\mathbf{v}
\end{array}\right]
$$

- Identity

$$
\mathbf{q q}^{-1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Quaternion multiplication

$$
\left[\begin{array}{c}
w_{1} \\
\mathbf{v}_{1}
\end{array}\right]\left[\begin{array}{l}
w_{2} \\
\mathbf{v}_{2}
\end{array}\right]=\left[\begin{array}{c}
w_{1} w_{2}-\mathbf{v}_{1} \cdot \mathbf{v}_{2} \\
w_{1} \mathbf{v}_{2}+w_{2} \mathbf{v}_{1}+\mathbf{v}_{1} \times \mathbf{v}_{2}
\end{array}\right]
$$

- Commutativity

$$
\mathbf{q}_{1} \mathbf{q}_{2} \neq \mathbf{q}_{2} \mathbf{q}_{1}
$$

- Associativity

$$
\mathbf{q}_{1}\left(\mathbf{q}_{2} \mathbf{q}_{3}\right)=\left(\mathbf{q}_{1} \mathbf{q}_{2}\right) \mathbf{q}_{3}
$$

Quaternion rotation

- Quaternion representation of a 3D point, \mathbf{p}

$$
\mathbf{q}_{p}=\left[\begin{array}{l}
0 \\
\mathbf{p}
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
\cos (\theta / 2) \\
\sin (\theta / 2) \mathbf{r}
\end{array}\right]
$$

- If \mathbf{q} is a unit quaternion, $\mathbf{q} \mathbf{q}_{p} \mathbf{q}^{-1}$ results in \mathbf{p} rotating about \mathbf{r} by θ

proof: see Quaternions by Shoemaker

Quaternion composition

- If \mathbf{q}_{1} and \mathbf{q}_{2} are unit quaternions, the combined rotation of first rotating by \mathbf{q}_{1} and then by \mathbf{q}_{2} is equivalent to

$$
\mathbf{q}_{3}=\mathbf{q}_{2} \cdot \mathbf{q}_{1}
$$

Quaternion to matrix

$$
\mathbf{q}=\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]
$$

$$
\mathbf{R}(\mathbf{q})=\left[\begin{array}{cccc}
1-2 y^{2}-2 z^{2} & 2 x y+2 w z & 2 x z-2 w y & 0 \\
2 x y-2 w z & 1-2 x^{2}-2 z^{2} & 2 y z+2 w x & 0 \\
2 x z+2 w y & 2 y z-2 w x & 1-2 x^{2}-2 y^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Quaternion derivative

- To represent orientation of rigid body using quaternion, we need to compute time derivative of quaternion

$$
\dot{\mathbf{q}}(t)=\frac{1}{2} \boldsymbol{\omega}(t) \mathbf{q}(t)=\frac{1}{2}[0, \boldsymbol{\omega}(t)] \mathbf{q}(t)
$$

Modified equations

$$
\mathbf{Y}(t)=\left[\begin{array}{ll}
\mathbf{x}(t) \\
\mathbf{R}(t) & \begin{array}{l}
\text { position } \\
\mathbf{P}(t) \\
\text { orientation } \\
\text { linear momentum } \\
\mathbf{L}(t)
\end{array}
\end{array} \quad \frac{d}{d t} \mathbf{Y}(t)=\left[\begin{array}{c}
\mathbf{v}(t) \\
\omega(t){ }^{*} \mathbf{R}(t) \\
\mathbf{F}(t) \\
\tau(t)
\end{array}\right]\right.
$$

Constants: M and $\mathbf{I}_{\text {body }}$

$$
\begin{gathered}
\mathbf{v}(t)=\frac{\mathbf{P}(t)}{M} \\
\mathbf{I}(t)=\mathbf{R}(t) \mathbf{I}_{\text {body }} \mathbf{R}(t)^{T} \\
\omega(t)=\mathbb{I}(t)^{-1} \mathbf{L}(t)
\end{gathered}
$$

