
CS 1301 STUDY GUIDE

 Welcome to Programming!

 What is a Program?

A program is a sequence of instructions that specifies how to perform a

computation. Though the details look different in different languages, a few

basic instructions appear in just about any language:

Input, Output, Math, Conditional Execution and Repetition.

 Python is a High Level Language (i.e. a language that is designed to be easy

for humans to read and write).

 Computers can only execute programs written in a Low Level Language (i.e. a

language that is designed to be easy for a computer to execute; also called

machine language or assembly language).

 So how does the computer understand the code I have written in a high level

language?

The compiler does that important job! A compiler is a special program (or a

set of programs) that transforms the source code written in a high level

programming language (source language) into the object code written in a

low level computer language (target language) that the computer’s processor

can use.

 What is debugging?

Programming errors are called bugs and the process of tracking them down

and correcting them is called debugging. Three kinds of errors can occur in a

program:

1. Syntax Error: Syntax refers to the structure of a program and the rules

about that structure. (Think of it as the grammar of a programming

language). A syntax error is an error in the syntax of a program that

makes it impossible to parse and compile.

2. Runtime Error: An error that does not occur until the program has

started to execute but that prevents the program from continuing.

3. Semantic Error: In this error, your program runs successfully but the

meaning of the program (its semantics) is wrong and it does something

other than what you asked it to do.

 Comments

A comment in a computer program is text that is intended only for the human

reader – it is completely ignored by the interpreter.

In Python, “#” token starts a comment.

 What is an algorithm?

It is a set of specific steps for solving a category of problems.

VALUES, VARIABLES and DATA TYPES

 A value is one of the fundamental things that a program manipulates. They are

classified into different classes or data types.

 Some basic data types are:

1. int (integer): 1, 0, -2, 600, -78….

2. float (a number with a decimal point): 2.0, -3.0, 0.0, 67.5…..

3. bool (boolean): True, False, any expression that evaluates to a

Boolean value e.g. 2 == 2

4. NoneType: the default data type returned when a function stores

nothing

5. str (String): Though it is not a basic data type, it is a very common data

type. It is essentially a sequence of characters enclosed in quotes; even

numbers when enclosed within quotes are classified as strings

 “type” function: To find out what “class” a value falls into use the “type”

function.

>>>type(“Hello World”)

<type ‘str’>

>>>type(15)

<type ‘int’>

>>>type(True)

<type ‘bool’>

>>>type(78.8)

<type ‘float’>

>>>type(“78.8”)

<type ‘str’>

 Strings in Python can be enclosed in either single quotes (‘which can have

double quotes inside them’), double quotes (“which can have single quotes inside

them”) and triple quotes (“““ which can have either single or double quotes and

can even span multiple lines”””)

 Type Conversion

1. The int function can take a floating point number or a string and turn it

into an int. For floating point numbers, it discards the decimal portion of

the number – a process we call truncation towards zero on the number

line.

>>>int(-3.4)

-3 (Note that the result is closer to zero)

>>>int(2.999)

2 (It does not round up to the closest integer)

>>>int(“2345”)

2345

>>>int(“23 bottles”)

Invalid

2. The type converter float can turn an integer, a float or a syntactically

legal string into a float.

>>>float(17)

17.0

>>>float(“123.45”)

123.45

3. The type converter str turns its argument into a string.

>>>str(17)

“17”

 Variable: A variable is a name that refers to a value.

I. Variable Naming Rules:

 Variable names can be arbitrarily long.

 Variable names can contain letters, underscores and digits, but

they have to begin with a letter or underscore.

 “case” matters when naming variables.

II. The assignment operation:

 The assignment statement gives a value to a variable.

 >>>message = “What’s up?” (“=” is the assignment operator)

Note: The assignment statement binds a name (on the left) to a value (on the

right). It evaluates the expression on the right first and then makes the

assignment of that value to the variable.

>>>n = 5

>>>n = n+1

This statement may look weird if you think about it as a mathematical

expression. How can “n” equal “n+1”? Understand that the “=” token is not

the usual equal to symbol in math, here it assigns the value on the right to the

variable on the left. So it evaluates the expression on the right first (i.e. n+1

= 5+1 = 6) and now reassigns the value 6 to “n”. So, after executing the two

statements above “n” holds the value 6.

