Topics:
Convolutional Neural Networks (Part 1)
Admin

• PS1 & HW1 are out!
 – Due Friday Feb 15 11:55pm
Recall: Linear Classifier

$$f(x, W) = Wx + b$$

Image

Array of $32 \times 32 \times 3$ numbers
(3072 numbers total)

W parameters or weights

10 numbers giving class scores

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Example with an image with 4 pixels, and 3 classes (\texttt{cat/dog/ship})

Stretch pixels into column

\begin{array}{cccc}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0 & 0.25 & 0.2 & -0.3 \\
\end{array}

\begin{array}{c}
56 \\
231 \\
24 \\
2 \\
\end{array}

\begin{array}{c}
1.1 \\
3.2 \\
-1.2 \\
\end{array}

= \begin{array}{c}
-96.8 \\
437.9 \\
61.95 \\
\end{array}

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Fully Connected Layer

Example: 200x200 image
40K hidden units
~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough training samples anyway..

Slide Credit: Marc'Aurelio Ranzato
Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good when input image is registered (e.g., face recognition).
Locally Connected Layer

STATIONARITY? Statistics is similar at different locations

Slide Credit: Marc'Aurelio Ranzato
Convolutional Layer

Share the same parameters across different locations (assuming input is stationary):

Convolutions with learned kernels

Slide Credit: Marc'Aurelio Ranzato
Convolutions!

- Math vs. CS vs. programming viewpoints
Convolutions for mathematicians

• On operation on two functions \(x \) and \(w \) to produce a third function \(y \)

• E.g. input \(x(t) \) and kernel or weighting function \(w(\tau) \)

\[
y(t) = (x \ast w)(t) = (w \ast x)(t) = \int_{\tau=-\infty}^{\infty} x(t - \tau)w(\tau)\,d\tau = \int_{\tau=-\infty}^{\infty} x(\tau)w(t - \tau)\,d\tau
\]

(C) Dhruv Batra
Convolutions for mathematicians

- One dimension

\[y(t) = (x * w)(t) = \int_{-\infty}^{\infty} x(t - \tau)w(\tau) d\tau \]

- Two dimensions

\[y(t_1, t_2) = (x * w)(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t_1 - \tau, t_2 - \sigma)w(\tau, \sigma) d\tau d\sigma \]
Convolutions for computer scientists

- Discrete data, e.g. a $W \times H$ image I and a $K \times K$ kernel ω

$$S(i, j) = (I \ast \omega)(i, j)$$

$$= \sum_{m=0}^{H} \sum_{n=0}^{W} I(m, n) \omega(i - m, j - n)$$
Convolutions for programmers

\[S(i, j) = (I \ast \omega)(i, j) \]

\[= \sum_{m=0}^{H} \sum_{n=0}^{W} I(m, n) \omega(i - m, j - n) \]

- Iterate over the kernel instead of the image

\[= \sum_{m=0}^{K} \sum_{n=0}^{K} I(i - m, j - n) \omega(m, n) \]

- Implement cross-correlation instead of convolution

\[= \sum_{m=0}^{K} \sum_{n=0}^{K} I(i + m, j + n) \omega(m, n) \]

- Later - implementation as matrix multiplication

(C) Peter Anderson
Convolutional Layer
Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014
Convolution Explained

• http://setosa.io/ev/image-kernels/

• https://github.com/bruckner/deepViz
Convolutional Layer

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\]
Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
Convolution Layer

32x32x3 image -> preserve spatial structure

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image

5x5x3 filter

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. “slide over the image spatially, computing dot products”
Convolution Layer

32x32x3 image
5x5x3 filter w

1 number:
the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. $5 \times 5 \times 3 = 75$-dimensional dot product + bias)

$$w^T x + b$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Convolution Layer

- 32x32x3 image
- 5x5x3 filter
- Convolve (slide) over all spatial locations

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

consider a second, green filter

activation maps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Convolutions for programmers

\[S(i, j) = (I \ast \omega)(i, j) \]

\[= \sum_{m=0}^{K} \sum_{n=0}^{K} I(i + m, j + n) \omega(m, n) \]

- Updated for multi channel inputs

\[= \sum_{m=0}^{K} \sum_{n=0}^{K} I(i + m, j + n, :) \omega(m, n, :) \]

- Note: 3 loops just for one output value of one filter, actually we will need 6 nested loops...
Convolutions for programmers

• Forward pass with input depth D and P filters, in pseudocode (ignoring boundary conditions):

```plaintext
for i in 1..W
    for j in 1..H
        for m in 1..K
            for n in 1..K
                for p in 1..P
                    for d in 1..D
                        output(i, j, p) += input(i+m, j+n, d) * filter(p, m, n, d)
        end
    end
end
```
Im2Col

Input Image

$W \times H$

$K \times K \times D$

(C) Dhruv Batra Figure Credit: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/
GEMM

![Input Matrix](K \times K \times D)

![Kernel Matrix](P)

Output: $W \times H$ by P
Time Distribution of AlexNet

GPU Forward Time Distribution

CPU Forward Time Distribution

Figure Credit: Yangqing Jia, PhD Thesis
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

CONV, ReLU

e.g. 6 5x5x3 filters

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Convolutional Neural Networks

INPUT 32x32

C1: feature maps 6@28x28

S2: f. maps 6@14x14

C3: f. maps 16@10x10

S4: f. maps 16@5x5

C5: layer 120

F6: layer 84

Full connection

OUTPUT 10

Gaussian connections

Image Credit: Yann LeCun, Kevin Murphy

(C) Dhruv Batra
Visualization of VGG-16 by Lane McIntosh. VGG-16 architecture from [Simonyan and Zisserman 2014].

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
example 5x5 filters (32 total)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Visualizing Learned Filters

Layer 1

Layer 2

Figure Credit: [Zeiler & Fergus ECCV14]
Visualizing Learned Filters

Layer 3

Figure Credit: [Zeiler & Fergus ECCV14]
Visualizing Learned Filters

Layer 4

Layer 5

Figure Credit: [Zeiler & Fergus ECCV14]
A closer look at spatial dimensions:

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial locations

activation map

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?
A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn’t fit! cannot apply 3x3 filter on 7x7 input with stride 3.
Output size:
\[(N - F) / \text{stride} + 1\]

e.g. \(N = 7, F = 3:\)
- \(\text{stride 1} => (7 - 3)/1 + 1 = 5\)
- \(\text{stride 2} => (7 - 3)/2 + 1 = 3\)
- \(\text{stride 3} => (7 - 3)/3 + 1 = 2.33 :\)
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

(recall:)
$$(N - F) / \text{stride} + 1$$
In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

7x7 output!
In practice: Common to zero pad the border

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e.g. input 7x7
3x3 filter, applied with **stride 1**
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3
Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?
Examples time:

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Output volume size:
\((32 + 2 \times 2 - 5) / 1 + 1 = 32\) spatially, so
\(32 \times 32 \times 10\)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Examples time:

Input volume: \(32 \times 32 \times 3\)
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
Examples time:

Input volume: \textbf{32x32x3}
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has \(5 \times 5 \times 3 + 1 = 76 \) params (+1 for bias)
\(\Rightarrow 76 \times 10 = 760 \)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Summary

This lecture:
- Convolutions
- Stride

Still to come:
- Pooling
- CNN architectures
- Fully connected layers as convolutions
- Backprop in conv layers