CS 4803 / 7643: Deep Learning

Topic:
 – Reinforcement Learning (RL)
 – Overview
 – Markov Decision Processes

Zsolt Kira
Georgia Tech
Administrative

• PS3/HW3 due March 15th!
• Projects
 – 2 new FB projects up (https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/fb_projects.html)
 • Project 1: Confident Machine Translation
 • Project 2: Habitat Embodied Navigation Challenge @ CVPR20
 • Project 3: MRI analysis
 • Project 4: Transfer learning for machine translation quality estimation
 – Tentative FB plan:
 • March 20th: Phone call with FB
 • April 5th: Written Q&A
 • April 15th: Phone call with FB
 – Fill out spreadsheet: https://gtvault-my.sharepoint.com/:x:/g/personal/sdharur3_gatech_edu/EVXbNc4oxelMmj1T5WsEIRQBE4Hn532GeLQVcmOnWdG2Jg?e=dIGNfX
From Last Time

• Overview of RL
 • RL vs other forms of learning
 • RL “API”
 • Applications

• Framework: Markov Decision Processes (MDP’s)
 • Definitions and notations
 • Policies and Value Functions
 • Solving MDP’s
 • Value Iteration
 • Policy Iteration

• Reinforcement learning
 • Value-based RL (Q-learning, Deep-Q Learning)
 • Policy-based RL (Policy gradients)

Last lecture:
– Focus on MDP’s
– No learning (deep or otherwise)
• At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
• The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
Markov Decision Process (MDP)

- RL operates within a framework called a Markov Decision Process
- MDP’s: General formulation for decision making under uncertainty

Defined by: \((S, A, R, \mathbb{P}, \gamma)\)

- \(S\): set of possible states [start state = \(s_0\), optional terminal / absorbing state]
- \(A\): set of possible actions
- \(R(s, a, s')\): distribution of reward given (state, action, next state) tuple
- \(\mathbb{P}(s, a, s')\): transition probability distribution, also written as \(p(s' | s, a)\)
- \(\gamma\): discount factor

- Life is trajectory: \(\ldots, s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots\)

- **Markov property**: Current state completely characterizes state of the world
- **Assumption**: Most recent observation is sufficient statistic of history

\[
p(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, \ldots S_0 = s_0) = p(S_{t+1} = s' | S_t = s_t, A_t = a_t)
\]
Markov Decision Process (MDP)

- MDP state projects a search tree

- **Observability:**
 - **Full:** In a fully observable MDP, \(O_t = S_t \)
 - Example: Chess
 - **Partial:** In a partially observable MDP, agent *constructs* its own state, using history, of beliefs of world state, or an RNN, …
 - Example: Poker

Slide Credit: Emma Brunskill, Byron Boots
Markov Decision Process (MDP)

- In RL, we don’t have access to \mathbb{T} or \mathbb{R} (i.e. the environment)
 - Need to *actually try* actions and states out to learn
 - Sometimes, need to model the environment

- Last time, assumed we *do* have access to how the world works

- And that our goal is to find an optimal behavior strategy for an agent
Canonical Example: Grid World

- Agent lives in a grid
- Walls block the agent’s path
- Actions do not always go as planned
 - 80% of the time, action North takes the agent North (if there is no wall)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall, the agent stays put

- State: Agent’s location
- Actions: N, E, S, W
- Rewards: +1 / -1 at absorbing states
 - Also small “living” reward each step (negative)

Slide credit: Pieter Abbeel
Policy

• A policy is how the agent acts

• Formally, map from states to actions
 – Deterministic $\pi(s) = a$
 – Stochastic $\pi(a|s) = P(A_t = a|S_t = s)$

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
</tbody>
</table>
The optimal policy π^*

What’s a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

Formally: $\pi^* = \arg \max_\pi \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid \pi \right]$ (Typically for a fixed horizon T)

with $s_0 \sim p(s_0), a_t \sim \pi(\cdot \mid s_t), s_{t+1} \sim p(\cdot \mid s_t, a_t)$
The optimal policy π^*

Reward at every non-terminal state (living reward/penalty)

$R(s) = -0.03$

$R(s) = -0.4$

$R(s) = -2.0$
Value Function

• A value function is a prediction of future reward

• State Value Function or simply Value Function
 – How good is a state?
 – Am I screwed? Am I winning this game?