 Mathematical Operation

The order of evaluation depends on the “Rules of Precedence”.

a) Order: left to right

b) Priority: PEMDAS (Parentheses > Exponentiation > Multiplication =

Division = Modulo > Addition = Subtraction)

When two operations have the same precedence, then we evaluate from

Left to Right.

 Addition: +

 Subtraction: -

 Multiplication: *

 Integer Division: // (answer will be an integer)

The integer division (or floor division) always gives a whole number as

a result and in order to adjust, it always moves to the left of the

number.

 Floating Point Division: / (answer will be a float)

 Power: **

 Modulo: %

This operator works on integers and yields the remainder when one

number is divided by another.

Only when all the numbers used in the operation are integers, the result is

an integer.

If any of the numbers is float, the result will be a float.

HOWEVER, using integer division (//) with a float will yield the integer

answer as a floating point rather than the correct decimal approximation. In

other words, it will do integer division, but return it as a float (see example

for better understanding).

e.g.: 11/3 = 3.6

11/3.0 = 3.6

11//3 = 3

11//3.0 = 3.0 *instead of 3.6, integer division gives the integer answer (3)

converted to a float (3.0)

 Operations on Strings

 In general, you cannot perform mathematical operations on strings,

even if the strings look like numbers.

 The “+” operator does work with strings causing concatenation which

means joining the two operands by linking them end to end.

 The “*” operator also works on strings; it performs repetition.

>>> “Fun”*3

FunFunFun (One of the operands has to be a string and the other has

to be an integer)

 Two more useful functions:

 len function: It returns the number of characters in a string.

>>>len(“Happy Birthday”)

14 (Note that it also counts the space as a character)

 input function: It is a built-in function in Python for getting input from the

user.

>>>n = input(“Enter your name”)

On entering the test as a response, it gets returned from the input

function as a string and in this case, is assigned to the variable “n”.

Even if you asked the user to enter their age, you would get back a

string like “18” and it would be your job as a programmer to convert

that string into a float or an int, using the converter functions.

FUNCTIONS

 In Python, a function is a named sequence of statements that belong together

and their primary purpose is to help us organize programs into chunks that

match how we think about the problem.

 Syntax for defining a function:

 There can be any number of statements inside a function but they have to be

indented from “def”.

def NAME (Parameter):

 STATEMENTS

 There can be any number of parameters separated by commas and enclosed

in parentheses. The parameter specifies what information, if any, we have to

provide in order to use the new function.

 Note that defining a new function does not make a function run.

To do that we need a function call. Function calls contain the name of the

function being executed, followed by a list of values called arguments which

are assigned to the parameters in the function definition.

>>>addTwoNums(5,10)

The sum of the two given numbers is 15.

 Variables and Parameters are local.

When we create a local variable inside a function, it only exists inside the

function definition and we cannot use it outside.

In the example above, if we try to use x or y outside the function, we’ll get

an error.

>>>a

Name Error: name ‘x’ is not defined

The variables x and y are local to addTwoNums function and are not visible

outside the function.

When execution of the function terminates, the local variables are destroyed.

 Functions that return a value are called fruitful functions.

Function call

Output

def name():

 name = input(“Enter your name”)

 return name

def addTwoNums (x,y) :

 sumOfNum = x + y

 print (“The sum of the two given numbers is ” + sumOfNum + “.”)

Since this function returns a value stored in the variable “name”, it means that

when I call this function it will return/store a value (in this case, a string) and

to use that value further in my program I can assign it to a variable.

The return statement is followed by an expression that will be evaluated and

returned to the caller as the “fruit” of calling this function.

>>>result = name()

>>>print(“The result is ” + result)

 The opposite of a fruitful function is a void function – one that is not executed

for its resulting value but is executed because it does something useful.

This function displays the value stored in the variable “age” on the screen but

does not store/return it.

 Even though void functions are not executed for their resulting value, Python

always wants to return something. So, if the programmer doesn’t arrange to

return a value, Python will automatically return the value “None”.

>>>result = age()

>>>print(result)

18

None

Huh? What happened? It should print just 18 why does it print None as well?

To understand this subtle point, we need to understand the difference

between print and return (more detailed in next section).

Explanation: In Step 1 - The function age() is being called and the value it

returns is being assigned to result. On calling age(), the function gets

executed (recall that the right side is evaluated first) and on executing the

def age():

 age = 18

 print(age)

function age(), 18 gets printed on the screen. And since the function does not

return anything, by default it returns None.

Now in Step 2 – The value stored in result (i.e. None) is printed on the screen

and therefore, None gets printed on the second line.

