CS 4803 / 7643: Deep Learning

Topics:

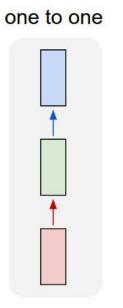
- Attention
- Transformers
- Natural Language Applications

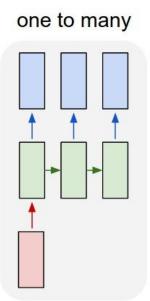
Sarah Wiegreffe Georgia Tech

Plan for Today

- Recap
 - RNNs
 - Image Captioning
- RNNs with Attention
- Machine Translation
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- More natural language applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

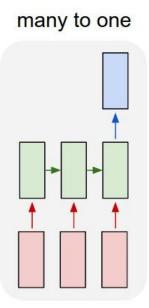
Recap: RNNs



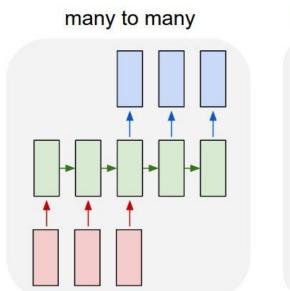


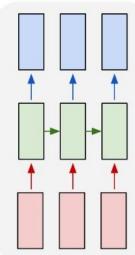
Input: No sequence Output: No sequence Example: "standard" classification / regression problems

Input: No sequence Output: Sequence Example: Im2Caption



Input: Sequence Output: No sequence Example: sentence classification, multiple-choice question answering





many to many

Input: Sequence

Output: Sequence

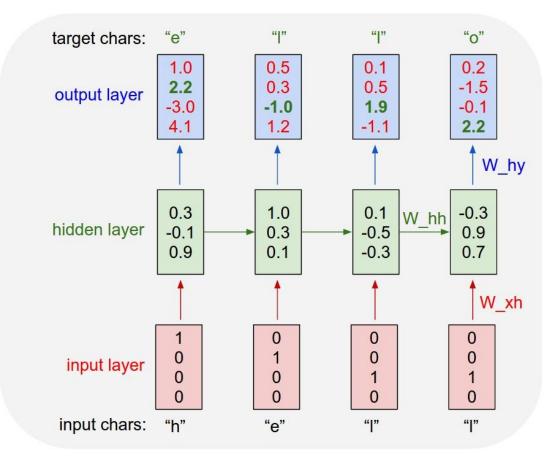
Example: machine translation, video classification, video captioning, open-ended question answering

Recap: RNNs

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**



Neural Image Captioning

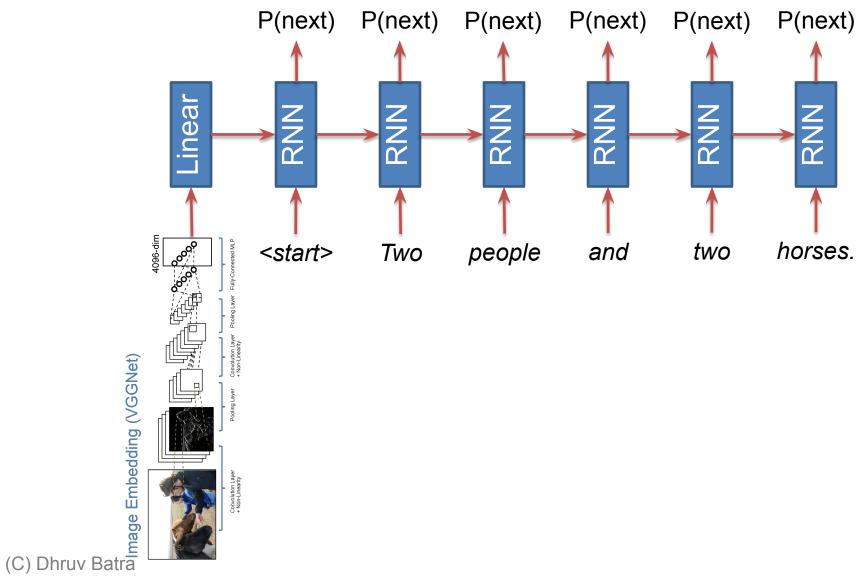


Image Captioning: Example Results

Captions generated using <u>neuraltalk2</u> All images are.<u>CC0 Public domain</u>: <u>cat suitcase. cat tree, dog, bear.</u> <u>surfers, tennis, giraffe, motorcycle</u>

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Captions generated using <u>neuraltalk2</u> All images are <u>CC0 Public domain</u>: <u>fur</u> <u>coat</u>, <u>handstand</u>, <u>spider web</u>, <u>baseball</u>

Image Captioning: Failure Cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

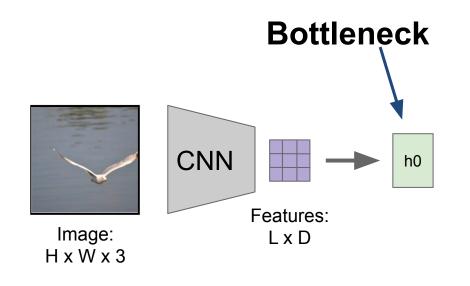
A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

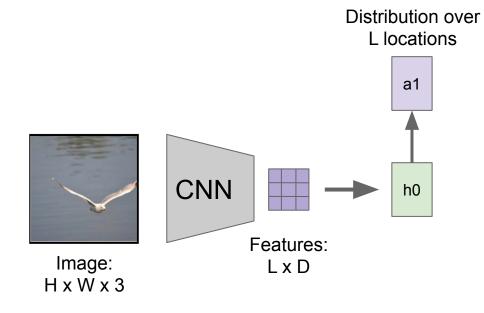
A man in a baseball uniform throwing a ball

Plan for Today

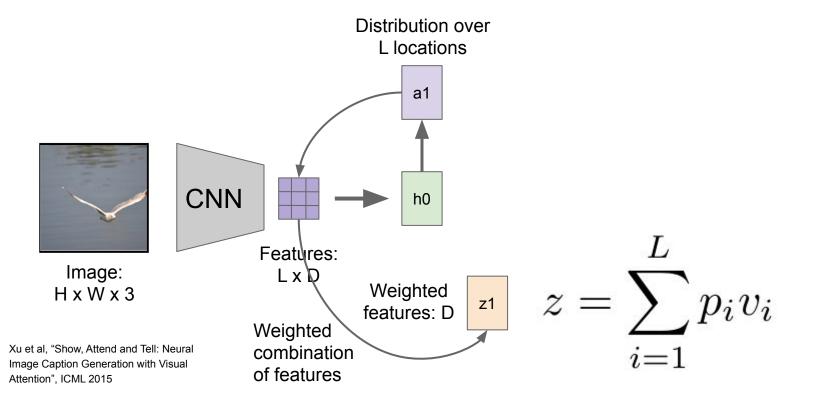
- Recap
 - RNNs, Image Captioning
- Image Captioning with Attention
- Machine Translation
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- More natural language applications (if time)
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

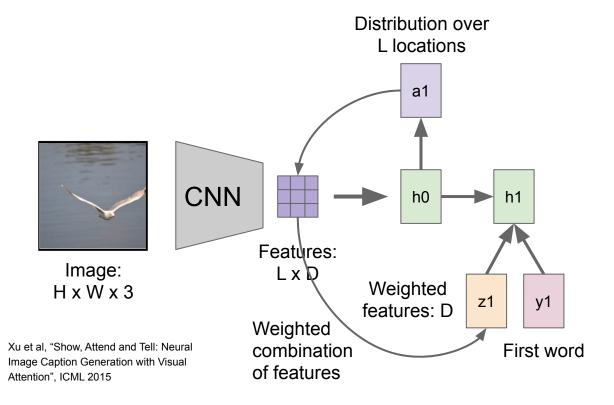


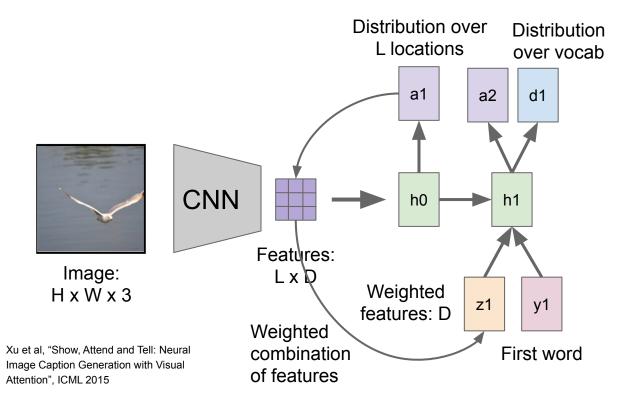
Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

