
CS 2316 Individual Homework 2 – Conditionals & Loops
Due: Wednesday, January 27, before 11:55pm
Out of 100 points

File to submit: HW2.py

Students may only collaborate with fellow students currently
taking CS 2316, the TA's, and the lecturer. Collaboration means
talking through problems, assisting with debugging, explaining a
concept, etc.

For Help:
 TA Helpdesk – Schedule posted on class website.
 Email TA’s or use Piazza

Notes:
 Don’t forget to include the required comments and

collaboration statement (as outlined on the course
syllabus).

 Do not wait until the last minute to do this
assignment in case you run into problems

 Read the entire specifications document before
starting this assignment.

Simple Functions
You will write a few python functions for practice with the
language. In your HW2.py file, include a comment at the top with
your name, section, GTId/Email, and your collaboration statement.
Also, include each of the following functions below. For purpose of
this homework, you may assume that all inputs will be valid.

1. countVowels(10pts)

Description:
Write a function that takes in one parameter: a string. Your
function will analyze the string and print out the number of
occurrences of each vowel respectively (a, e, i, o, and u).
Note with caution that your function should be able to
recognize both uppercase and lowercase vowels! The format
of the information to be printed can be found under “Test

Cases”.

Parameters:
aString (String): A string

Return Value:
None

Test Cases:
1. countVowels(“so it goes”) prints “a: 0, e: 1, i: 1, o: 2, u: 0”
2. countVowels(“Are you enjoying this so far?”) prints “a: 2,

e: 2, i: 2, o: 3, u: 1”
3. countVowels(“CS is sOoOoOo fun!”) prints “a: 0, e: 0, i: 1,

o: 6, u: 1”

2. finalGrade (10pts)

Description:
Write a function that takes in a list of exam grades and prints
the final grade (using 90-100 for A, 80-89 for B, etc.) after
performing a grade replacement policy. The grade
replacement policy takes the lowest grade from the list and
replaces it with the second lowest grade in the list. There will
be at least 2 numbers in the list, but there is no upper bound
for the length of the list.

Parameters:
gradeList (List): A list of exam grades as integers

Return:
None

Test Cases:
1. finalGrade([100,90,80,70]) prints “B”
2. finalGrade([100,100,100,100]) prints “A”
3. finalGrade([90, 80, 80, 90, 85]) prints “B”
4. finalGrade([30, 80, 44, 90, 85]) prints “D”

3. palindrome (15 points)

Description:
Write a function that checks to see if the parameter is a palindrome. In the string
you should ignore spaces and the cases of the letter. The function should return a
Boolean.
Parameter:
aStr (String)
Return:
Boolean
Test Cases:
palindrome(‘Race car’) →True
palindrome(‘taco Cat’) →True
palindrome(‘No x in Nixon’) →True
palindrome(‘This is a palindrome’) → False
palindrome(‘Jake is the best TA’) → False

4. pumpkinEye (15 points)
Description:
This function will take in a parameter called stars. This function should print a
hollow triangle composed of asterisks. You can assume only valid integer
parameters will be used. Use a loop and DO NOT HARDCODE!
Parameter:
stars (Integer): the number of asterisks per side (i.e. the height)
Return:
None

Test Cases:

 pumpkinEye(4) →

pumpkinEye(6) →

5. nextRow (10pts)

Description:
This is the beginning of pascals triangle:
 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1

You can calculate any row of Pascal's triangle after the first
two from the previous row. Create a new row that starts
with a 1, filling in the inner values such that each number is
the sum of the two values to the upper left and upper right
above t in the previous row, and then adding a 1 to the end.

For example, the 3rd row of Pascal's triangle is [1,3,3,1]. So
the 4th row would be calculated as [1, 1+3, 3+3, 3+1,1] =
[1,4,6,4,1].

Write a function called nextRow that takes in one
parameter, a list of numbers representing a row in a
Pascal's triangle (of at least 2 numbers) and return a list
representing the next row.

Parameters:
aRow (List): A row of integer numbers.

Return Values:
(List): A list of numbers representing the NEXT row of the
triangle.

Examples:
nextRow([1,1]) returns [1,2,1]
nextRow([1,2,1]) returns [1,3,3,1]

6. frequencyCount(15pts)

Description: This function will take in some compound data
type and count the amount of times each element occurs. It
returns a dictionary with the elements as keys and their
frequencies as values.

Parameters:
array: Some string, list, or tuple

Return Value:
aDict: Dictionary

Test Cases:
frequencyCount([1,1,2,3,1,2,4,3]) returns: {1: 3, 2: 2, 3: 2, 4:

1}
frequencyCount("Hello World!") returns :

{'e': 1, '!': 1, 'l': 3, 'd': 1, 'r': 1, 'o': 2, ' ': 1, 'W': 1, 'H': 1}
frequencyCount(("Hello",2,4,3.0,4,1,2,3.0,1,1)) returns:

{1: 3, 2: 2, 3.0: 2, 4: 2, 'Hello': 1}

7. noahsArk (15 points)

Description:
This function will take a dictionary as a parameter and alphabetize the keys and the
values associated with the keys. It will then print out the dictionary. Refer to the
test cases for the proper format (the values are led by tab characters).

Hint: Dictionaries are not sequences so they do not retain order. You will have to
sort the keys separately (aDict.keys()).

Parameters:
aDict: The dictionary to be sorted. Assume the keys are sortable and the values are
sortable lists.

Test Case:

>>> dict1 = {'Animals': ['Anteaters', 'Bulls', 'Mountain Lion', 'Camel', 'Polar Bear',
'Kangaroo'], 'Amphibians': ['Frog', 'Toads', 'Salamanders'], 'Insects': ['Butterflies',
'Ants', 'Beetles', 'Bee', 'Centipede']}

>>> noahsArk(dict1)
Amphibians
 Frog
 Salamanders
 Toads
Animals
 Anteaters
 Bulls
 Camel
 Kangaroo
 Mountain Lion
 Polar Bear
Insects
 Ants
 Bee
 Beetles
 Butterflies
 Centipede

Grading Rubric
countVowels (10pts)
- Loops through input string 2pts
- Identifies lowercase vowels 2pts
- Identifies uppercase vowels 2pts
- Keeps track of the number of occurrences of each vowel 2pts
- Prints correct information in the correct format 2pts

finalGrade(10pts)
- Correctly identifies the lowest grade 2pts
- Correctly identifies the second lowest grade 2pts
- Replaces lowest grade with second lowest grade successfully 4pts
- Prints correct grade 2pts

palindrome(15pts)
- Correctly ignores spaces and cases 5pts
- Correctly identifies palindrome 5pts
- returns Boolean 5pts

pumpkinEye(15pts)
- Correct number of *’s per side 5pts
- Correct format of pumpkin eye 10pts
- Hard coded prinouts -15pts

nextRow(10pts)
- Returns correct nextRow for all possible input rows 10pts

frequencyCount(15pts)
- Creates a key for all elements 5pts
- Contains no keys equal to zero 2pts
- Works for strings, lists, and tuples 3pts
- Correct frequency counts 5pts

noahsArk (15 pts.)
- Alphabetizes keys 4pts
- Alphabetizes values 4pts
- Iterates through values 4pts
- Print-out is correctly formatted 3pts