PRINT vs RETURN

 In Python 3, print is a function
so when you call print you
need to use parentheses. (like
you call functions)

 It displays stuff to the screen.
>>>print(“Hey”)
Hey
(gets rid of the quotes when
displaying the output)

 It can be used outside a
function.

 It does not stop the execution
of further statements if the
function hits a print statement.
As a result, we can print
multiple things in a function.

 The print statement simply
displays the argument to the
screen, it does not return
anything so the default value
returned by the print
statement is None.

 In Python 3, return is a
statement so when you call
return you may or may not
use parentheses.

 It returns a value to a function
(in a way, stores the value to
a function)

 It cannot be used outside a
function.

 Once the function hits the
return statement, it stores the
value returned back to the
function and stops executing
any further statements in the
function definition. As a result,
a function can return one
thing.

 Since it stores the value
returned by the function, the
function call can be assigned
to a variable.

 Example:

def tester():

 print (“Hey”)

 return (“Bye”)

>>>tester()

Hey #Notice no quotes when printed

‘Bye’ #Notice quotes when returned

>>>x = tester()

Hey #Notice, now only Hey is printed because the value returned is

assigned to a variable

>>>x

‘Bye’ #Here it returns the value stored in x, hence the quotes

>>>print(x)

Bye #Now the value stored in x, i.e. the value returned by the function is

printed hence no quotes

 Example:

def testing():

 print(“1”)

 return 2

 print(“3”)

>>>testing()

1 #Notice no quotes since it is printed

2 #Notice no quotes since the value returned is not a string, it is an int

#Notice 3 is not printed to the screen because once the function hit the return

statement, it stopped executing further statements

>>>y = testing()

1 #Notice now only 1 is printed because the value returned is assigned to

a variable

>>>print(y)

2 #Now the value stored by the function is printed to the screen

 Example:

def test():

 print(“Hello World”)

>>>result = test()

Hello World #Notice when this assignment is made, the right side is

evaluated first and test() function is called as a result Hello World is printed

to the screen

>>>print(result)

None #Now the value stored in the function is printed to the screen.

Since this function does not contain any return statement it implicitly returns

None and therefore None is printed to the screen

CONDITIONALS

 A Boolean value is either True or False.

 A Boolean expression is an expression that evaluated to produce a result

which is a Boolean value.
>>>2 == 3

False

 Logical Operators

There are three logical operators - and, or, not; they allow us to build more

complex Boolean expressions from simpler Boolean expressions.

 and

 or

 not

 not True = False

 not False = True

 Order and Priority

Order: left to right

Priority: parentheses > not > and > or

 Conditional Statement: A statement that controls the flow of execution

depending on some condition.

 True False

True True False

False False False

 True False

True True True

False True False

 if

The statements will be executed when the boolean expression is True.

 elif

The statements will be executed only when the boolean expression is

True and all other previous boolean expressions in the same if group

are False.

 else

The statements will be executed when all the previous Boolean

expressions in the same if group are False.

 if Family

o An “if” family always begins with an “if” statement, which is the

only “if” statement in the family.

o It might have some “elif” statements, and at most one “else”

statement at the end.

o All the conditional statements in the same “if” group must have

same indentation.

o At most one block of statements will be executed in an “if”

family. The first block which evaluates to True in an “if” family

gets executed irrespective of whether the next blocks in the

same family evaluate to True or not.

o Note: you do not need to have an “elif” or else statement

accompanying every “if” statement.

 Example:

def tester():

 x = 3

if (aBooleanExpression):

 statements

elif (aBooleanExpression):

 statements

else:

 statements

 y = 6

 if (x > y) : #if family 1

 print(“Python is hard”)

 elif (x == y): #still if family 1

 print(“Python? The snake right?”)

 else: #yup if family 1

 print(“Python is cool”)

 if (x == 3): #if family 2

 print(“Hey”)

 elif (x == 4): #if family 2

 print(“Yo”)

 if (y == 3): #if family 3

 print(“Sup?”)

 else: #if family 3

 print(“I love CS 1301”)

>>>tester()

Python is cool

Hey

I love CS 1301

 Short Circuit Evaluation:

o The expression on the left of the “or” operator is evaluated first; if the

result is True, Python does not (and need not) evaluate the expression

on the right.

o For the “and” operator, if the expression on the left yields False,

Python does not evaluate the expression on the right.

o This is called Short-Circuit evaluation.