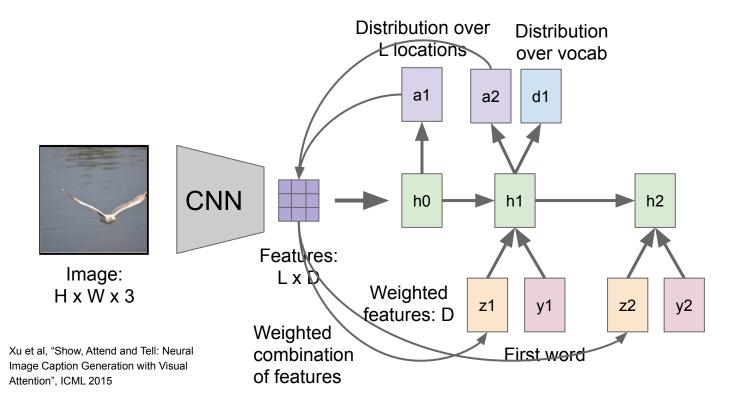


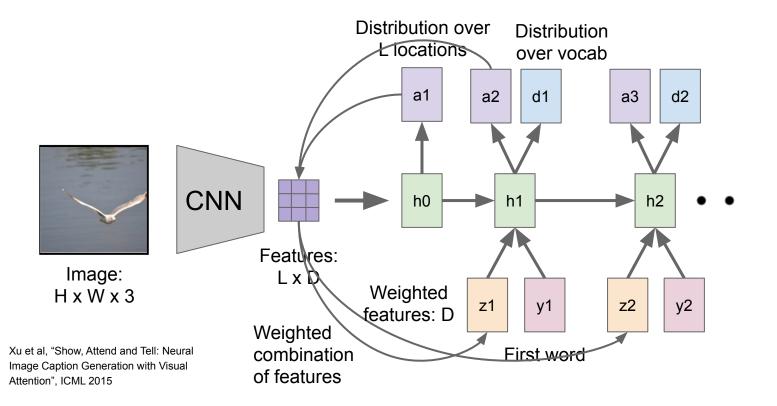
Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015







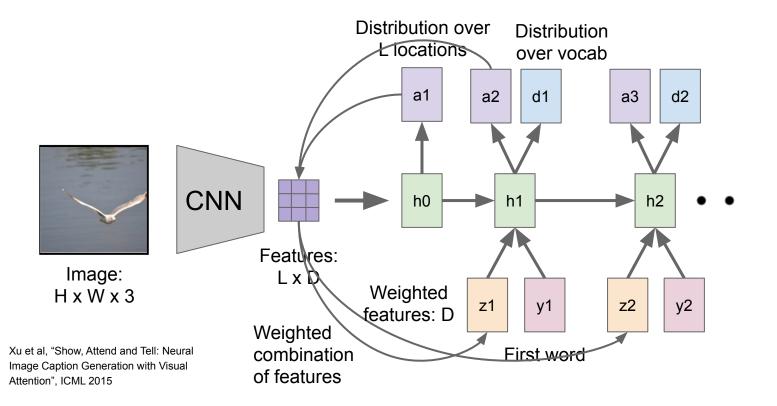


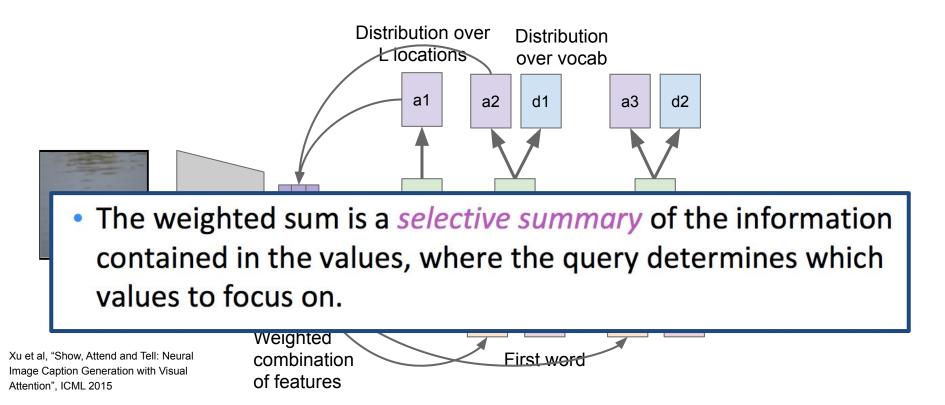


More general definition of attention:

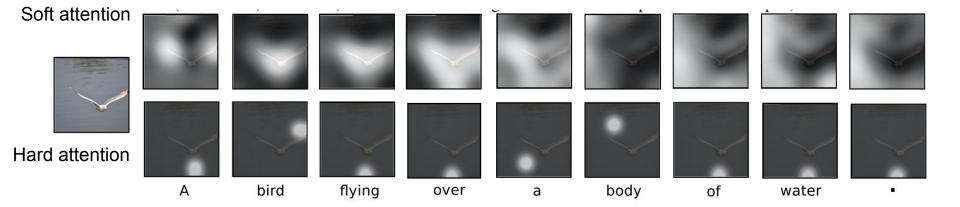
Given a set of vector *values*, and a vector *query*, <u>attention</u> is a technique to compute a weighted sum of the values, dependent on the query.

 For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states
 75 (values).





Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n, and Abigail See CS224n



Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015 Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Plan for Today

- Recap
 - RNNs, Image Captioning
- RNNs with Attention
- Machine Translation
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- More natural language applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output sequence from single input vector Many to one: Encode input sequence in a single vector У₁ У₂ h₂ h₂ f_w h₃ \mathbf{f}_{W} h_T h₁ 'w T_W **X**₁ X_{2} X W, W_2

Machine Translation

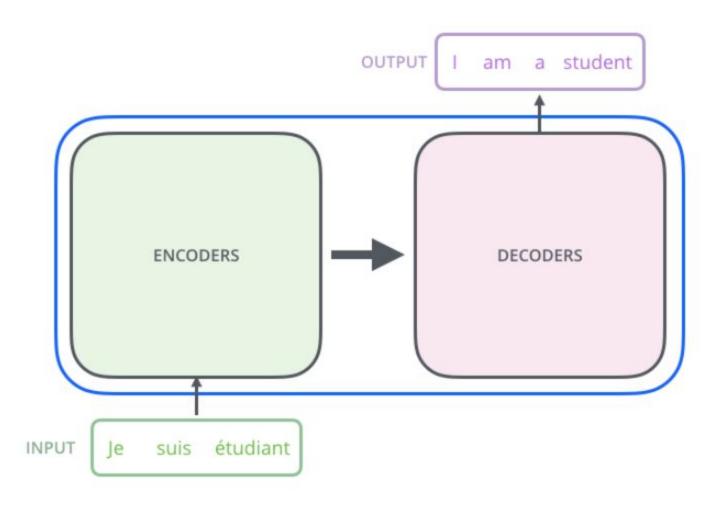
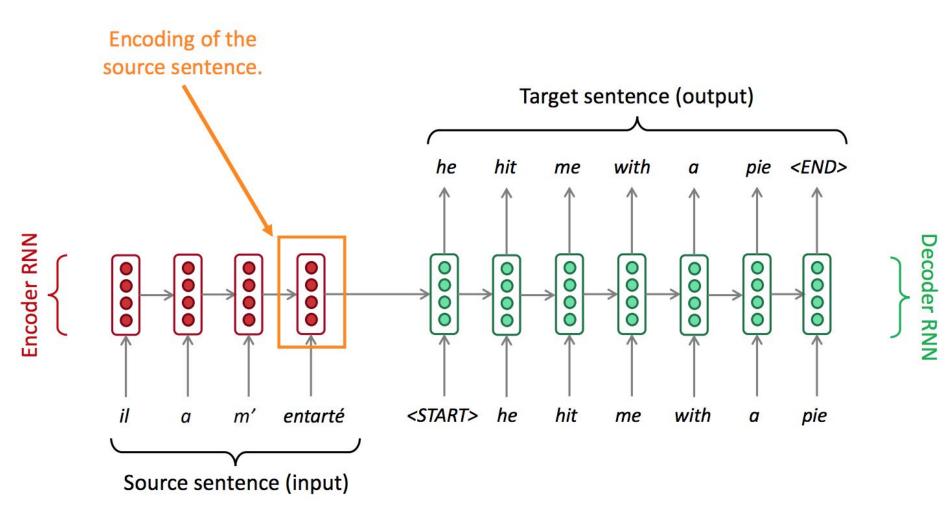
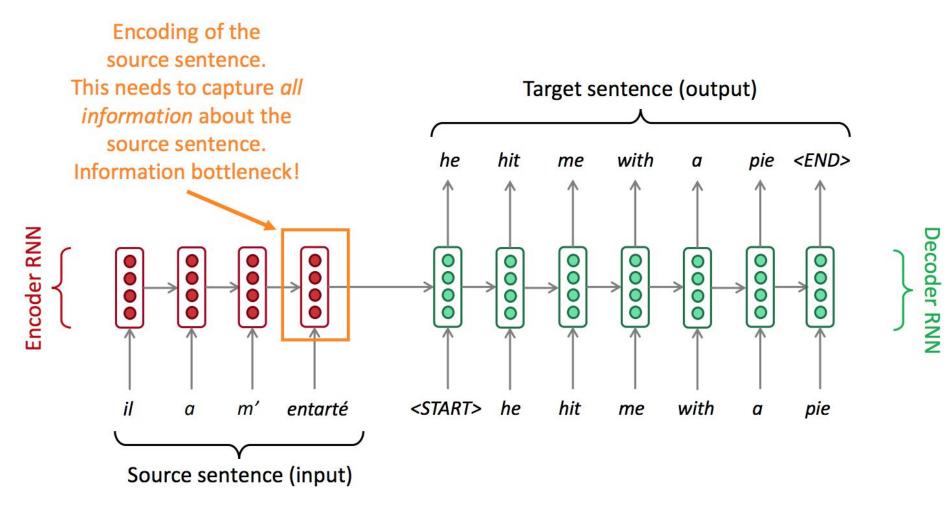


