Particle dynamics
Unified Particle Physics for Real-Time Applications

Miles Macklin Matthias Müller Nuttapong Chentanez Tae-Yong Kim

NVIDIA
• Second-order motion

• Particle system

• Forces

• Constraints

• Second order motion analysis (advanced)
Particle system

- Particles are objects that have mass, position, and velocity, but without spatial extent.
- Particles are the easiest objects to simulate, but they can be made to exhibit a wide range of objects.
A Newtonian particle

- First order motion is sufficient, if
 - a particle state only contains position
 - no inertia
 - particles are extremely light
- Most likely particles have inertia and are affected by gravity and other forces
- This puts us in the realm of second order motion
What is the differential equation that describes the behavior of a mass point?

\[f = ma \]

What does \(f \) depend on?

\[\ddot{x}(t) = \frac{f(x(t), \dot{x}(t))}{m} \]
Second-order ODE

\[\ddot{x}(t) = \frac{f(x(t), \dot{x}(t))}{m} = f(x, \dot{x}) \]

This is not a first order ODE because it has second derivatives.

Add a new variable, \(v(t) \), to get a pair of coupled first order equations:

\[\begin{cases}
\dot{x} = v \\
\dot{v} = \frac{f}{m}
\end{cases} \]
Phase space

\[
\begin{bmatrix}
 x \\
 v
\end{bmatrix} =
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
\]

Concatenate position and velocity to form a 6-vector:
position in phase space

\[
\begin{bmatrix}
 \dot{x} \\
 \dot{v}
\end{bmatrix} = f(\begin{bmatrix}
 x \\
 v
\end{bmatrix}) = \begin{bmatrix} v \\
 f/m \end{bmatrix}
\]

First order differential equation: *velocity* in the phase space
A mass point attached to a spring obeys Hooke’s Law:

\[f = -K(x - \bar{x}) \]

What is the ODE that describes this motion?
Integrate second-order ODE

Express a second-order motion in two first-order ODEs,
\[
\begin{pmatrix}
\dot{x} \\
\dot{v}
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
-K/m & 0
\end{pmatrix} \begin{pmatrix}
x \\
v
\end{pmatrix} + \begin{pmatrix}
0 \\
(K/m)\bar{x}
\end{pmatrix}
\]

Integrate both position and velocity via explicit Euler

\[
\begin{pmatrix}
x_1 \\
v_1
\end{pmatrix} = \begin{pmatrix}
x_0 \\
v_0
\end{pmatrix} + h \begin{pmatrix}
\dot{x}_0 \\
\dot{v}_0
\end{pmatrix}
\]

\[
= \begin{pmatrix}
x_0 \\
v_0
\end{pmatrix} + h \begin{pmatrix}
v_0 \\
K/m(\bar{x} - x_0)
\end{pmatrix}
\]
Quiz

• Integrate the same ODE using midpoint method.

\[
\begin{pmatrix}
\dot{x} \\
\dot{v}
\end{pmatrix} =
\begin{pmatrix}
0 & 1 \\
-K/m & 0
\end{pmatrix}
\begin{pmatrix}
x \\
v
\end{pmatrix} +
\begin{pmatrix}
0 \\
(K/m)\ddot{x}
\end{pmatrix}
\]
• Second-order motion

• Particle system

• Forces

• Constraints

• Second order motion analysis (advanced)
Particle structure

Particle

\(x \) position
\(v \) velocity
\(f \) force accumulator
\(m \) mass

\(a \) point in the phase space
Solver interface

System

Particle

x
v
f
m

Solver interface

GetDim
Get/Set State
Deriv Eval

Solver

6
x
v
f
m
Particle system structure

System

Particles

n time

\[x_1 \quad v_1 \quad f_1 \quad m_1 \]

\[x_2 \quad v_2 \quad f_2 \quad m_2 \]

...

\[x_n \quad v_n \quad f_n \quad m_n \]
Particle system structure

System:
- particles
- \(n \)
- time

Solver Interface:
- GetDim
- Get/Set State
- Deriv Eval

Solver:
- \(6n \)
- \(\frac{V_1}{f_1 m_1} \)
- \(\frac{V_2}{f_2 m_2} \)
- \(\ldots \)
- \(\frac{V_n}{f_n m_n} \)
Clear forces: loop over particles, zero force accumulator