ITERATIONS

 Iteration: Repeated execution of a set of programming statements.

 for loop

The for loop processes each item in a sequence. Each item in turn is (re-)

assigned to the loop variable and the body of the loop is executed.

The statements will be executed for every item in aSequence. For each

execution, the variable identifier defined by the programmer (item) will be

assigned to point to the next item in the sequence, and may be used to refer

to it in the block of statements. At the end of the for loop, the variable will

remain pointing at the last item in the sequence.

 Example:

>>>for i in [“Joe”, “Sam”, “Jacob”]:

 print(i)

Joe

Sam

Jacob

 while loop

The statements will be executed repeatedly until the Boolean expression

becomes False.

 When using while loop, do not forget to initialize the counter before the loop

and do increment/decrement in the loop.

Example:

>>>x = 0 #where to start

>>>while x < 5: #end as x becomes greater than or equal to 5

 print(“Hey”)

for item in aSequence:

 statements

while aBooleanExpression:

 statements

 x = x + 1 #this increment helps the loop reach end

This prints:

Hey #x = 0

Hey #x = 1

Hey #x = 2

Hey #x = 3

Hey #x = 4

 The body of the loop should change the value of one or more variables so

that eventually the condition becomes False and the loop terminates.

Otherwise, the loop will repeat forever which is called an infinite loop.

 If the condition is False the first time we to the loop, the statements in the

body of the loop are never executed.

 Choosing between for and while:

 Use a “for” loop if you know, before you start looping, the maximum

number of times that you’ll need to execute the body. It is called

Definite Iteration – we know ahead of time some definite bounds for

what is needed.

 By contrast, if you are required to repeat some computation until some

condition is met and you cannot calculate in advance where (or if) this

will happen, you’ll need a while loop. It is called Indefinite Iteration –

we are not sure how many iterations we’ll need.

 The break statement:

The break statement is used to immediately leave the body of the loop. The

next statement to be executed is the first one after the body.

>>>for i in [12,16,17,24,29]

 if i % 2 == 1:

 break

 print(i)

 print(“done”)

This prints:

12

16

done

 The continue statement:

This is a control flow statement that causes the program to immediately skip

the processing of the rest of the body of the loop, for the current iteration.

But the loop still carries on running for its remaining iterations.

>>>for i in [12,16,17,24,29,30]

 if i % 2 == 1:

 continue #If the number is odd

 print(i) #Don’t process it

 print(“done”)

This prints:

12

16

24

30

Done

 The range function

 range(x) – returns a list of numbers from 0 up to but not including x.

 >>>range(4)

 [0,1,2,3]

 range(start,stop) – returns a list of numbers from start up to but not

including stop.

>>>range(5,11)

[5,6,7,8,9,10]

 range(start,stop,step) – returns a list of numbers from start up to but

not including stop with an increment of step.

>>>range(5,11,2)

[5,7,9]

BINARY CONVERSIONS

 Definition

 Binary (base 2): 10011 = 1*2**4 + 0*2**3+ 0*2**2+ 1*2**1+

1*2**0

 Octal-decimal (base 8): 725 = 7*8**2 + 2*8**1 + 5*8**0

 Decimal (base 10): 342 = 3*10**2 + 4*10**1 + 2*10**0

 Hexadecimal (base 16): C1A = 12*16**2 + 1*16**1 + 10*16**0

 General process:

Decimal Binary Octal-decimal / Hexadecimal

** You can do octal-decimal / hexadecimal to decimal conversion by a

general process (convert to binary version first and then to decimal).

 Decimal Binary

Example: 156(base 10) to base 2

Step 1: Divide 156 by 2. Write down the result and the remainder as

following:

Step 2: Keep doing this for all the quotients until you get 0 for quotient.

Step 3: Copy the remainders in a reverse order.

 Binary Decimal

Example: 1011101 (base 2) to base 10

Step1: calculate by definition 1011101 (base 2) = 1*2**6 + 0*2**5 +

1*2**4 + 1*2**3 + 1*2**2 + 0*2**1 + 1*2**0

Result: 1011101 (base 2) is 93 (base 10)

TRY AND EXCEPT

block1 will be executed first. If an error occurs during block1’s execution, the flow

of execution will immediately jump to block2 (skipping any remaining statements in

block1). If no error occurs, block2 will be skipped.

COMPOUND DATA TYPES

I. STRINGS

 Strings are made up of smaller strings each containing one character.