Image Credit: Jay Alammar

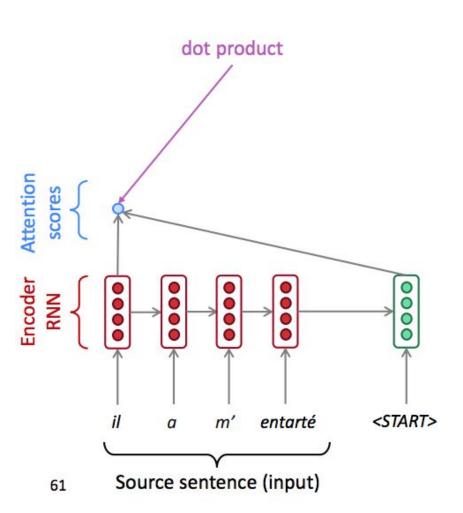
Machine Translation



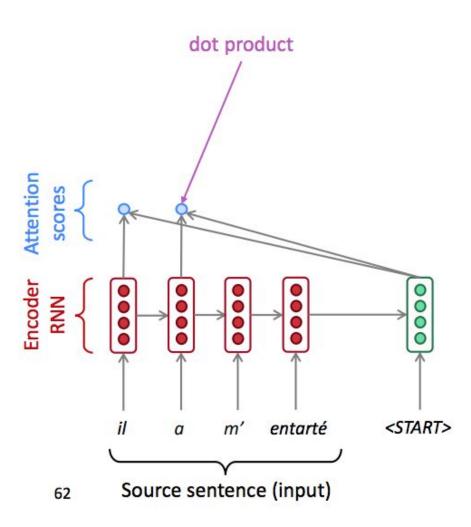
Machine Translation

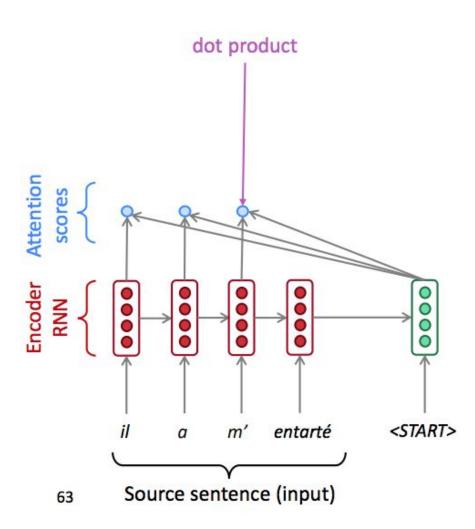


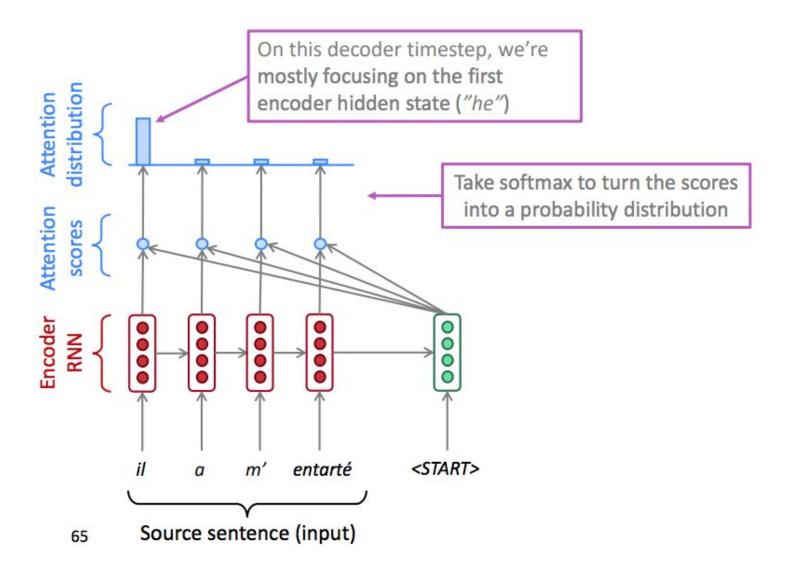
Machine Translation + Attention Bahdanau et. al, 2014



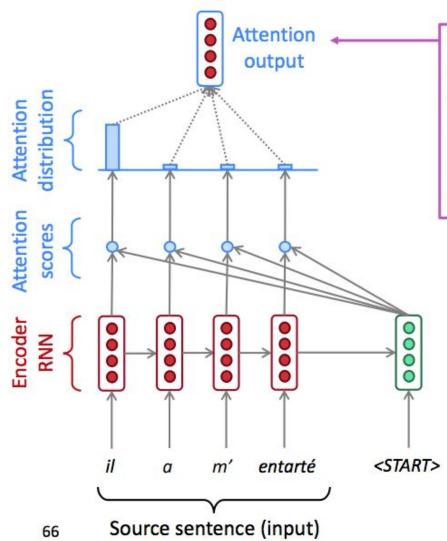






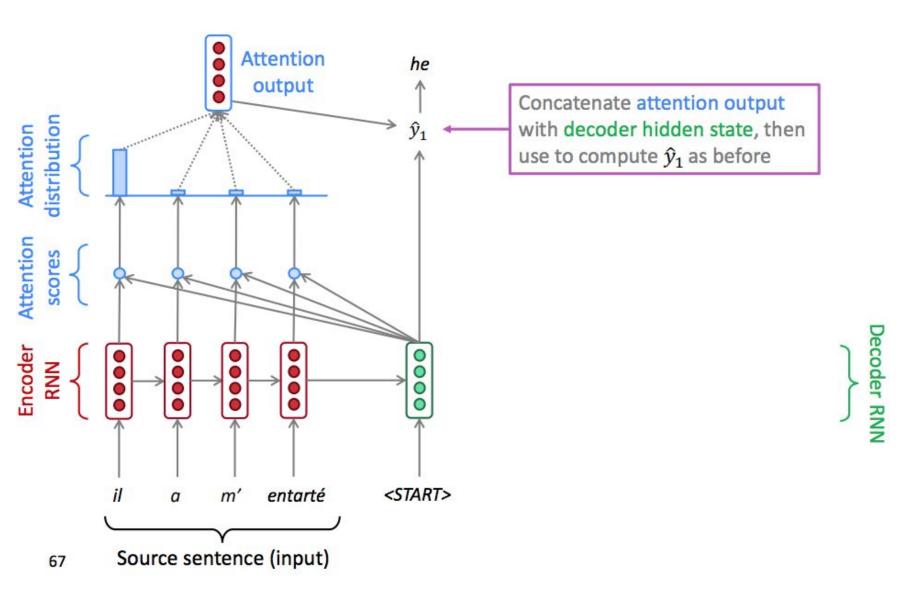


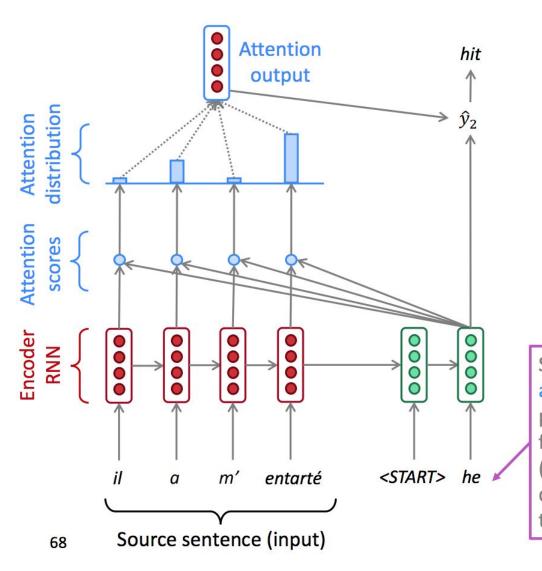




Use the attention distribution to take a **weighted sum** of the encoder hidden states.

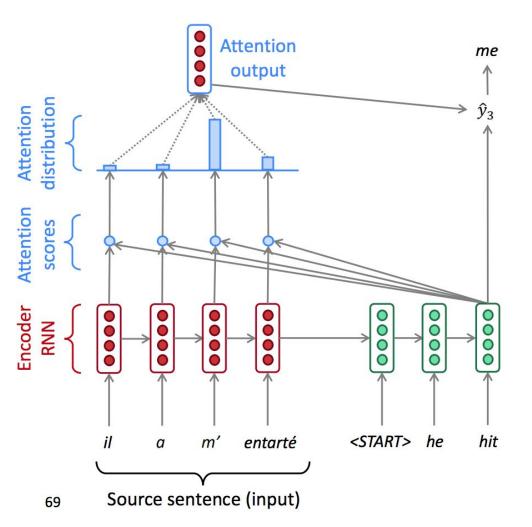
The attention output mostly contains information from the hidden states that received high attention.