• Action-Value Function or Q-function
 – How good is a state action-pair?
 – Should I do this now?
Value Function

Following policy π that produces sample trajectories $s_0, a_0, r_0, s_1, a_1, \ldots$

How good is a state?
The **value function** at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

How good is a state-action pair?
The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$
Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories $s_0, a_0, r_0, s_1, a_1, \ldots$

How good is a state?

The **optimal value function** at state s, and acting optimally thereafter

$$V^*(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi^* \right]$$

How good is a state-action pair?

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^* \right]$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Recursive definition of value

- Extracting optimal value / policy from Q-values:

\[V^*(s) = \max_a Q^*(s, a) \quad \pi^*(s) = \arg \max_a Q^*(s, a) \]
Recursive definition of value

• Extracting optimal value / policy from Q-values:

\[V^*(s) = \max_a Q^*(s, a) \quad \pi^*(s) = \arg \max_a Q^*(s, a) \]

• Bellman Equations:

\[Q^*(s, a) = \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^*(s') \right] \]
Recursive definition of value

• Extracting optimal value / policy from Q-values:

\[V^*(s) = \max_a Q^*(s, a) \quad \pi^*(s) = \arg\max_a Q^*(s, a) \]

• Bellman Equations:

\[Q^*(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')] \]

\[V^*(s) = \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')] \]

Slide credit: Byron Boots, CS 7641
Recursive definition of value

• Extracting optimal value / policy from Q-values:

\[V^*(s) = \max_a Q^*(s, a) \quad \pi^*(s) = \arg \max_a Q^*(s, a) \]

• Bellman Equations:

\[Q^*(s, a) = \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')] \]

\[V^*(s) = \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')] \]

• Characterize optimal values in a way we’ll use over and over
Value Iteration (VI)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to compute it.
Value Iteration (VI)

• Bellman equations characterize optimal values, VI is a fixed-point DP solution method to compute it.

• Algorithm
 – Initialize values of all states $V^0(s) = 0$
 – Update: $V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^i(s')]$
 – Repeat until convergence (to V^*)
Value Iteration (VI)

• Bellman equations characterize optimal values, VI is a fixed-point DP solution method to compute it

• Algorithm
 – Initialize values of all states $V_0(s) = 0$
 – Update: $V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right]$
 – Repeat until convergence (to V^*)

• Complexity per iteration (DP): $O(|S|^2|A|)$
Value Iteration (VI)

- Bellman equations characterize optimal values, VI is a fixed-point DP solution method to compute it.

- **Algorithm**
 - Initialize values of all states $V_0(s) = 0$
 - Update: $V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right]$
 - Repeat until convergence (to V^*)

- **Complexity per iteration (DP):** $O(|S|^2|A|)$

- **Convergence**
 - Guaranteed for $\gamma < 1$
 - Sketch: Approximations get refined towards optimal values
 - In practice, policy may converge before values do
Value Iteration (VI)

\[V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right] \]

\[V^2(\langle 3, 3 \rangle) = \sum_{s'} P(s' | \text{right, } \langle 3, 3 \rangle) \left[r(\langle 3, 3 \rangle) + \gamma V^1(s') \right] \]

\[= 0.9 \left[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0 \right] \]

[NOTE: Here we are showing calculations for the action we know is argmax (go right), but in general we have to calculate this for each actions and return max]

Slide credit: Pieter Abbeel
Q-Value Iteration

• Value Iteration Update:

\[V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right] \]

• Remember: \(Q^*(s, a) = \sum p(s'|s, a) [r(s, a) + \gamma V^*(s')] \)

• Q-Value Iteration Update:

\[Q^{i+1}(s, a) \leftarrow \]
Q-Value Iteration

• Value Iteration Update:

\[V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right] \]

• Remember: \(Q^*(s, a) = \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^*(s') \right] \)

• Q-Value Iteration Update:

\[Q^{i+1}(s, a) \leftarrow \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma \max_{a'} Q^i(s', a') \right] \]

The algorithm is same as value iteration, but it loops over actions as well as states
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Slide Credit: http://ai.berkeley.edu
Computing Actions from Values

• Let’s imagine we have the optimal values $V^*(s)$

• How should we act?
 – It’s not obvious!