 Index Operator

The indexing operator (Python uses square brackets to enclose the index)

selects a single character substring from a string.

>>>fruit = “orange”

>>>x = fruit[1]

>>>print(x)

r

The expression in the brackets is called the index, which specifies a member

of an ordered collection.

 Slices

A substring of a string is obtained by taking a slice.

 aVariable [:]

 Slice everything

 E.g. x = “python”

 x[:] = “python”

try:

 block1

except:

 block2

 aVariable [start :]

 Slice everything after start

 E.g. x = “python”

 x[2:] = “thon”

 aVariable [: stop]

 Slice everything before stop

 E.g. x = “python”

 x[:4] = “pyth”

 aVariable [start : stop]

Slice from start (included) to stop

 E.g. x = “python”

 x[1:5] = “ytho”

 aVariable [start : stop : step]

 Slice from start to stop with common difference step

 E.g. x = “python”

 x[1:5:2] = “yh”

 aVariable [: : step]

 Slice everything with common difference step

 E.g. x = “python”

 x[::-1] = “nohtyp”

 x[::2] = “pto”

* All the starts are included and stops are excluded.

 String Formatting

Format operator: The % operator takes a format string and a tuple of values

and generates a string by inserting the data values into the format string at

the appropriate locations.

 >>>print(“My name is {} and I weigh {:.2f} pounds”.format(“Aaron”,109.9622))

 # 2 is the number of decimal places that you want the number to be rounded to.

My name is Aaron and I weigh 109.96 pounds

Types:

 d and i for decimal integer

 .nf for float with n decimal places (.n is optional)

 s for string

 Strings are immutable which means you cannot change an existing string. The

best you can do is create a new string that is a variation on the original and

re-assign it to the same variable.

>>>x = “Hello World”

>>>y = “J” + x[1:]

>>>x = y

>>>print(x)

Jello World

 The “in” and “not in” operator

The “in” operator tests for membership. When both the arguments to “in” are

strings, “in” checks whether the left argument is a substring of the right

argument.

>>> “ap” in “apple”

True

>>> “pa” in “apple”

False #The order of characters must also match

The “not in” operator returns the logical opposite results of “in”.

>>> “x” not in “apple”

True

 Useful Methods

 upper: It is a method that can be invoked on any string object and

create a new string, in which all characters are in uppercase while the

original string remains unchanged.

x = “hello”

y = x.upper()

>>>y

HELLO

>>>x

hello

 lower: It is a method that can be invoked on any string object and

create a new string, in which all characters are in lowercase while the

original string remains unchanged.

x = “HELLO”

y = x.lower()

>>>y

hello

>>>x

HELLO

 len: The len function when applied to a string, returns the number of

characters in a string.

>>>fruit = “banana”

>>>len(fruit)

6

 find: Strings already have their own built-in find method. It returns the

index position on which the string argument is present in the original

string. It returns -1 if the original string does not contain the argument

string.

>>> “banana”.find(“nan”)

2

 split: It splits a single multi-word string into a list of individual words,

based on a token string which is called the delimiter which acts as a

boundary marker between substrings (by default it splits by spaces)

and it removes all delimiters between the words.

>>>a = “I love CS 1301”

>>>b = a.split()

>>>b

[“I”, “love”, “CS”, “1301”] #Notice no spaces in the words

>>>x = “So, what’s up, I don’t know.”

>>>y = x.split(“,”)

>>>y

[“So”, “ what’s up”, “ I don’t know.”] #Note that when we change the

delimiter to something other than the default value then spaces are

also added to our words in the list.

II. LISTS

• A list is an ordered collection of values. The values that make up the list are

called its elements or its items.
aList = [“Bob”,12, [1,2,3]]

• Lists are similar to strings, which are ordered collections of characters, except

that the elements of a list can be of any type.

• Lists and strings and other collections that maintain the order of their items

are called sequences.

• Lists are mutable which means that you can change the elements of a list by a

simple assignment.
Example,

aList = [“Hey”, “How”, 3]

aList[0] = 1

>>>aList

[1, “How”, 3]

• A list within another list is said to be a nested list. You can do double

indexing to access an element of the nested list.
Example,

aList = [“a”, “b”, [1, 2, 3, 4]]

aList[2][0] = “c”

>>>aList

[“a”, “b”, [“c”, 2, 3, 4]]

• Accessing the elements
You index through a list like you do for a string. Any expression evaluating to

an integer can be used as an index.