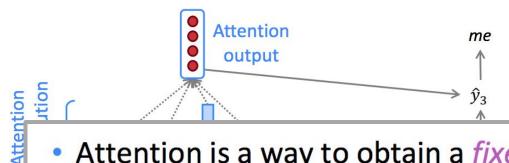


Sometimes we take the attention output from the previous step, and also feed it into the decoder (along with the usual decoder input). We do this in Assignment 4.

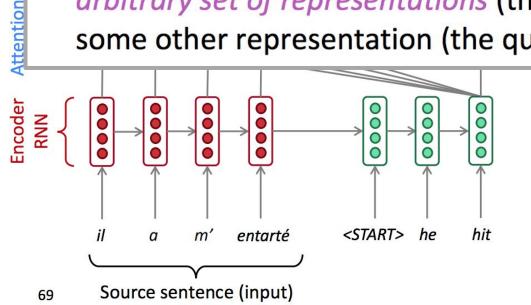
Sequence-to-sequence with attention



Sequence-to-sequence with attention



 Attention is a way to obtain a *fixed-size representation of an* arbitrary set of representations (the values), dependent on some other representation (the query).



Attention: Formally

- For query vector q, key vector k_i representing value v_i

 s_i is the similarity score between q and k_i
- Normalize the similarity scores to sum to 1

 $- p_i = Softmax(s_i)$

- Compute z as the weighted sum of the value vectors v_i weighted by their scores p_i
- In Machine Translation & Image Captioning, the keys and values are the same.
 - But, they could be different.

$$z = \sum_{i=1}^{L} p_i v_i$$

Attention: Multiple Types

- For query vector **q**, key vector **k**_i representing value **v**_i
 - s_i is the similarity score between **q** and **k**_i
- Additive Attention (Bahdanau et. al 2014)

$$- s_i = w_3 tanh(w_2^T q + w_1^T k_i)$$

Dot-Product Attention

$$-s_i = \mathbf{q}^T \mathbf{k}_i$$

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} v_i$$
$$\mathbf{s}^{\mathsf{T}} = \mathbf{q}^{\mathsf{T}} \mathbf{K}$$

Slide Credit: Sarah Wiegreffe

Attention is great

- Attention significantly improves performance (in many applications)
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on

Plan for Today

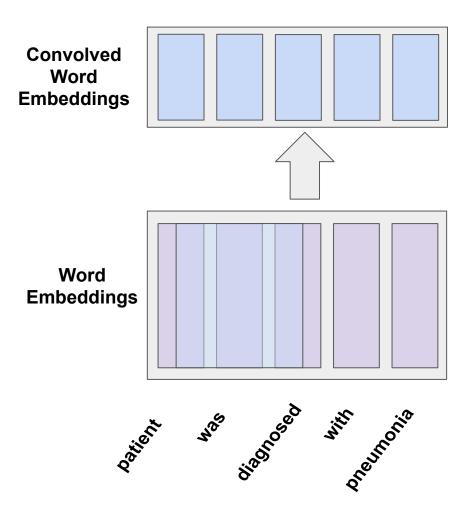
- Recap
 - RNNs, Image Captioning
- RNNs with Attention
- Machine Translation
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- More natural language applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

Problems with RNNs

- RNNs involve sequential computation
 - can't parallelize = time-consuming
- RNNs "forget" past information
- No explicit modeling of long and short range dependencies

Convolution?

- Trivial to parallelize (per layer)
- Exploits local dependencies; models local context
- Long-distance dependencies require many layers



Attention?

Attention between encoder and decoder is crucial in NMT.

Why not use attention for representations?

Slide Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

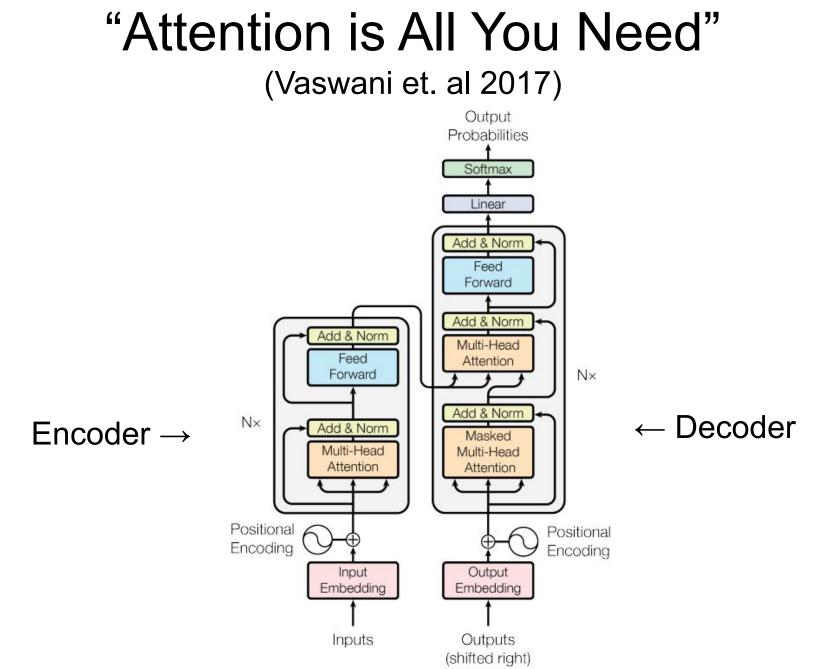


Figure Credit: Vaswani et. al

"Attention is All You Need"

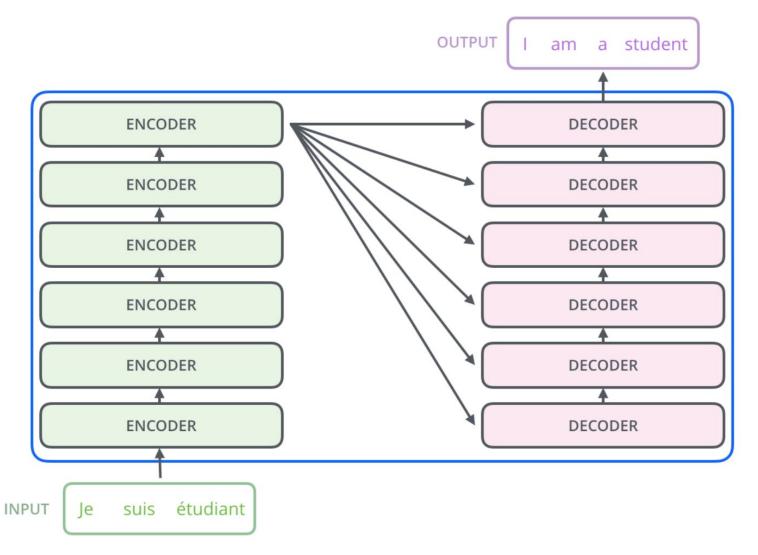


Image Credit: Jay Alammar

Components

- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

A Single Block

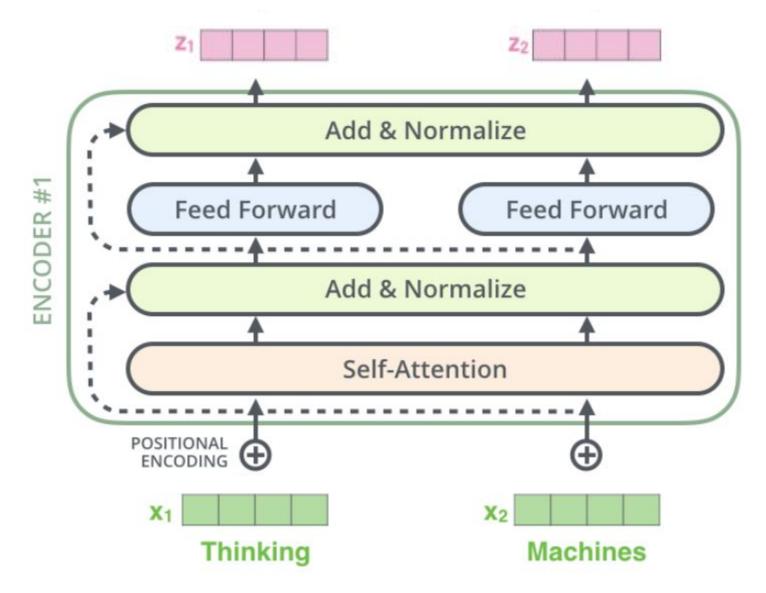


Image Credit: Jay Alammar

Components

- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

Attention: Multiple Types

- For query vector **q**, key vector **k**_i representing value **v**_i
 - s_i is the similarity score between **q** and **k**_i
- Additive Attention (Bahdanau et. al 2014)

$$- s_i = w_3 tanh(w_2^T q + w_1^T k_i)$$

• Dot-Product Attention - $s_i = q^T k_i$

Attention: Multiple Types

- For query vector q, key vector k, representing value v
 - s_i is the similarity score between **q** and **k**_i
- Additive Attention (Bahdanau et. al 2014)