Calculate forces: sum all forces into accumulator

Gather: loop over particles, copy v and f/m into destination array
• Second-order motion
• Particle system
• Forces
• Constraints
• Second order motion analysis (advanced)
Forces

- Constant gravity
- Position dependent force fields, springs
- Velocity dependent drag
Particle systems with forces

- System
 - Particles: $x_1, v_1, f_1, m_1; x_2, v_2, f_2, m_2; \ldots; x_n, v_n, f_n, m_n$
 - Forces: F_1, F_2, \ldots, F_m
 - Time: t
Force structure

- Unlike particles, forces are heterogeneous (type-dependent)
- Each force object “knows”
 - which particles it influences
 - how much contribution it adds to the force accumulator
Particle systems with forces

system

$\begin{align*}
\text{particles} & \quad \text{n} & \quad \text{time} \\
f_1 & \quad v_1 & \quad m_1 \quad x_1 \\
f_2 & \quad v_2 & \quad m_2 \quad x_2 \\
& \cdots & \cdots \cdots \\
f_n & \quad v_n & \quad m_n \quad x_n
\end{align*}$

$\begin{align*}
F_1 & \\
F_2 & \\
& \cdots \\
F_m
\end{align*}$
Gravity

Unary force: $\mathbf{f} = mG$

Exerting a constant force on each particle

```
p->f += p->m*F->G
```
At very low speeds for small particles, air resistance is approximately:

\[f_{\text{drag}} = -k_{\text{drag}} v \]
Act on any or all pairs of particles, depending on their positions

\[f_p = -k \frac{m_p m_q}{|l|^2} \frac{1}{|l|} \]

\[f_q = -f_p \]

\[l = x_p - x_q \]
Attraction

\[f_p = -k \frac{m_p m_q}{|l|^2} \frac{1}{|l|} \]
Damped spring

\[\mathbf{f}_p = - \left[k_s(|\mathbf{l}| - r) + k_d \frac{\mathbf{i} \cdot \mathbf{l}}{|\mathbf{l}|} \right] \frac{1}{|\mathbf{l}|} \]

\[\mathbf{f}_q = - \mathbf{f}_p \]

\[\mathbf{l} = \mathbf{x}_p - \mathbf{x}_q \]
Damped spring

\[f_p = - \left[k_s (|l| - r) + k_d \frac{\vec{l} \cdot \vec{l}}{|l|} \right] \frac{1}{|l|} \]
For an ideal spring, what is the force it applies to two particles, \(p \) and \(q \), attached to it. Write down the pseudo code for its “apply_fun”.

\[
\begin{align*}
F_x &= f_p + f_q \\
F_v &= v_p + v_q \\
F_f &= f_p + f_q \\
F_m &= m_p + m_q \\
\end{align*}
\]
1. Clear force accumulators

\[
\begin{bmatrix}
x_1 \\
v_1 \\
f_1 \\
m_1 \\
x_2 \\
v_2 \\
f_2 \\
m_2 \\
\vdots \\
x_n \\
v_n \\
f_n \\
m_n \\
\end{bmatrix}
\]

2. Invoke apply_force functions

\[
F_1 \quad F_2 \quad \ldots \quad F_m
\]

3. Return derivatives to solver

\[
\begin{bmatrix}
\dot{x} \\
\dot{v}
\end{bmatrix} = \begin{bmatrix}
v \\
f/m
\end{bmatrix}
\]
Euler’s method:

\[x(t_0 + h) = x(t_0) + hf(x, t) \]

\[x_{t+1} = x_t + h\dot{x}_t \]

\[v_{t+1} = v_t + h\dot{v}_t \]
Euler step

1. Deriv Eval
2. Get/Set State
3.
 \[\mathbf{x}_{t+1} = \mathbf{x}_t + h \mathbf{x}_t \]
 \[\mathbf{v}_{t+1} = \mathbf{v}_t + h \mathbf{v}_t \]
4. GetDim
5. Advance time
How to modify the algorithm to use midpoint method?
Example: freefall motion

- Solution is

\[v(t) = v_0 + a_0 t \]

\[x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 \]