If you try to access or assign to an element that does not exist, you get a

runtime error.

• List Operations

 The “+” operator concatenates two lists to give a new list. The original

lists are not affected.
>>>aList = [1,2,3]

>>>bList = [4,5,6]

>>>cList = aList + bList

>>>cList

[1,2,3,4,5,6]

 The “*” operator repeats a list a given number of times to give a new

list. The original list is not affected.
>>>aList = [0]

>>>bList = aList*4

>>>bList

[0,0,0,0]

 List Slices

The slice option lets us work with sublists.

>>>aList = [“a”, “b”, “c”, “d”]

>>>bList = aList[1:3]

>>>bList

[“b”, “c”] #Note that again start is included and the end is excluded

 Lists are mutable.

Unlike strings, lists are mutable which means we can change their

elements. Using the index operator on the left side of an assignment, it

changes one of the elements in the list.

>>>aList = [1,2,3,4]

>>>aList[2] = 10

>>>aList

[1,2,10,4]

 List Deletion

>>>aList = [“a”, “b”, “c”]

>>>del aList[1] #Notice that we give it the index and not the element

>>>aList

[“a”, “c”]

• List Methods: The dot operator can be used to access built-in methods of list

objects.

 (nameOfList).append – It is a list method which adds the argument

passed to it to the end of the list.

 (nameOfList).index(element) – Finds the index of the first occurrence of

element in the list.

 (nameOfList).reverse() – Reverses the list.

 (nameOfList).sort() – Sorts the list.

 (nameOfList).remove(element) – Removes the first occurrence of the

element in the list.

• Alias vs Clone

 aList = [1,2,3,4,5,6]

 bList = aList #This is an ALIAS

Since variables refer to objects, if we assign one variable to another,

both refer to the same object.

Here because the same list has two different names, i.e. aList and bList,

we say that it is aliased.

Note that changes made with one alias affect the other.

So, changing bList will also change aList because both of them refer to

the same list object.

 cList = aList[:] #This is a CLONE (copy)

When we want to modify a list and keep a copy of the original as

well, we need to be able to make a copy of the contents of the list and

not just the reference of the list. This process is called cloning. Now we

are free to make changes to cList without worrying that we will

inadvertently be changing aList.

III. TUPLES

• Tuples are used for grouping data. A tuple can be used to group any number

of items into a single compound value.

• Syntactically, a tuple is a comma-separated sequence of values. Though not

necessary, it is conventional to enclose them in parentheses.

>>>aTup = 5, #Correct

>>>aTup = (5,) #Correct

>>>aTup = (5) #Wrong because there is no comma! Without a

comma Python treats it as an integer inside parentheses.

>>>aTup = (“string”, 2, False) #Correct, a tuple can hold any data type

• Tuples are immutable but if there is a list inside a tuple, it can be modified

because the list inside the tuple is mutable. So be careful!

Example,

aTup = (“String”, 2, [1, 2, 3, 4])

aTup[0] = “Sam” #Wrong!!

aTup[2][0] = “a” #This works!!

>>>aTup

(“String”, 2, [“a”, 2, 3, 4])

• Tuple Operations

 Slices

aTup = (2, “Hey”, “You”, 89)

bTup = aTup[1:3] #Note the end index is excluded

>>>bTup

(“Hey”, “You”)

 You can use the “+” operator to add tuples and assign it to a new

variable; note that the original tuple is unchanged.

Example,

aTup = (2, 3, 4)

bTup = aTup + (5,)

>>>bTup

(2, 3, 4, 5)

IV. DICTIONARY

• Dictionaries are Python’s built-in mapping type. They map keys (which can

only be immutable type) to values (which can be of any type).

• To create a dictionary:

 One way to create a dictionary is to start with the empty dictionary

and add key - value pairs.

Example,

aDict = {}

aDict[“one”] = 1

aDict[“two”] = 2

aDict[“three”] = 3

>>>aDict

{“two”:2, “three”:3, “one”:1}

#Note that the order in which the key - value pairs are present does

not matter. Dictionaries are not sequences and therefore, it makes no

sense to index into a dictionary because the elements don’t have any

fixed index in a dictionary.

The values of a dictionary are accessed through keys.

>>>aDict[“one”]

1

 Another way to create a dictionary is to provide a list of key-value

pairs using the same syntax as previous output.