• We need to do a one step calculation

$$\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s')[R(s, a, s') + \gamma V^*(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

Slide Credit: http://ai.berkeley.edu
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Demo

- https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
Next class

- Solving MDP’s
 - Policy Iteration
- Reinforcement learning
 - Value-based RL
 - Q-learning
 - Deep Q Learning
Policy Iteration
Policy Iteration

- Policy iteration: Start with arbitrary π_0 and refine it.

\[\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \ldots \rightarrow \pi^* \]
Policy Iteration

• Policy iteration: Start with arbitrary π_0 and refine it.

$$\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \ldots \rightarrow \pi^*$$

• Involves repeating two steps:

 – Policy Evaluation: Compute V^π (similar to VI)

 – Policy Refinement: Greedily change actions as per V^π

$$\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \ldots \rightarrow \pi^* \rightarrow V^{\pi^*}$$
Policy Iteration

• Policy iteration: Start with arbitrary π_0 and refine it.

\[\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \ldots \rightarrow \pi^* \]

• Involves repeating two steps:

 – Policy Evaluation: Compute V^π (similar to VI)

 – Policy Refinement: Greedily change actions as per V^π

\[\pi_0 \rightarrow V^{\pi_0} \rightarrow \pi_1 \rightarrow V^{\pi_1} \rightarrow \ldots \rightarrow \pi^* \rightarrow V^{\pi^*} \]

• Why do policy iteration?

 – π_i often converges to π^* much sooner than V^{π_i}
Summary

- **Value Iteration**
 - Bellman update to state value estimates

- **Q-Value Iteration**
 - Bellman update to (state, action) value estimates

- **Policy Iteration**
 - Policy evaluation + refinement
Learning Based Methods
Learning Based Methods

• Typically, we don’t know the environment

 – $\mathbb{P}(s, a, s')$ unknown, how actions affect the environment.

 – $\mathcal{R}(s, a, s')$ unknown, what/when are the good actions?
Learning Based Methods

• Typically, we don’t know the environment

 – $P(s, a, s')$ unknown, how actions affect the environment.

 – $R(s, a, s')$ unknown, what/when are the good actions?

• But, we can learn by trial and error.

 – Gather experience (data) by performing actions.

 $$\{s, a, s', r\}_{i=1}^{N}$$

 – Approximate unknown quantities from data.

Reinforcement Learning
Learning Based Methods

• Old Dynamic Programming Demo
 – https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

• RL Demo
 – https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:

$$V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^\pi(s'_1)$$
$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^\pi(s'_2)$$
$$\cdots$$
$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^\pi(s'_n)$$

$$V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_i sample_i$$

What's the difficulty of this algorithm?
Temporal Difference Learning

• Big idea: learn from every experience!
 – Update $V(s)$ each time we experience a transition (s, a, s', r)
 – Likely outcomes s' will contribute updates more often

• Temporal difference learning of values
 – Policy still fixed, still doing evaluation!
 – Move values toward value of whatever successor occurs: running average

 Sample of $V(s)$:
 \[
 \text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s')
 \]

 Update to $V(s)$:
 \[
 V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)\text{sample}
 \]

 Same update:
 \[
 V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s))
 \]
Exponential Moving Average

• Exponential moving average
 – The running interpolation update: $\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 – Makes recent samples more important:
 $$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}$$
 – Forgets about the past
• Decreasing learning rate (alpha) can give converging averages

Why do we want to forget about the past?
(distant past values were wrong anyway)
Q-Learning

• We’d like to do Q-value updates to each Q-state:
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
 – But can’t compute this update without knowing T, R

• Instead, compute average as we go
 – Receive a sample transition (s,a,r,s’)
 – This sample suggests
 \[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]
 – But we want to average over results from (s,a)
 – So keep a running average
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right] \]
Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
 – You have to explore enough
 – You have to eventually make the learning rate small enough
 – … but not decrease it too quickly
 – Basically, in the limit, it doesn’t matter how you
(Deep) Learning Based Methods
(Deep) Learning Based Methods

- In addition to not knowing the environment, sometimes the state space is too large.
(Deep) Learning Based Methods

• In addition to not knowing the environment, sometimes the state space is too large.

• A value iteration updates takes $O(|S|^2 |A|)$
 – Not scalable to high dimensional states e.g.: RGB images.
(Deep) Learning Based Methods

• In addition to not knowing the environment, sometimes the state space is too large.

• A value iteration update takes $O(|S|^2|A|)$
 – Not scalable to high dimensional states e.g.: RGB images.

