CS7643: Deep Learning
Fall 2017
Problem Set 2

Instructor: Dhruv Batra
TAs: Michael Cogswell, Abhishek Das, Zhaoyang Lv
Discussions: http://piazza.com/gatech/fall2017/cs7643

Due: Tuesday, Oct 10, 11:55pm

This assignment introduces you to some theoretical results that address which neural networks can
represent what. It walks you through proving some simplified versions of more general results. In
particular, this assignment focuses on piecewise linear neural networks, which are the most common
type at the moment. The general strategy will be to construct a neural network that has the desired

properties by choosing appropriate sets of weights.

1 Logic and XOR

1. |2 points] Implement AND and OR for pairs of binary inputs using a single linear threshold
neuron with weights w € R?, bias b € R, and x € {0,1}?:

1 ifwlx+b>0
X) = - 1
) {0 if wix+b<0 M
That is, find wayp and bayp such that
Ty | T2 fAND(X)
0] 0 0
0|1 0
110 0
1] 1 1
Also find wgg and bgg such that
T | 2 | for(X)
00 0
011 1
110 1
1] 1 1

2. |2 points| Consider the XOR function

http://piazza.com/gatech/fall2017/cs7643

z1 | 22 | fror(x)
0 0 0
011 1
110 1
1 1 0

Show that XOR can NOT be represented using a linear model with the same form as (1). !

2 Universal Approximator |[Extra Credit]

In this section you’ll show that an MLP is a universal approximator of “nice” functions. There are
more general results that relax the “niceness” assumptions and the particular choice of activation
function.

Let f : R? — R be differentiable and Lipschitz continuous. This assumption will remain true
throughout this section. That is, there is some K € R such that for all x;,xs € R?

|f(x1) = f(x2)| < KlJx1 — x2]|. (2)
1. [Extra Credit: 1 points] Recall that the Taylor expansion of f at a point X is

f(x) = f(x0) + Vf(x0)" (x = x0) + % () (3)

where & (x) = 5(x—x0)T V2 f(x0)(x—%0)+- - - is the remainder of the linear part of the Taylor
series. Assume ||x — x¢|| < C for some positive real constant C. Show that the remainder (or

error) & (x) is bounded by *

|Z(x)] <2KC (4)

2. [Extra Credit: 2 points]

Now you’ll show that a particular kind of neural net can approximate any ‘“nice” function.
Consider the differentiable and Lipschitz continuous function f(-) with input dimension d = 1,
Lipschitz constant K. Show that f(-) can be approximated by the neural net f/(x) (specified
below) on the input region (a, #) (with a <) using a finite (but large) number of neurons
to any desired error e. That is, pick some weights for f(-)® and show that

[f(2) = (@) < € Vo € (0, B) (5)

In this version f’(-) uses activation functions which represent a segment of an input on a given
interval (u,v] (e.g., Fig. 1):

0 h<wu
ghyu,v); = h; w <h; <v; (6)
0 v < hi

'Hint: To see why, plot the examples from above in a plane and think about drawing a linear boundary that
separates them.

?Hint: You don’t need to write out %(x) explicitly using an infinite series and higher order derivatives.

3Note that these weights can and should depend on f(-).

g(h, -3, -1)

-

-4 -2 0 2 4
h

Figure 1

Now choose the number of hidden neurons H and the weights for the following neural net
with a single hidden layer.

hz) = WHgwWz + bW u,v) + @ (7)
with
W(l) c RHXl (8)
b e R (9)
w2 e r*H (10)
b e R (11)
uecRY (12)
v eRY (13)
(14)

3. [Extra Credit: 1 point] Note that adding a hidden layer allowed us to approximate the
XOR function. Find specific weights (as for AND and OR in the previous section) for a 2-layer
network which represent XOR.

3 Piecewise Linearity

Consider a specific 2 hidden layer ReLU network with inputs = € R, 1 dimensional outputs, and 2
neurons per hidden layer. This function is given by

h(z) = WO max{0, W® max{0, Wz + bO} 4 52} 4 p®) (15)

with weights:

W — 8?] (16)
) = ﬂ (17)
W = 1 ﬂ (18)
b2 = 8} (19)
W) = [_1 1] (20)
b3 =1 (21)

An interesting property of networks with piecewise linear activations like the ReLLU is that on the
whole they compute piecewise linear functions. For each of the following points give the weight
W € R and bias b € R (report the numerical values) which computes such that Wz + b = h(z).
Also compute the gradient % evaluated at the given point.