- \(v(t) \) only needs 1st order accuracy, but \(x(t) \) demands 2nd order accuracy
Let particle p start at position x_0 with velocity v_0, what is the state of p after two time steps (h) using the midpoint method? Assume that gravity is the only force present in the scene.
• Second-order motion
• Particle system
• Forces
• Constraints
• Second order motion analysis (advanced)
• We will revisit collision when we talk about rigid body simulation
• For now, just simple point-plane collisions
Collision detection

Particle is on the legal side if

\[(x - p) \cdot N \geq 0\]

Particle is within \(\epsilon\) of the wall if

\[(x - p) \cdot N < \epsilon\]

Particle is heading in if

\[v \cdot N < 0\]
Collision response

Normal and tangential components

\[v_N = (N \cdot v)N \]
\[v_T = v - v_N \]
Collision response

Before collision

After collision

$v' = v_T - k_r v_N$

coefficient of restitution: \[0 \leq k_r < 1\]
Contact

Conditions for resting contact:
1. particle is on the collision surface
2. zero normal velocity

If a particle is pushed into the contact plane a contact force f_c is exerted to cancel the normal component of f
• Second-order motion
• Particle system
• Forces
• Constraints

• Second order motion analysis (advanced)
Linear analysis

- Linearly approximate acceleration

\[
\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = f(\begin{bmatrix} x \\ v \end{bmatrix}, t) = A \begin{bmatrix} x \\ v \end{bmatrix} + a_0
\]

- Split up analysis into different cases
 - constant acceleration
 - linear acceleration

\[
\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} 0 & I \\ -K & -D \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} + a_0
\]
• Solution is

\[v(t) = v_0 + a_0 t \]

\[x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2 \]

• \(v(t) \) only needs 1st order accuracy, but \(x(t) \) demands 2nd order accuracy
Linear acceleration

- When K (or D) dominates ODE, what type of motion does it correspond to?

\[
\frac{d}{dt} \begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} 0 & I \\ -K & -D \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} = A \begin{bmatrix} x \\ v \end{bmatrix}
\]

- Need to compute the eigenvalues of A
Assume α is an eigenvalue of A, $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ is the corresponding eigenvector

$$\begin{bmatrix} 0 & I \\ -K & -D \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \alpha \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

The eigenvector of A has the form $\begin{bmatrix} u \\ \alpha u \end{bmatrix}$

Assuming D is linear combination of K and I (Rayleigh damping)
That means K and D have the same eigenvectors
Linear acceleration

For any \(u \), if \[\begin{bmatrix} u \\ \alpha u \end{bmatrix} \] is an eigenvector of \(A \), the following must be true
\[
\begin{bmatrix}
0 & I \\
-K & -D
\end{bmatrix}
\begin{bmatrix}
u \\
\alpha u
\end{bmatrix}
= \alpha
\begin{bmatrix}
u \\
\alpha u
\end{bmatrix}
\]

Now assume \(u \) is an eigenvector for both \(K \) and \(D \)

\[-\lambda_k u - \alpha \lambda_d u = \alpha^2 u\]

\[\alpha = -\frac{1}{2}\lambda_d \pm \sqrt{\left(\frac{1}{2}\lambda_d\right)^2 - \lambda_k}\]
Eigenvalue approximation

- If D dominates
 \[\alpha \approx -\lambda_d, 0 \]
 - exponential decay
- If K dominates
 \[\alpha \approx \pm \sqrt{-1} \sqrt{\lambda_k} \]
 - oscillation
Analysis

• Constant acceleration (e.g. gravity)
 • demands 2nd order accuracy for position
• Position dependence (e.g. spring force)
 • demands stability, oscillatory motion
 • looks at imaginary axis
• Velocity dependence (e.g. damping)
 • demands stability, exponential decay
 • looks at negative real axis
Explicit methods

- First-order explicit Euler method
 - constant acceleration: bad (1st order)
 - position dependence: very bad (unstable)
 - velocity dependence: ok (conditionally stable)
- RK3 and RK4
 - constant acceleration: great (high order)
 - position dependence: ok (conditionally stable)
 - velocity dependence: ok (conditionally stable)
Implicit methods

- Implicit Euler method
 - constant acceleration: bad (1st order)
 - position dependence: ok (stable but damped)
 - velocity dependence: great (monotone)

- Trapezoidal rule
 - constant acceleration: great (2nd order)
 - position dependence: great (stable and no damp)
 - velocity dependence: good (stable, not monotone)