$$- s_i = w_3 tanh(w_2^T q + w_1^T k_i)$$

Dot-Product Attention

$$- s_i = \mathbf{q}^{\mathsf{T}} \mathbf{k}_i$$

Scaled Dot-Product Attention

 $- s_i = \mathbf{q}^{\mathsf{T}} \mathbf{k}_i / \sqrt{d_k}$

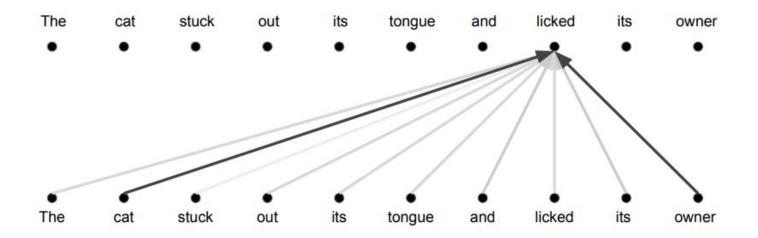
Components

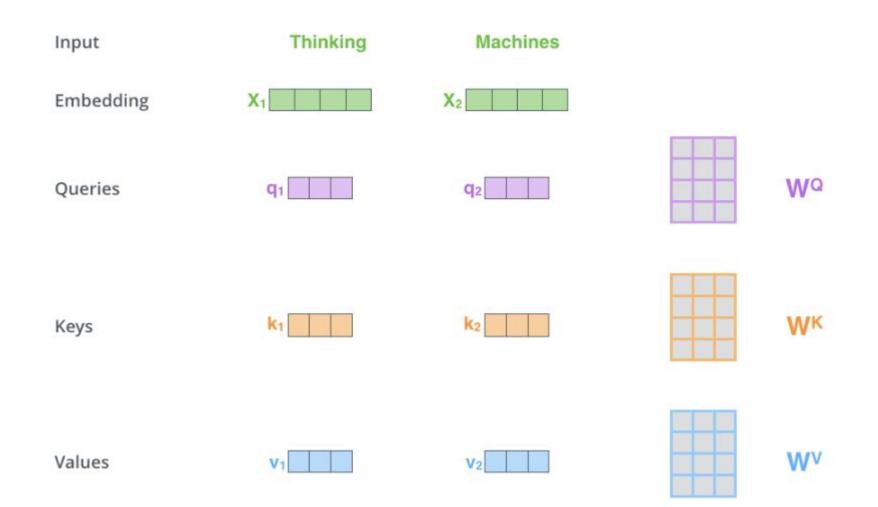
- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

Self-Attention

Constant 'path length' between any two positions.

Trivial to parallelize (per layer).

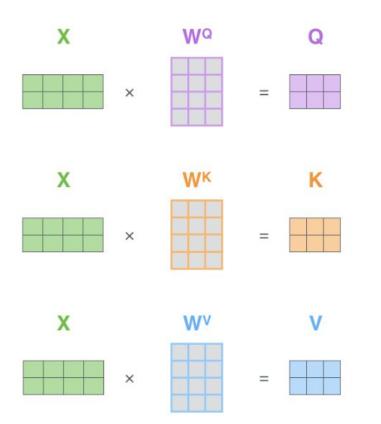




Slide Credit: Jay Allamar

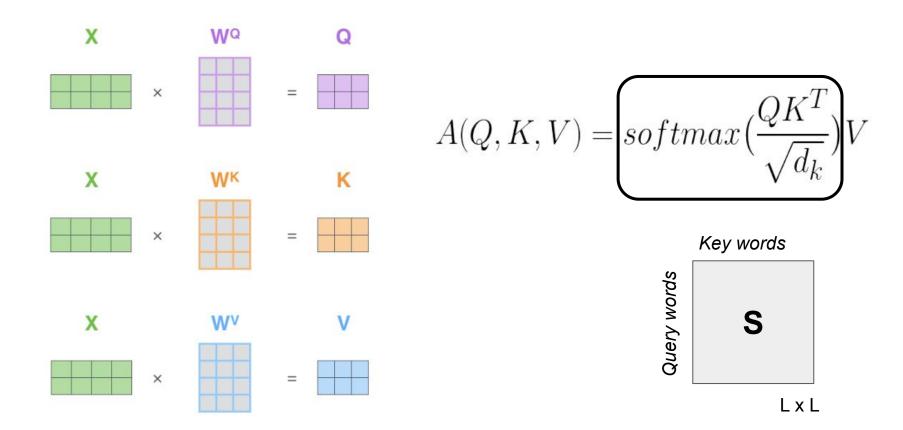
Input	Thinking	Machines
Embedding	X1	X2
Queries	q 1	q ₂
Keys	k 1	k ₂
Values	V1	V2
Score	$q_1 \cdot k_1 = 112$	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V1	V2
Sum	Z 1	Z 2

Slide Credit: Jay Allamar



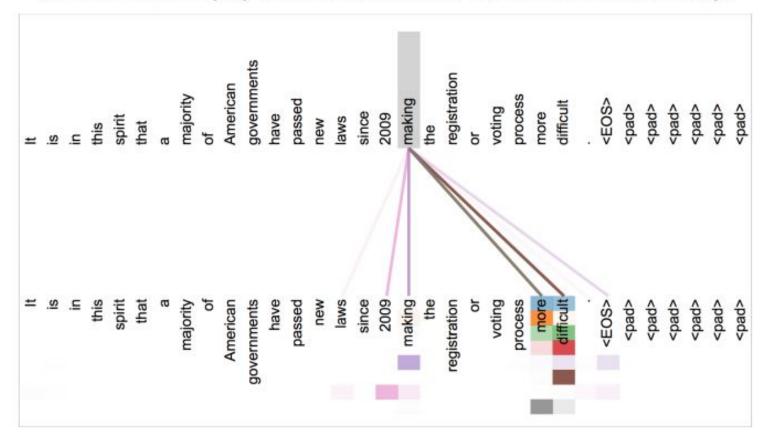
$$A(Q,K,V) = softmax \big(\frac{QK^T}{\sqrt{d_k}}\big) V$$

Image Credit: Jay Allamar



Attention visualization in layer 5

Words start to pay attention to other words in sensible ways

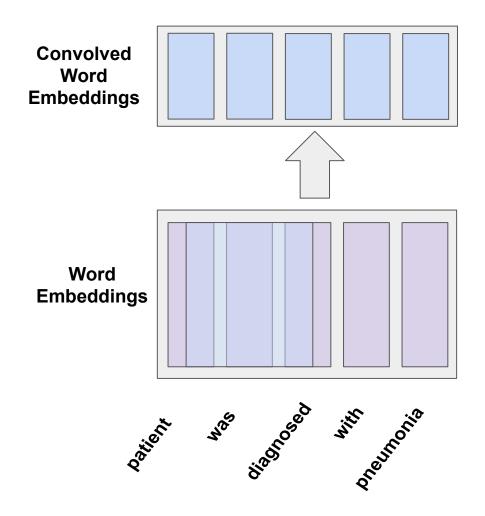


Components

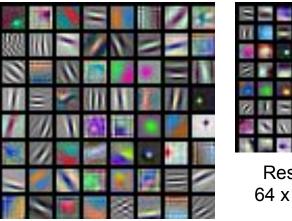
- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

Convolutions on Text

- Often referred to "1D convolution
- Reduces dimensionality of word vectors
- Incorporates local context



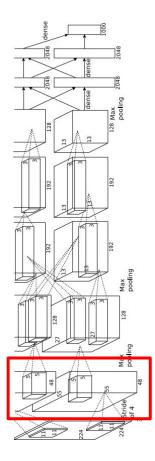
Visualizing filters in first layer



ResNet-18: 64 x 3 x 7 x 7

ResNet-101: 64 x 3 x 7 x 7

DenseNet-121: 64 x 3 x 7 x 7



64 x 3 x 11 x 11

AlexNet:

Krizhevsky, "One weird trick for parallelizing convolutional neural networks", arXiv 2014 He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Huang et al, "Densely Connected Convolutional Networks", CVPR 2017

Multiple "Filters"

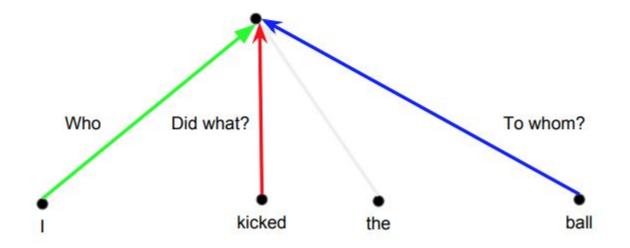
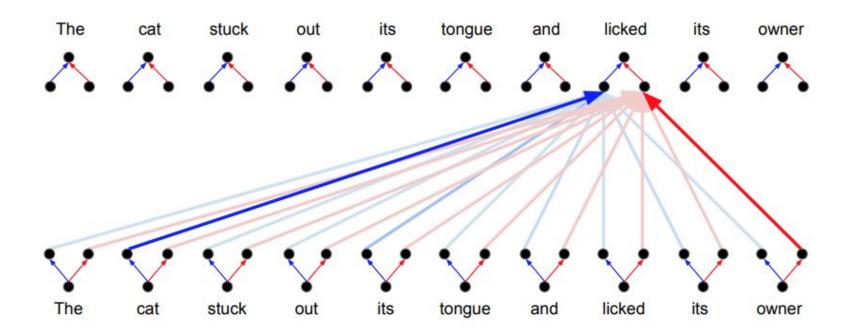