1. [1 points]

=1 (22)

2. [1 points]
z=-1 (23)

3. [1 points]
z=-0.5 (24)

4 Depth - Composing Linear Pieces

Now we’ll turn to a more recent result that highlights the Deep in Deep Learning. Depth
(composing more functions) results in a favorable combinatorial explosion in the “number of
things that a neural net can represent”. For example, to classify a cat it seems useful to first
find parts of a cat: eyes, ears, tail, fur, etc. The function which computes a probability of
cat presence should be a function of these components because this allows everything you
learn about eyes to generalize to all instances of eyes instead of just a single instance. Below
you will detail one formalizable sense of this combinatorial explosion for a particular class of
piecewise linear networks.

Consider y = o(x) = |z| for scalar x € £ C Rand y € ¥ C R (Fig. 2). It has one linear region
on r < 0 and another on x > 0 and the activation identifies these regions, mapping both of
them to y > 0. More precisely, for each linear region of the input, o(-) is a bijection. There is
a mapping to and from the output space and the corresponding input space. However, given
an output y, it’s impossible to tell which linear region of the input it came from, thus o(-)
identifies (maps on top of each other) the two linear regions of its input. This is the crucial

20

0.5

0.0

-20 -15 -1.0 -05 00 05 1.0 15 20

Figure 2

definition because when a function identifies multiple regions of its domain that means any
subsequent computation applies to all of those regions. When these regions come from an
input space like the space of images, functions which identify many regions where different
images might fall (e.g., slightly different images of a cat) automatically transfer what they
learn about a particular cat to cats in the other regions.

More formally, we will say that o(-) identifies a set of M input regions & = {Ry,..., Ry}
(e.g., Z# ={(-1,0),(0,1)}) with R; C & onto one output region O C ¥ (e.g., (0,1)) if for
all R; € & there is a bijection from R; to O. *

(a) [2 points]| Start by applying the above notion of identified regions to linear regions of
one layer of a particular neural net that uses absolute value functions as activations. Let
x € R% y € R? 5, and pick weights WO e R¥*d and bias b e R? as follows:

9 ifj— i
wi=3o (25)
J 0 ifi#j
B = —1 (26)

Then one layer of a neural net with absolute value activation functions is given by
fi(x) = [WWx + b (27)

Note that this is an absolute value function applied piecewise and not a norm.
How many regions of the input are identified onto O = (0,1)% by f1(-)? Prove it. °

(b) |2 points] Next consider what happens when two of these functions are composed.
Suppose g identifies n, regions of (0,1)¢ onto (0,1)? and f identifies ny regions of (0,1)?
onto (0,1)%. How many regions of its input does f o g(-) identify onto (0,1)%?

(c) [3 points] Finally consider a series of L layers identical to the one in question 4 (a).

4Recall that a bijection from X to Y is a function p : X — Y such that for all y € Y there exists a unique = € X
with p(z) = y.

5Outputs are in some feature space, not a label space. Normally a linear classifier would be placed on top of what
we are here calling y.

5 Absolute value activations are chosen to make the problem simpler, but a similar result holds for ReLU units.
Also, O could be the positive orthant (unbounded above).

h1 = \Wlx + b1’ (28
hy = [WW5h; + bg| (29
(
(

30

)
)
)
31)

h;, = |Wrhr_1 + by

Let x € (0,1)% and f(x) = hy. Note that each h; is implicitly a function of x. Show
that f(x) identifies 2 regions of its input.

5 Conclusion

Now compare the number of identified regions for an L layer net to that of an L — 1
layer net. The L layer net can separate its input space into 2¢ more linear regions than
the L — 1 layer net. On the other hand, the number of parameters and the amount of
computation time grows linearly in the number of layers. In this very particular sense
(which doesn’t always align well with practice) deeper is better.

To summarize this problem set, you’ve shown a number of results about the representa-
tion power of different neural net architectures. First, neural nets (even single neurons)
can represent logical operations. Second, neural nets we use today compute piecewise
linear functions of their input. Third, neural nets with at least one hidden layer can
represent arbitrary functions. Fourth, the representation power of neural nets increases
exponentially with the number of layers.

Unfortunately, these results are not very practical. In the case of a 2-layer network an
intractable number of hidden units may be required to represent the desired function
well. Even if a particular architecture is capable of representing the function we're
interested in, there’s no guarantee that optimization will be able to find that solution.
If an optimization method could find the solution then there’s no reason to suggest that
solution would generalize to test data.

The point of the exercise was to convey intuition that removes some of the magic from
neural nets representations. Specifically, neural nets can decompose problems logically
and piecewise linear functions can be surprisingly powerful.

	Logic and XOR
	Universal Approximator [Extra Credit]
	Piecewise Linearity
	Depth - Composing Linear Pieces
	Conclusion