Modified equations

$\mathbf{Y}(t)=\left[\begin{array}{c}\mathbf{x}(t) \\ \mathbf{P}(t) \\ \mathbf{P}(t) \\ \mathbf{L}(t)\end{array}\right]$ (t) $\begin{aligned} & \text { position } \\ & \text { linear momentum } \\ & \text { angular momentum }\end{aligned} \quad \frac{d}{d t} \mathbf{Y}(t)=\left[\begin{array}{c}\mathbf{v}(t) \\ \frac{* \mathbf{R}(t)}{\mathbf{F}(t)} \\ \tau(t)\end{array}\right] \mathbf{q}(t)$

Constants: M and $\mathbf{I}_{\text {body }}$

$$
\begin{gathered}
\mathbf{v}(t)=\frac{\mathbf{P}(t)}{M} \\
\mathbf{R}(t)=\text { quatToMatrix }(\mathbf{q}(t)) \\
\mathbf{I}(t)=\mathbf{R}(t) \mathbf{I}_{\text {body }} \mathbf{R}(t)^{T} \\
\omega(t)=\mathbf{I}(t)^{-1} \mathbf{L}(t) \\
\dot{\mathbf{q}}(t)=\frac{1}{2} \boldsymbol{\omega}(t) \mathbf{q}(t)
\end{gathered}
$$

Numerical errors

- The numerical errors could build up and $\mathbf{q}(t)$ might no longer be a unit quaternion.
- Normalizing $\mathbf{q}(t)$ is trivial.

Momentum vs. velocity

- Why do we use momentum in the state space instead of velocity?
- Because the relation of angular momentum and torque is simpler
- Because the angular momentum is constant when there is no torques acting on the object
- Use linear momentum $\mathbf{P}(t)$ to be consistent with angular velocity and acceleration

Quiz

Consider a 3D sphere with radius 1 m , mass 1 kg , and inertia $\mathrm{I}_{\text {body }}$. The initial linear and angular velocity are both zero. The initial position and the initial orientation are \mathbf{x}_{0} and \mathbf{R}_{0}. The forces applied on the sphere include gravity (g) and an initial push \mathbf{F} applied at point \mathbf{p}. Note that \mathbf{F} is only applied for one time step at t_{0}. If we use Explicit Euler method with time step h to integrate, what are the position and the orientation of the sphere at t_{2} ? Use the actual numbers defined as below to compute your solution (except for g and h).

$$
\begin{array}{ll}
\mathbf{x}_{0}=(0,0,0) & \mathbf{p}=(-1,0,0) \\
\mathbf{R}_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \mathbf{F}=\left(4 \cos \left(30^{\circ}\right), 4 \sin \left(30^{\circ}\right), 0\right) \\
& m=1 \\
& \mathbf{I}_{\text {body }}=\left(\begin{array}{ccc}
2 / 5 & 0 & 0 \\
0 & 2 / 5 & 0 \\
0 & 0 & 2 / 5
\end{array}\right)
\end{array}
$$

Example:

1. compute the $\mathbf{I}_{\text {body }}$ in body space

$$
\mathbf{I}_{b o d y}=\frac{M}{12}\left(\begin{array}{ccc}
y_{0}^{2}+z_{0}^{2} & 0 & 0 \\
0 & x_{0}^{2}+z_{0}^{2} & 0 \\
0 & 0 & x_{0}^{2}+y_{0}^{2}
\end{array}\right)
$$

Example:

1. compute the $\mathbf{I}_{\text {body }}$ in body space

2. rotation free movement

Example:

1. compute the $\mathbf{I}_{\text {body }}$ in body space
2. rotation free movement
3. translation free movement

Quiz

$$
\text { energy = } 0
$$

Suppose a force F acts on the block at the center of mass for 10 seconds. Since there is no torque acting on the block, the body will only acquire linear velocity \mathbf{v} after 10 seconds. The kinetic energy will be $\quad \frac{1}{2} M \mathbf{v}^{T} \mathbf{v}$

Now, consider the same force acting off-center to the body for 10 seconds. Since it is the same force, the velocity of the center of mass after 10 seconds is the same \mathbf{v}. However, the block will also pick up some angular velocity ω. The kinetic energy will be $\quad \frac{1}{2} M \mathbf{v}^{T} \mathbf{v}+\frac{1}{2} \omega^{T} \mathbf{I} \omega$

F

energy $=0$
If identical forces push the block in both cases, how can the energy of the block be different?

