CS 4803 / 7643: Deep Learning

Topics:

- Automatic Differentiation
 - (Finish) Forward mode vs Reverse mode AD
 - Patterns in backprop
 - Jacobians in FC+ReLU NNs
Administrativia

• HW1 Reminder
 – Due: 09/26, 11:55pm
Project

• Goal
 – Chance to take on something open-ended
 – Encouraged to apply to your research
 (computer vision, NLP, robotics,…)

• Main categories
 - Application/Survey
 - Compare a collection of existing algorithms on a new application
domain of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing algorithm
Project

• Rules
 – Combine with other classes / research / credits / anything
 • You have our blanket permission
 • Get permission from other instructors; delineate different parts
 – Must be done this semester.
 – Groups of 3-4

• Expectations
 – 20% of final grade = individual effort equivalent to 1 HW
 – Expectation scales with team size
 – Most work will be done in Nov but please plan early.
Project Ideas

- NeurIPS Reproducibility Challenge
Computing

• Major bottleneck
 – GPUs

• Options
 – Your own / group / advisor’s resources

 ⬤ Google Cloud Credits
 • $50 credits to every registered student courtesy Google

 – Google Colab
 • jupyter-notbook + free GPU instance
Administrativia

• Project Teams Google Doc
 – https://docs.google.com/spreadsheets/d/1ouD6ctaemV_3nb2MQHs7rUOAaW9DFLu8I5Zd3yOFs7E/edit?usp=sharing
 – Project Title
 – 1-3 sentence project summary TL;DR
 – Team member names
Recap from last time
How do we compute gradients?

- Analytic or “Manual” Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka “backprop”
Chain Rule: Composite Functions

\[h(x) = f(g(x)) = (f \circ g)(x) \]

\[
\frac{dh}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} = (g \circ f \circ g^{-1} \cdots g_1^{-1})(x)
\]
Chain Rule: Scalar Case

\[x \xrightarrow{g(.)} z \xrightarrow{f(.)} y \rightarrow a \quad x, y, z \in \mathbb{R}, a \in \mathbb{R} \]

\[f(g(x)) = f(z) \]

\[\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} \]

Scalar prod.

\[\frac{\partial a}{\partial x} = \frac{\partial a}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} \]
Chain Rule: Vector Case

\[\overrightarrow{X} \in \mathbb{R}^d \xrightarrow{g} \overrightarrow{Z} \in \mathbb{R}^m \xrightarrow{f} \overrightarrow{y} \in \mathbb{R}^c \rightarrow \overrightarrow{a} \]

\[\frac{\partial \overrightarrow{y}}{\partial \overrightarrow{x}} \xrightarrow{J} \frac{\partial \overrightarrow{y}}{\partial \overrightarrow{z}} \xrightarrow{0} \frac{\partial \overrightarrow{z}}{\partial \overrightarrow{x}} \]

\[J_{f \circ g} \quad J_f \quad \text{Matrix Mult} \]
Chain Rule: Jacobian view

\[\frac{\partial y_i}{\partial x_j} = \sum_k \frac{\partial^2 y_i}{\partial z_k \partial x_j} \]

\[\begin{bmatrix} \frac{\partial y_i}{\partial x_j} \\ \vdots \end{bmatrix} _{c \times d} = \begin{bmatrix} \frac{\partial y_i}{\partial z_k} \\ \vdots \end{bmatrix} _{c \times m} \begin{bmatrix} \frac{\partial z_k}{\partial x_j} \\ \vdots \end{bmatrix} _{m \times d} \]
Chain Rule: Graphical view

\[
\frac{\partial y_i}{\partial x_j} = \sum_{k \text{ is on path}} \frac{\partial y_i}{\partial z_k} \cdot \frac{\partial z_k}{\partial x_j}
\]
Chain Rule: Cascaded

\[\frac{\partial h}{\partial h^0} = -\frac{\partial L}{\partial h^0} \cdot \frac{\partial h^0}{\partial h^{l-1}} \cdot \frac{\partial h^{l-1}}{\partial h^{l-2}} \cdot \cdots \cdot \frac{\partial h^1}{\partial h^0} \]

\[\Theta(d^3) \]

\[O(d^3) \]
Deep Learning = Differentiable Programming

• Computation = Graph
 – Input = Data + Parameters
 – Output = Loss
 – Scheduling = Topological ordering

• Auto-Diff
 – A family of algorithms for implementing chain-rule on computation graphs
Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
 - Directed edges
 - No (directed) cycles
 - Underlying undirected cycles okay

\[G = (V, E) \]
\[E = \{ (v_i, v_j) \mid v_i, v_j \in V \} \]
Directed Acyclic Graphs (DAGs)

- Concept
 - Topological Ordering

\[\exists \text{ bijection } \sigma : V \rightarrow \{1, \ldots, n\} \]
\[\text{s.t. } \forall (v_i, v_j) \in E \]
\[\sigma(v_i) < \sigma(v_j) \]
Computational Graphs

- Notation

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Deep Learning = Differentiable Programming

• Computation = Graph
 – Input = Data + Parameters
 – Output = Loss
 – Scheduling = Topological ordering

• Auto-Diff
 – A family of algorithms for implementing chain-rule on computation graphs
Forward mode AD

Goal: \(\frac{\partial L}{\partial x} \)