Image Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

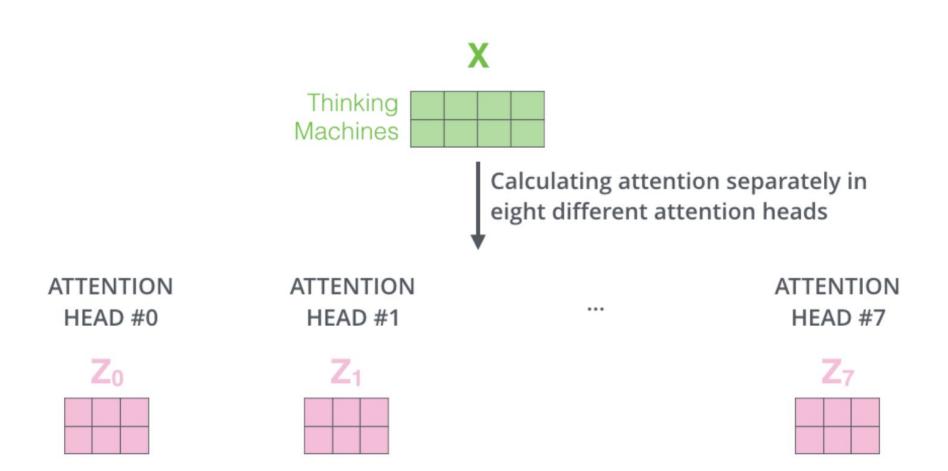
Multi-Head Attention

Parallel attention layers with different linear transformations on input and output.



Slide Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

Multi-Head Attention



Retaining Hidden State Size

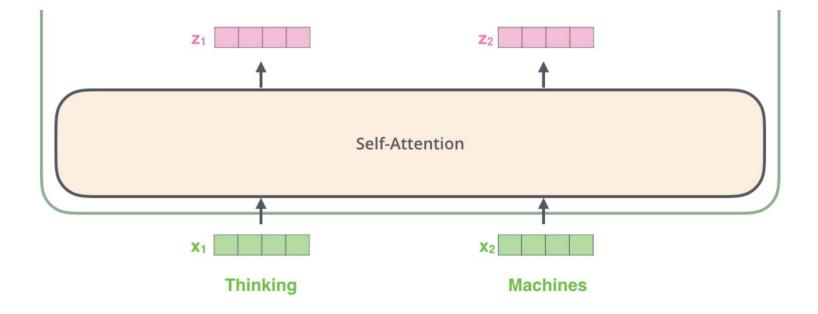


Image Credit: Jay Alammar

Details

1) This is our 2) We embed input sentence* each word*

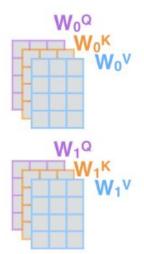
3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

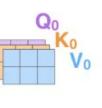
5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

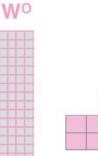
* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

R

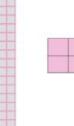
Х

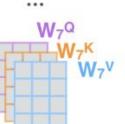


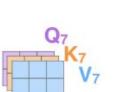




Z







...

...

Components

- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

A Single Block

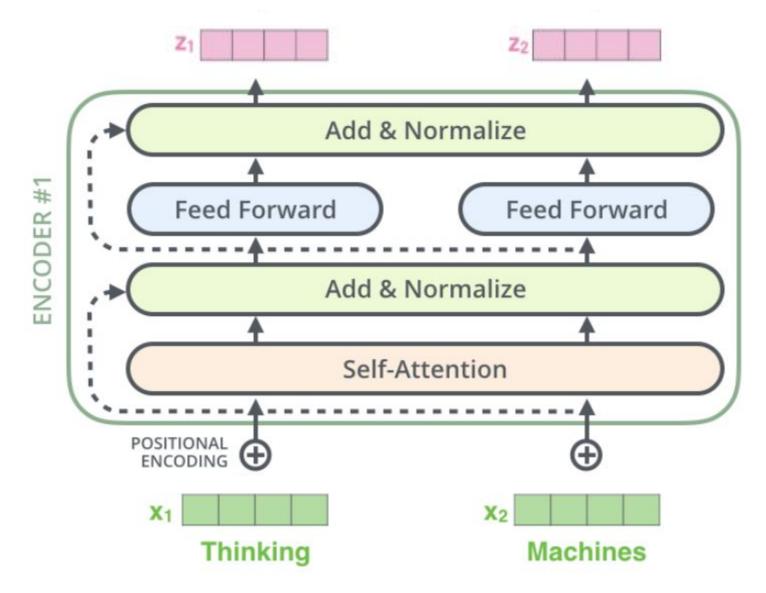


Image Credit: Jay Alammar

A Single Block

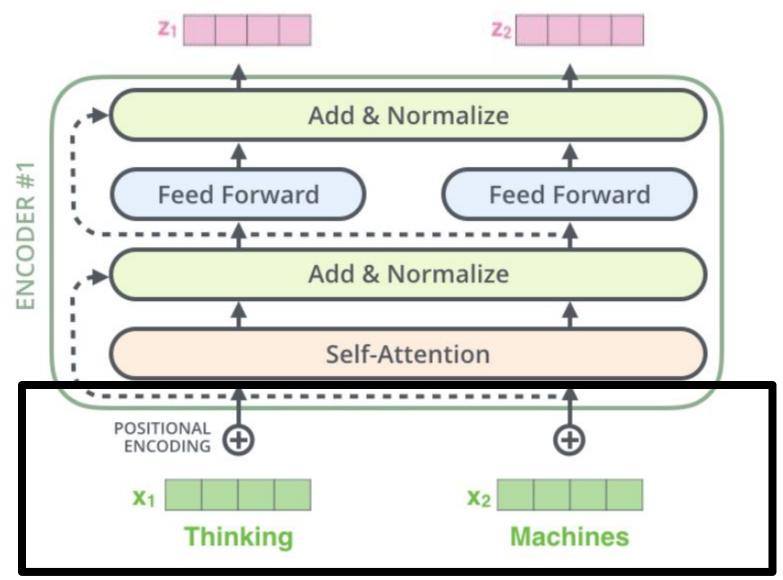
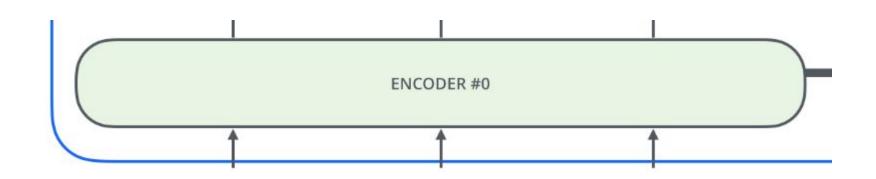


Image Credit: Jay Alammar

Why do we need them?

- It is not the same for a word to be at the beginning, vs. at the end or the middle, of a sentence.
- Both convolution & recurrent models process words in a particular order.
- However, the Transformer doesn't (everything happens in parallel)
- We want to inject some temporal information so that the model knows the *relationships between words based on their context* (distance & word order is important)

Positional Encodings



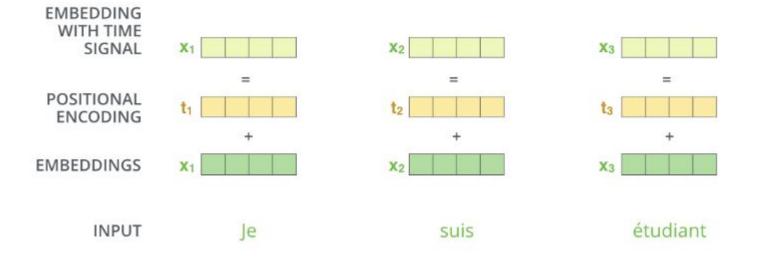


Image Credit: Jay Alammar

Positional Encodings: Two Types

- Sinusoid
 - can extrapolate beyond max. sequence length at test-time
 - represent periodicity of positions: a continuous way of binary encoding of position

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

- Learned
 - rather straightforward
 - can't extrapolate
- Perform comparably, so learned embeddings are most often used in practice.