Example,

>>>aDict = {“one” : 1, “two” : 2, “three” : 3}

• Dictionaries are mutable.

• Dictionary Operations and Methods

 The “del” statement removes a key-value pair from a dictionary.

>>>del aDict[“one”]

 aDict.get(key, default)

For ‘key’ key, returns value or default if key is not in dictionary.

The default is usually None; also it is not required to give the second

parameter (i.e. the default value).

 aDict.has_key(key)

Returns True if key is in dictionary aDict, otherwise returns False.

 aDict.keys()

Returns a list of all the keys in the dictionary.

 aDict.values

Returns a list of all the values in the dictionary.

 aDict.items()

Returns a list of all the key-value pairs in the dictionary. Each item in

the list is a tuple in format (key, value).

FILE INPUT/OUTPUT

• Reading

 myFile= open (filename, "r")

 Open the file for reading purpose.

 myFile.readline()

Return the next line of the file.

 myFile.readlines()

Return all the lines in the file as a list of strings.

 myFile.read()

Return all of the contents of the file as a single string.

*Default mode of file I/O is “r”

• Writing

 myFile = open (filename, "w")

 Open the file for writing purpose.

 myFile.write (aString)

Write a string to the file.

*If a file already exists with the same filename, the old file will be

erased and substituted with the newly opened one.

• Appending

 myFile = open (filename, “a”)

 Open the file for appending purpose.

 myFile.write(aString)

Writes to an already existing file and adds to it.

• Closing

 myFile.close()

 Close the file. You must do this every time!

RECURSION

• Recursion means “defining something in terms of itself” usually at some smaller

scale, perhaps multiple times, to achieve your objective. For example, we might say

“A human is someone whose mother is a human being”, or “a directory is a structure

that holds files and smaller directories”.

• Three Elements of recursion:

 Base Case: Also known as terminating condition, is a conditional statement

that stops recursion at some point and avoids infinite execution.

 Recursion Call: Call the function itself inside the function.

 Recursive Step: The process of approaching the base case. Usually increment

or decrement.

• Recursion usually works as iteration. Do not use “for” loop or “while” loop together

 with recursion unless you understand exactly what you are doing.

• Example,

The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134 …

If we number the terms of the sequence from 0, we can describe each term

recursively as the sum of the previous two terms:

def fib(n):
 if n <= 1: #Base Case
 return n
 t = fib(n-1) + fib(n-2) #Recursion call; also n-1 & n-2 are Steps
 return t

FUNCTIONAL PROGRAMMING

• Map

 map (aFunction, aSequence)

 map applies the function to all the elements in the sequence and

returns a list that has the same length as the original sequence.

 aFunction must take in one element.

 map returns a list that has the same length as the original sequence,

but the elements are modified.

 Note that the original sequence is not affected at all.

 Example,

>>>numbers = [1,2,3,4]

>>>newList = map(lamda i : i + 3, numbers)

>>>newList

[4,5,6,7]

• Reduce

 reduce (aFunction, aSequence)

 reduce applies the function to the first two elements in the sequence

first, and then repeatedly takes in the result that the function returns

and the following element as parameters to reduce the length of the

sequence, and finally returns one result.

 aFunction must take in two elements and return one element.

 reduce returns only one element.

 Note that the original sequence is not affected at all.

 Example,

>>>numbers = [1,2,3,4]

>>>sumOfNum = reduce(lambda i,j : i + j, numbers)

>>>sumOfNum

10

• Filter

 filter (aFunction, aSequence)

 filter applies the function to every elements in the sequence and gets a

Boolean. It keeps the element if the Boolean is True and removes the

element if the Boolean is False.

 aFunction must take in one element and return a boolean.

 filter returns a new list that is shorter or has the same length as the

original sequence, but each element is not modified.

 filter may return something other than a list. For example, if you filter

a string it will return a string.

 Example,

>>>numbers = [1,2,34]

>>>newList = filter(lambda i : i%2 == 0, numbers)

>>>newList

[2,4]

SEARCHING AND SORTING

• BigO Complexity

BigO notation is used to describe how the work an algorithm does grows as

the size of the input grows. In general, you ignore constants when calculating

the BigO time complexity of an algorithm.

• Search

 Linear Search

 Search one by one

 bigO: N (Examine each of the N elements in the list)

 Binary Search

 Compare the target value to the mid-point of the list. If the mid-

point is not the target, divide the list in half and try again,

searching only the correct half. Repeat until either there are no

more elements to check, or until the target is found in the list

 This algorithm can only be performed on sorted lists.

