
CS 4803 / 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– (Deep) Reinforcement Learning
– Closing time



Administrativia
• Last class today

• Project submission 
– Due: 12/04, 11:55pm
– Last deliverable in the class
– Can’t use late days
– https://piazza.com/class/jkujs03pgu75cd?cid=225
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https://piazza.com/class/jkujs03pgu75cd?cid=225


Recap from last time
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Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Unsupervised learning
– Discover structure in data
– Training data does not include desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)
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● Environment may be unknown, nonlinear, stochastic and complex

● Agent learns a policy mapping states to actions

○ Seeking to maximize its cumulative reward in the long run

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Slide Credit: Rich Sutton

RL API



RL API
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Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Slide Credit: Rich Sutton



Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Markov Decision Process
- Mathematical formulation of the RL problem

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory: 

- Markov property: Current state completely characterizes the state of the 
world

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment
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Policy
• A policy is how the agent acts

• Formally, map from states to actions
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What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

The optimal policy 𝝿*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

Formally:

with 

The optimal policy 𝝿*



Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment
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Value Function
• A value function is a prediction of future reward

• “State Value Function” or simply “Value Function”
– How good is a state? 
– Am I screwed? Am I winning this game?

• “Action Value Function” or Q-function
– How good is a state action-pair? 
– Should I do this now?
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment
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Model
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Model
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• Model predicts what the world will do next

Slide Credit: David Silver



Plan for Today
• (Deep) Reinforcement Learning

– Policy gradients

• Closing the loop
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Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment

(C) Dhruv Batra 25



Maze Example
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Maze Example: Policy
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Maze Example: Value
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Maze Example: Model
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Components of an RL Agent
• Value function

– How good is each state and/or state-action pair?

• Policy
– How does an agent behave?

• Model
– Agent’s representation of the environment
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Approaches to RL
• Value-based RL

– Estimate the optimal action-value function

• Policy-based RL
– Search directly for the optimal policy 

• Model
– Build a model of the world

• State transition, reward probabilities

– Plan (e.g. by look-ahead) using model
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Deep RL
• Value-based RL

– Use neural nets to represent Q function 

• Policy-based RL
– Use neural nets to represent policy 

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 32

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤



Deep RL
• Value-based RL

– Use neural nets to represent Q function 

• Policy-based RL
– Use neural nets to represent policy 

• Model
– Use neural nets to represent and learn the model
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Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

Policy Gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Policy Gradients



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 
Gradient ascent on policy parameters!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Policy Gradients



REINFORCE algorithm

Mathematically, we can write:

Where r(𝜏) is the reward of a trajectory

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Mathematically, we can write:

Where r(𝜏) is the reward of a trajectory

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Intractable! Expectation of gradient
is problematic when p depends on 
θ

Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Intractable! Expectation of gradient
is problematic when p depends on 
θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Intractable! Expectation of gradient
is problematic when p depends on 
θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Can we compute those quantities without knowing the transition probabilities?

We have:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on 
transition probabilities!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm



Intuition

Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intuition

Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Pong from pixels

50Image Credit: http://karpathy.github.io/2016/05/31/rl/



Pong from pixels

51Image Credit: http://karpathy.github.io/2016/05/31/rl/



Pong from pixels

52Image Credit: http://karpathy.github.io/2016/05/31/rl/



Intuition
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REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input 
image

y=2

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]Figures copyright Daniel Levy, 2017. Reproduced with permission. 

Has also been used in many other tasks including fine-grained image recognition, 
image captioning, and visual question-answering!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visual Dialog
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Learning Cooperative Visual Dialog Agents 
with Deep Reinforcement Learning

[ICCV ‘17]

Abhishek Das*
(Georgia Tech)

Satwik Kottur*
(CMU)

José Moura
(CMU)

Dhruv Batra
(Georgia Tech)

Stefan Lee
(Virginia Tech)



Image Guessing Game
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Image Guessing Game
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Q-Bot asks questions
is blindfolded

Slide Credit: Abhishek Das



Image Guessing Game
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Q-Bot
asks questions
is blindfolded

Slide Credit: Abhishek Das



Image Guessing Game
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asks questions
A-Bot answers questions

sees an image

Slide Credit: Abhishek Das



Image Guessing Game
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asks questions
A-Bot

answers questions
sees an image

Slide Credit: Abhishek Das



Image Guessing Game
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asks questions

Slide Credit: Abhishek Das



Image Guessing Game
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asks questions

Slide Credit: Abhishek Das



Image Guessing Game
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asks questions

Slide Credit: Abhishek Das



RL for Cooperative Dialog Agents 
• Agents: (Q-bot, A-bot)

• Environment: Image

• Action: 
– Q-bot: question (symbol sequence) 
– A-bot: answer (symbol sequence)
– Q-bot: image regression 

• State
– Q-bot: 
– A-bot: 
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qt Any people in the shot?
at No, there aren’t any.