Components

- Scaled Dot-Product Attention
- Self-Attention
- Multi-Head Self-Attention
- Positional Encodings
- Residual Connections

x + Sublayer(x)

A Single Block

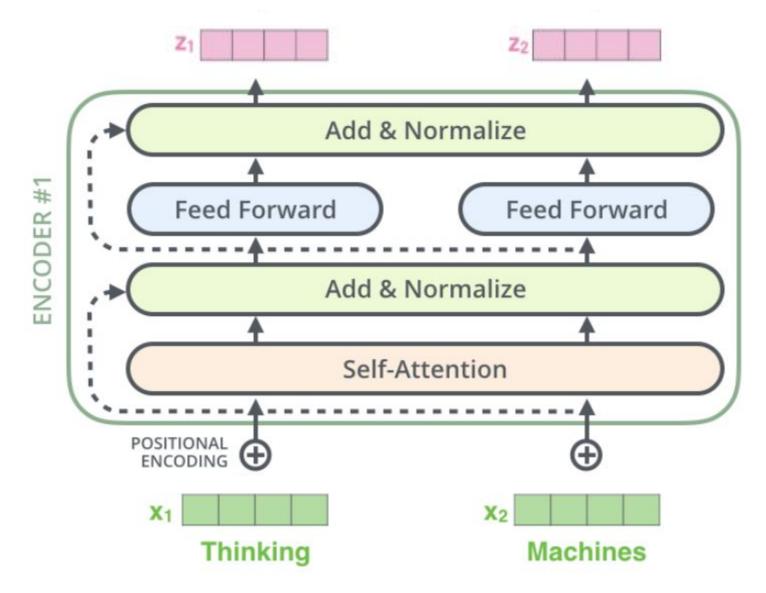
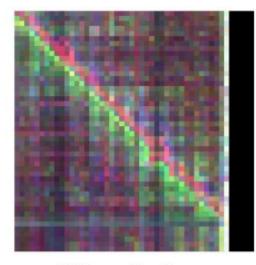


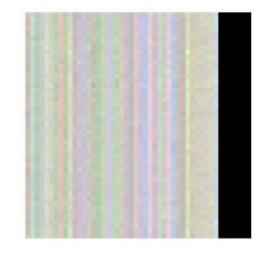
Image Credit: Jay Alammar

Importance of Residuals

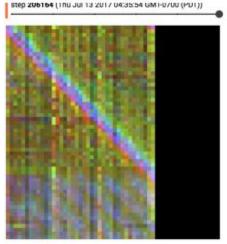
Residuals carry positional information to higher layers, among other information.



With residuals



Without residuals



0 🖸

Without residuals, with timing signals

Slide Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

- Recap
 - RNNs (for machine translation)
 - Attention
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- Natural Language Applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

"Attention is All You Need"

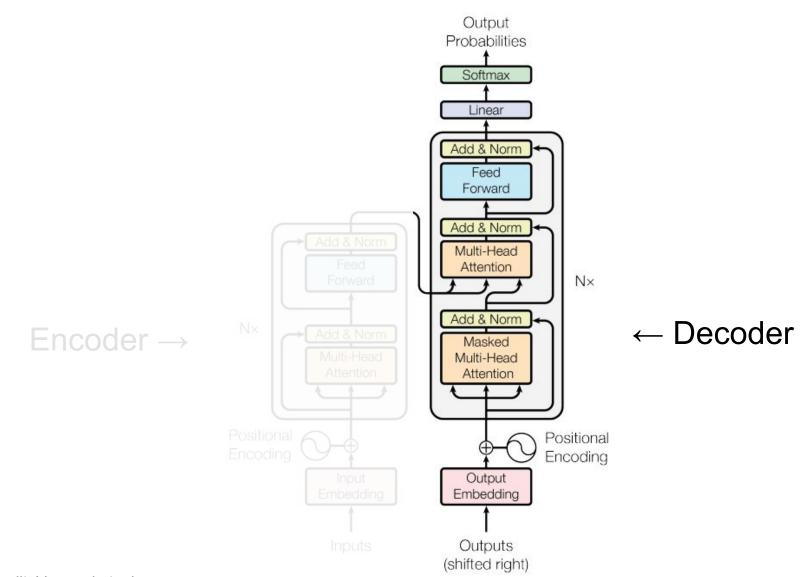


Figure Credit: Vaswani et. al

Decoder- A Single Block

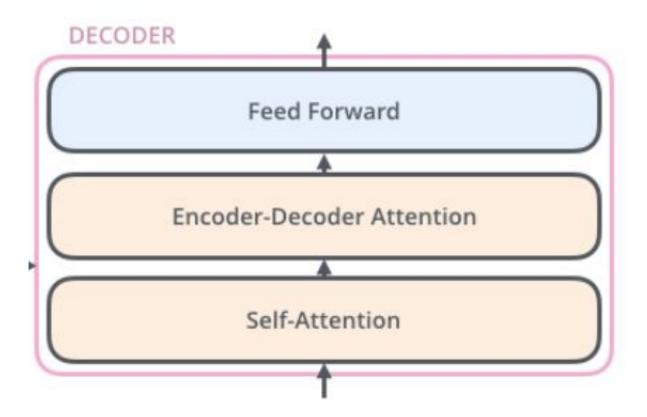


Image Credit: Jay Alammar

Problem with Transformer Encoder

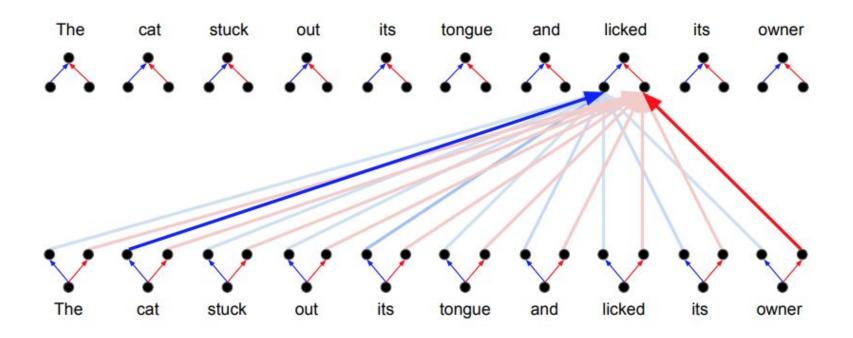
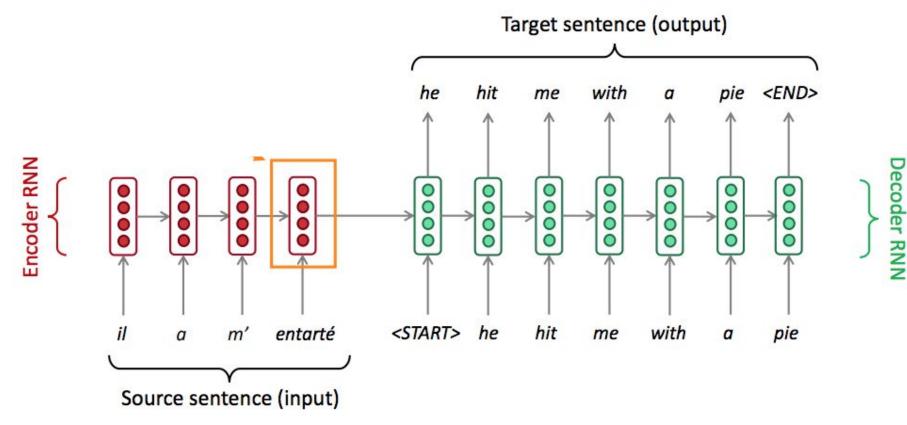


Image Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

We can't see the future

P("he hit me") = P("he")P("hit"|"he")P("me"|"he hit")



Masked Multi-Head Attention

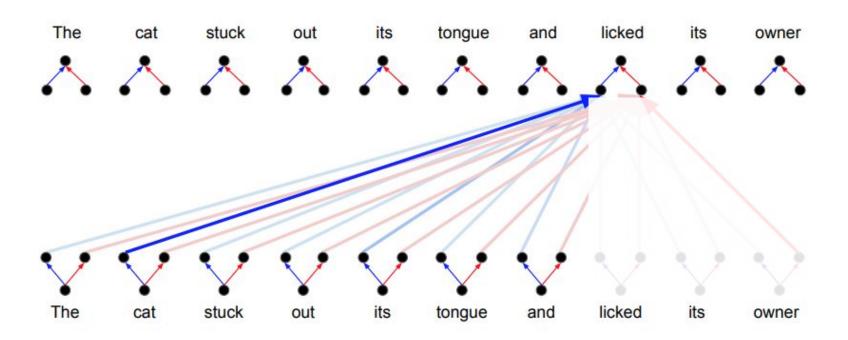


Image Credit: Ashish Vaswani & Anna Huang, Stanford CS224n

- Recap
 - RNNs (for machine translation)
 - Attention
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- Natural Language Applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

Attention is Cheap

Attention is Cheap

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	<i>O</i> (1)	<i>O</i> (1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

- Cheaper when n < d
- No long-range dependencies!
- No sequential operations!

- Recap
 - RNNs (for machine translation)
 - Attention
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- Natural Language Applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

Useful Resources

- Jay Allamar's blogposts: <u>http://jalammar.github.io/</u>
- Lecture on Transformers: <u>https://www.youtube.com/watch?v=5vcj8kSwBCY&featur</u> <u>e=youtu.be</u>
- Stanford CS224n slides/resources <u>http://web.stanford.edu/class/cs224n/</u>
- The Annotated Transformer <u>https://nlp.seas.harvard.edu/2018/04/03/attention.html</u>
- Jacob Eisenstein's Intro to NLP textbook <u>https://github.com/jacobeisenstein/gt-nlp-class/blob/mast</u> <u>er/notes/eisenstein-nlp-notes.pdf</u>
- Yoav Goldberg's Deep Learning for NLP textbook <u>https://www.morganclaypool.com/doi/abs/10.2200/S007</u> <u>62ED1V01Y201703HLT037</u>

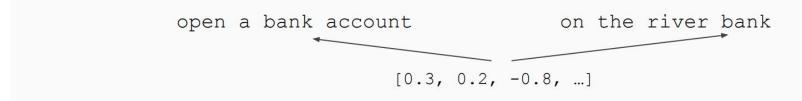
Lecture ends here.