 Example: Search 2 in list [1, 2, 3, 5, 8, 10, 15, 25]

 Round 1:

Mid-point: 8

2<8

New list: [1, 2, 3, 5]

 Round 2:

Mid-point: 3

2<3

New list: [1, 2]

 Round 3:

Mid-point: 2

2=2

Done

 bigO: logN (log2N rounds. 1 comparison each round.)

• Sort

 Selection Sort

 Select the smallest number (if sort increasingly) in the list and

append it to the result list.

 Example: Sort [3, 1, 4, 2] increasingly

 Round 1:

Minimum: 1

Result list: [1]

New list: [3, 4, 2]

 Round 2:

Minimum: 2

Result list: [1, 2]

New list: [3, 4]

 Round 3:

Minimum: 3

Result list: [1, 2, 3]

New list: [4]

 Round 4:

Minimum: 4

Result list: [1, 2, 3, 4]

Done

 bigO: N**2 (N rounds. At most N comparisons each round to find

out the smallest element.)

 Insertion Sort

 Get the first element in the list. Insert it in the right place in the

result list.

 Example: Sort [3, 1, 4, 2] increasingly

 Round 1:

Element: 3

Result list: [3]

New list: [1, 4, 2]

 Round 2:

Element: 1

Result list: [1, 3]

New list: [4, 2]

 Round 3:

Element: 4

Result list: [1, 3, 4]

New list: [2]

 Round 4:

Element: 2

Result list: [1, 2, 3, 4]

Done

 bigO: N**2 (N rounds. At most N comparisons each round to find

out the correct location.)

 Bubble Sort

 Pass through the list of elements, and swap adjacent elements if

they are not in the correct order. It must repeat the pass N-1 times

to guarantee the entire list is sorted (If the smallest element is at

the end of the list, it will take N-1 passes to swap it down to the

front of the list.)

 Example: Sort [3, 1, 4, 2] increasingly

 Round 1:

[3, 1, 4, 2] [1, 3, 4, 2]

[1, 3, 4, 2] [1, 3, 4, 2]

[1, 3, 4, 2] [1, 3, 2, 4]

 The last element in the list is guaranteed to be correct after the

first round.

 Round 2:

[1, 3, 2, 4] [1, 3, 2, 4]

[1, 3, 2, 4] [1, 2, 3, 4]

 The last two elements in the list is guaranteed to be correct after

the second round.

 Round 3:

[1, 2, 3, 4] [1, 2, 3, 4]

 The last three elements in the list is guaranteed to be correct after

the third round.

Done

 bigO: N**2 (N-1 rounds. Each round takes N-1 comparisons.

Hence we have (N-1)*(N-1). Because we ignore constants, this is

N**2)

 Merge Sort

 Divide the original list into small lists. Merge the small lists.

 Example: Sort [3, 1, 4, 2] increasingly

 Division stage:

 Round 1: [3, 1, 4, 2] [3, 1] [4, 2]

 Round 2: [3, 1] [4, 2] [3] [1] [4] [2]

 Merge stage:

 Round 1: [3] [1] [4] [2] [1, 3] [2, 4]

 Round 2: [1, 3] [2, 4] [1, 2, 3, 4]

 bigO: N*logN (log(2N) rounds and at most N divisions each round

in the division stage. Log (2N) rounds and at most N comparisons

each round in the division stage.)

 Quick Sort

 Select element as pivot every round and compare the rest

elements to the pivot. Elements that are less than the pivot are

collected into an unsorted list on the left of the pivot.

 Elements that are greater than or equal to the pivot are collected

into an unsorted list to the right of the pivot.

 Repeat for the left and right hand collection of numbers until the

size of each collection is one, at which point the entire list of

numbers is correctly ordered.

 Example: Sort [3, 1, 4, 2] increasingly

 Round 1:

Pivot: 4 (random choice)

New list: [3, 1, 2, 4]

 Round 2:

Pivot: 1 (random choice)

New list: [1, 3, 2, 4]

 Round 3:

Pivot: 2 (random choice)

New list: [1, 2, 3, 4]

 bigO: depends on pivot choices

N*logN (average)

N**2 (maximum)

(Average log (2N) rounds, at most N rounds. At most N

comparisons each round.)

Made by Sneh Munshi

Computer Science Undergraduate

Georgia Institute of Technology