ŷt 2 R4096

sQt = [c, q1, a1, . . . , qt�1, at�1]

sAt = [I, c, q1, a1, . . . , qt�1, at�1, qt]



RL for Cooperative Dialog Agents 
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• Action: 
– Q-bot: question (symbol sequence) 
– A-bot: answer (symbol sequence)
– Q-bot: image regression 

• State
– Q-bot: 
– A-bot: 

qt Any people in the shot?
at No, there aren’t any.

ŷt 2 R4096

sQt = [c, q1, a1, . . . , qt�1, at�1]

sAt = [I, c, q1, a1, . . . , qt�1, at�1, qt]



RL for Cooperative Dialog Agents 
• Action: 

– Q-bot: question (symbol sequence) 
– A-bot: answer (symbol sequence)
– Q-bot: image regression 

• State
– Q-bot: 
– A-bot: 

• Policy

• Reward
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qt Any people in the shot?
at No, there aren’t any.

ŷt 2 R4096

sQt = [c, q1, a1, . . . , qt�1, at�1]

sAt = [I, c, q1, a1, . . . , qt�1, at�1, qt]

Q-bot A-bot



Policy Networks
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A-BOT

Q-Bot A-Bot

Slide Credit: Abhishek Das



Policy Networks
A-BotQ-Bot

Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks
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A-BotQ-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks
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A-BotQ-Bot

Policy Networks
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A-Bot
VGG-16

Q-Bot

Policy Networks
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A-BotQ-Bot

Policy Networks
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A-Bot

Policy Networks
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Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Fact
Embedding

Policy Networks
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Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Is this zoo?

Yes

Policy Networks
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Fact
Embedding

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Is this zoo?

Yes

How many 
zebra?

Two

Policy Networks
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Fact
Embedding

Q-Bot

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Is this zoo?

Yes

How many 
zebra?

Two

Policy Networks
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Fact
Embedding

Q-Bot History
Encoder

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Is this zoo?

Yes

How many 
zebra?

Two

Policy Networks
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Fact
Embedding

Q-Bot History
Encoder

Slide Credit: Abhishek Das



A-Bot

Two zebra 
are walking 

around 
their pen at  

the zoo.

Is this zoo?

Yes

How many 
zebra?

Two

Policy Networks
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Fact
Embedding

Q-Bot History
Encoder

Slide Credit: Abhishek Das



A-Bot

Policy Networks
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Q-Bot

Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks
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Q-Bot A-Bot

Policy Networks

(C) Dhruv Batra 97Slide Credit: Abhishek Das



Q-Bot A-Bot

Policy Networks
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REINFORCE Gradients

Policy Gradients
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Slide Credit: Abhishek Das



Turing Test
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SL vs RL
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SL Agents RL Agents



Plan for Today
• (Deep) Reinforcement Learning

– Policy gradients

• Closing the loop

(C) Dhruv Batra 102



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Building A Complicated Function
Given a library of simple functions

Compose into a

complicate function

Idea 2: Compositions
• Deep Learning

• Grammar models

• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Any DAG of differentialble modules is 
allowed!

Differentiable Computation Graph

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 105



So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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• “Shallow” models

• Deep models

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Trainable
Feature-

Transform / 
Classifier

Learned Internal Representations

“Shallow” vs Deep Learning

“Simple” Trainable 

Classifier

hand-crafted

Feature Extractor
fixed learned

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Forward-Prop

(C) Dhruv Batra 108Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Back-Prop
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So what is Deep (Machine) Learning?
• A few different ideas:

• (Hierarchical) Compositionality
– Cascade of non-linear transformations
– Multiple layers of representations

• End-to-End Learning
– Learning (goal-driven) representations
– Learning to feature extraction

• Distributed Representations
– No single neuron “encodes” everything
– Groups of neurons work together
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Distributed Representations Toy Example
• Can we interpret each dimension?
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Power of distributed representations!
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Local

Distributed

Slide Credit: Moontae Lee 



What is this class about?
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What is this class about?
• Introduction to Deep Learning

• Goal: 
– After finishing this class, you should be ready to get started 

on your first DL research project. 
• CNNs
• RNNs
• Deep Reinforcement Learning
• Generative Models (VAEs, GANs)

• Target Audience: 
– Senior undergrads, MS-ML, and new PhD students
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What did we learn?
• Background & Basics

• Neural Networks, Backprop, Optimization (SGD)

• Module 1: Convolutional Neural Networks (CNNs)
• Architectures, Pre-training, Fine-tuning
• Visualizations, Fooling CNSS, Adversarial examples 
• Different tasks: detection CNNs, segmentation CNNs

• Module 2: Recurrent Neural Networks (RNNs)
• Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU
• RNNs for Sequence-to-Sequence (machine translation & image captioning, VQA, Visual Dialog)

• Module 3: Deep Reinforcement Learning
• Overview, policy gradients 
• Optimizing Neural Sequence Models for goal-driven rewards

• Module 4: Deep Structured Prediction
• Crash course on Bayes Nets, Variational Inference
• Variational Auto Encoders (VAEs)

• Module 5: Advanced Topics
• GANs, Adversarial Learning
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Arxiv Fire Hose
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PhD Student

Deep 
Learning 
papers



Feedback
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Thanks!