- Recap
 - RNNs (for machine translation)
 - Attention
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- Natural Language Applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

Word Embeddings

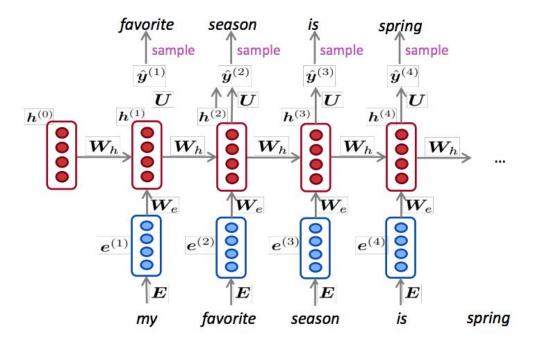
 Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from co-occurrence statistics

• **Problem**: Word embeddings are applied in a context free manner



Did we all along have a solution to this problem?

- In, an NLM, we immediately stuck word vectors (perhaps only trained on the corpus) through LSTM layers
- Those LSTM layers are trained to predict the next word
- But those language models are producing context-specific word representations at each position!



12

Slide Credit: Chris Manning, CS224n

Transformers Do This Even Better

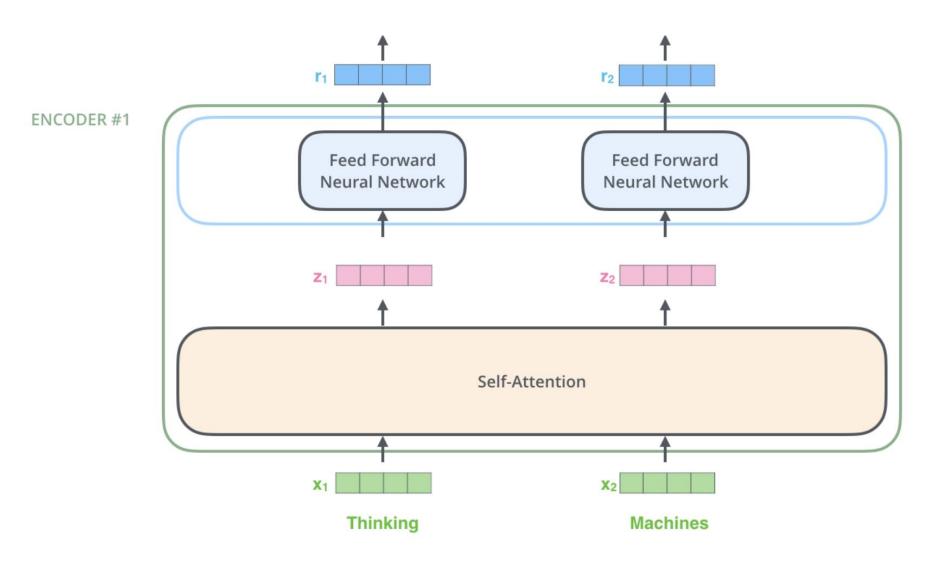


Image Credit: Jay Alammar

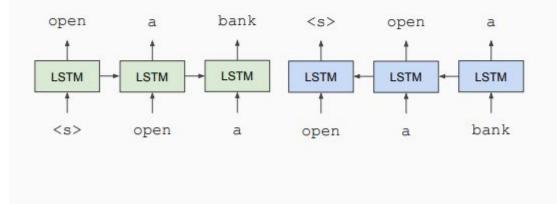
Contextualized Embeddings

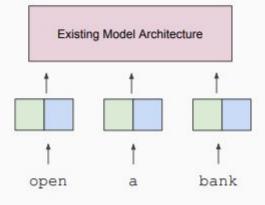
- Embeddings from Language Models = ELMo (Peters et. al 2017)
- **OpenAl GPT** (Radford et al. 2018)
- Bidirectional Encoders from Transformers = BERT (Devlin et. al 2018)

ELMo

Train Separate Left-to-Right and Right-to-Left LMs

Apply as "Pre-trained Embeddings"

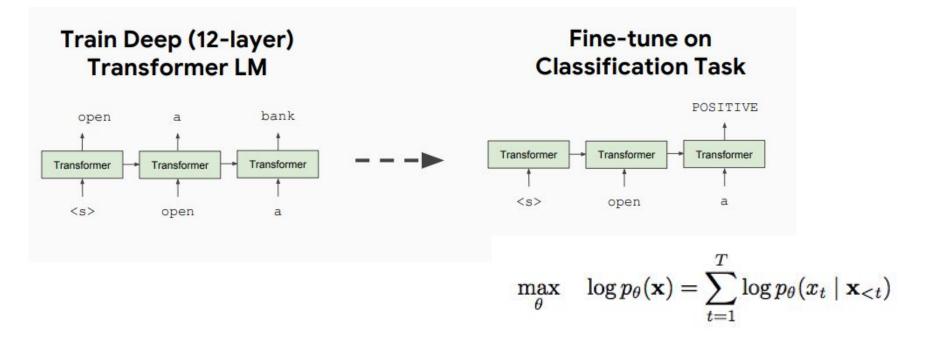




- Why can't you use a bi-directional RNN?

Image Credit: Jacob Devlin

OpenAl GPT



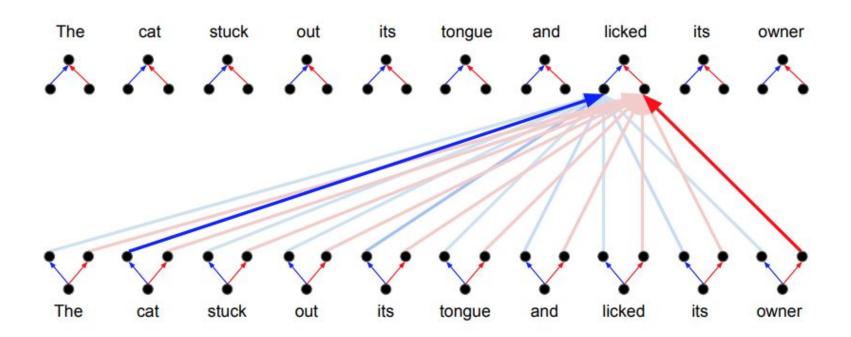
- Use a Transformer decoder to "predict the next word"
- Why can't you use a bi-directional Transformer?

Answer

- Problem: Language models only use left context or right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- <u>Reason 1</u>: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- <u>Reason 2</u>: Words can "see themselves" in a bidirectional encoder.
- We want to use a Transformer encoder!

Answer

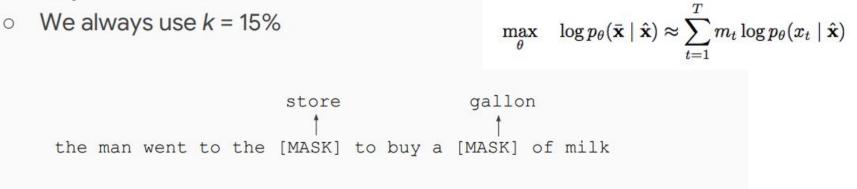
Bidirectional context Words can "see themselves"



- Recap
 - RNNs (for machine translation)
 - Attention
- Transformers: an alternative to RNNs
 - Architecture
 - Decoding
 - Efficiency
- Natural Language Applications
 - Language Modeling (ELMo, GPT)
 - BERT ("Masked Language Modeling")

BERT

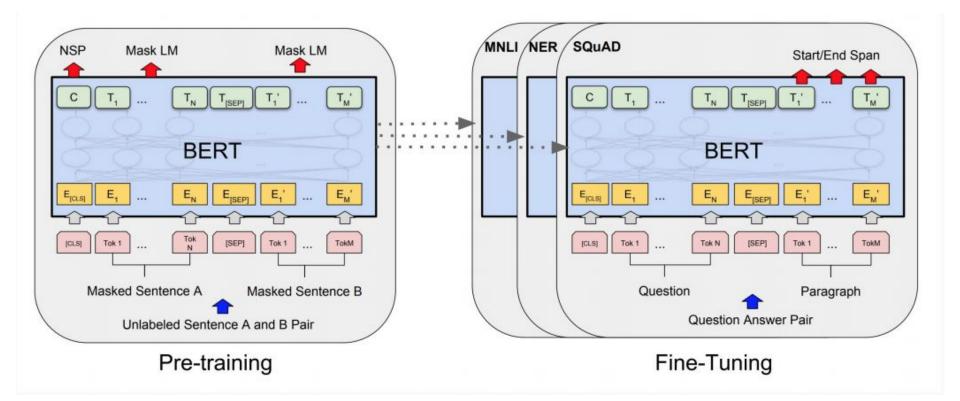
Solution: Mask out *k*% of the input words, and then predict the masked words



BERT-Base: 12-layer, 768-hidden, 12-head
BERT-Large: 24-layer, 1024-hidden, 16-head

Slide Credit: Jacob Devlin, XLNET (2019)

BERT



Recap: Contextualized Word Representations

Trained on:

Unidirectional Context Bidirectional Context

RNN	ELMo (and others)	others
Transformer	GPT and GPT-2	BERT