Layer \(l \)

Input:

\(\frac{\partial h^{l}}{\partial x} \)

\(h^{l-1} \)

\(h = g(h^{l-1}) \)

\(\frac{\partial h^{l}}{\partial x} = \frac{\partial h^{l}}{\partial h^{l-1}} \cdot \frac{\partial h^{l-1}}{\partial x} \)

Jacobian of \(g \)
Reverse mode AD

\[\frac{\partial y}{\partial x} = A \]
\[\frac{\partial x}{\partial y} = A^{-1} \]
\[\frac{\partial h}{\partial x} = W \]
\[\frac{\partial h}{\partial x} = W \]
\[\frac{\partial h}{\partial x} = W \]

Goal: \[\frac{\partial L}{\partial x} \]

\[\frac{\partial L}{\partial h} = g(h^{l-1}) \]

Output

\[\frac{\partial L}{\partial h^{l-1}} \]

Input

\[\frac{\partial L}{\partial h} \]

Jacobian of g
Plan for Today

• Automatic Differentiation
 – (Finish) Forward mode vs Reverse mode AD
 – Backprop
 – Patterns in backprop
 – Jacobians in FC+ReLU NNs
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Example: Forward mode AD

\[
f(x_1, x_2) = x_1 x_2 + \sin(x_1)
\]
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

\[\dot{w}_3 = \dot{w}_1 + \dot{w}_2 \]

\[\dot{w}_1 = \cos(x_1) \dot{x}_1 \]
\[\dot{w}_2 = \dot{x}_1 x_2 + x_1 \dot{x}_2 \]

\[x_1 = \frac{\partial f}{\partial x_1} \]
\[\dot{x}_1 = \frac{\partial f}{\partial x_1} \]
\[\dot{x}_2 = \frac{\partial f}{\partial x_2} \]
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) + \cos(x_3) \]

Q: What happens if there’s another input variable \(x_3 \)?
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

Q: What happens if there’s another input variable \(x_3 \)?

A: more sophisticated graph; d “forward props” for d variables
Example: Forward mode AD

\[f_1(x_1, x_2) = x_1 x_2 + \sin(x_1) \quad f_2 = \cos(x_2) \]

Q: What happens if there’s another output variable \(f_2 \)?
Example: Forward mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

Q: What happens if there’s another output variable \(f_2 \)?
A: more sophisticated graph; single “forward prop”
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) + \cos(x_3) \]

Q: What happens if there’s another input variable \(x_3 \)?
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

Q: What happens if there’s another input variable \(x_3 \)?
A: more sophisticated graph; single “backward prop”
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

Q: What happens if there’s another output variable \(f_2 \)?

For on output vars:

\[\bar{x}_1 = \bar{w}_1 \cos(x_1) \quad \bar{x}_1 = \bar{w}_2 x_2 \quad \bar{x}_2 = \bar{w}_2 x_1 \]

\[\bar{w}_1 = \bar{w}_3 \quad \bar{w}_2 = \bar{w}_3 \quad \bar{w}_3 = 1 \]
Example: Reverse mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]

Q: What happens if there’s another output variable \(f_2 \)?
A: more sophisticated graph; c “backward props” for c vars

\[
\begin{align*}
\bar{w}_3 &= 1 \\
\bar{w}_1 &= \bar{w}_3 \\
\bar{w}_2 &= \bar{w}_3 \\
\bar{x}_1 &= \bar{w}_1 \cos(x_1) \\
\bar{x}_1 &= \bar{w}_2 x_2 \\
\bar{x}_2 &= \bar{w}_2 x_1
\end{align*}
\]
Forward mode vs Reverse Mode

- $x \rightarrow \text{Graph} \rightarrow L$
- Intuition of Jacobian
Forward mode vs Reverse Mode

• What are the differences?

• Which one is faster to compute?
 – Forward or backward?

Is $c > d$ or $c < d$?
Forward mode vs Reverse Mode

• What are the differences?

• Which one is faster to compute?
 – Forward or backward?

• Which one is more memory efficient (less storage)?
 – Forward or backward?
Forward Pass vs Forward mode AD vs Reverse Mode AD

\[f(x_1, x_2) = x_1 x_2 + \sin(x_1) \]
Plan for Today

• Automatic Differentiation
 – (Finish) Forward mode vs Reverse mode AD ✓
 – Backprop
 – Patterns in backprop
 – Jacobians in FC+ReLU NNs
Any DAG of differentiable modules is allowed!
Key Computation: Forward-Prop
Key Computation: Back-Prop
Neural Network Training

- Step 1: Compute Loss on mini-batch [F-Pass]
Neural Network Training

- Step 1: Compute Loss on mini-batch

[Slide Credit: Marc'Aurelio Ranzato, Yann LeCun]
Neural Network Training

- Step 1: Compute Loss on mini-batch

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
Neural Network Training

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]
Neural Network Training

- Step 1: Compute Loss on mini-batch [F-Pass]
- Step 2: Compute gradients wrt parameters [B-Pass]
Neural Network Training

• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
Neural Network Training

• Step 1: Compute Loss on mini-batch [F-Pass]
• Step 2: Compute gradients wrt parameters [B-Pass]
• Step 3: Use gradient to update parameters

\[\theta \leftarrow \theta - \eta \frac{dL}{d\theta} \]