• Solution: Deep Learning!
 – Use deep neural networks to learn low-dimensional representations.
Reinforcement Learning
Reinforcement Learning

• Value-based RL
 – (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network
Reinforcement Learning

• Value-based RL
 – (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network

• Policy-based RL
 – Directly approximate optimal policy π^* with a parametrized policy π^*_θ
Reinforcement Learning

• Value-based RL
 – (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network

• Policy-based RL
 – Directly approximate optimal policy π^* with a parametrized policy π_θ^*

• Model-based RL
 – Approximate transition function $T(s', a, s)$ and reward function $R(s, a)$
 – Plan by looking ahead in the (approx.) future!
Reinforcement Learning

• Value-based RL
 – (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network

• Policy-based RL
 – Directly approximate optimal policy π^* with a parametrized policy π_θ^*

• Model-based RL
 – Approximate transition function $T(s', a, s)$ and reward function $R(s, a)$
 – Plan by looking ahead in the (approx.) future!
Value-based Reinforcement Learning

Deep Q-Learning
Deep Q-Learning

- Q-Learning with linear function approximators

\[Q(s, a; w, b) = w_a^T s + b_a \]

- Has some theoretical guarantees
Q-Learning

• We’d like to do Q-value updates to each Q-state:
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
 – But can’t compute this update without knowing T, R

• Instead, compute average as we go
 – Receive a sample transition (s,a,r,s’)
 – This sample suggests
 \[Q(s, a) \approx r + \gamma \max_{a'} Q(s', a') \]
 – But we want to average over results from (s,a)
 – So keep a running average
 \[Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right] \]
Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
 – Too many states to visit them all in training
 – Too many states to hold the q-tables in memory

• Instead, we want to generalize:
 – Learn about some small number of training states from experience
 – Generalize that experience to new, similar situations
 – This is the fundamental idea in machine learning!
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!
Feature-Based Representations

• Solution: describe a state using a vector of features (properties)
 – Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 – Example features:
 • Distance to closest ghost
 • Distance to closest dot
 • Number of ghosts
 • $1 / (\text{dist to dot})^2$
 • Is Pacman in a tunnel? (0/1)
 • …… etc.
 • Is it the exact state on this slide?
 – Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers

- Disadvantage: states may share features but actually be very different in value!

- Want to optimize weights. What should our loss be?

\[\text{difference} = \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \]
Minimizing Error*

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2$$

$$\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[Q(s, a) - r + \gamma \max_{a'} Q(s', a') \right] f_m(s, a)$$

"prediction" "target"
Deep Q-Learning

• Q-Learning with linear function approximators
 \[Q(s, a; w, b) = w_a^T s + b_a \]
 – Has some theoretical guarantees

• Deep Q-Learning: Fit a deep Q-Network \(Q(s, a; \theta) \)
 – Works well in practice
 – Q-Network can take RGB images

Image Credits: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Playing Atari Games

• Q-Network architecture

• State:
 - Stack of 4 image frames, grayscale conversion, down-sampling and cropping to (84 x 84 x 4)

• Last FC layer has #(actions) dimensions (predicts Q-values)
Deep Q-Learning
Deep Q-Learning

• Assume we have collected a dataset

\[\{(s, a, s', r)\}_{i=1}^{N} \]

• We want a Q-function that satisfies:

Q-Value Bellman Optimality

\[Q^*(s, a) = \mathbb{E}_{s' \sim p(s'|s,a)} \left[r(s, a) + \gamma \max_{a'} Q^*(s', a') \right] \]

• Loss for a single data point:

\[\text{MSE Loss} := \left(Q_{\text{new}}(s, a) - (r + \gamma \max_{a} Q_{\text{old}}(s', a)) \right)^2 \]

Predicted Q-Value
Target Q-Value
Deep Q-Learning

• Minibatch of \(\{(s, a, s', r)_i\}_{i=1}^B \)

• Forward pass:

\[
\begin{array}{ccc}
\text{State} & \rightarrow & \text{Q-Network} \\
B \times D & & B \times n_{actions} \\
\end{array}
\]
Deep Q-Learning

- Minibatch of $\{(s, a, s', r)_i\}_{i=1}^B$

- Forward pass:

 $\text{State} \xrightarrow{B \times D} \text{Q-Network} \xrightarrow{B \times n_{actions}} \text{Q-Values per action}$

$q_{\text{Q-Network}} = \text{FC-256} \to \text{32 4x4 conv, stride 2} \to \text{16 8x8 conv, stride 4}$

State
Deep Q-Learning

- Minibatch of \(\{(s, a, s', r)_{i}\}_{i=1}^{B} \)

- Forward pass:
 \[
 \begin{array}{c}
 \text{State} \\
 B \times D \\
 \end{array}
 \xrightarrow{\text{Q-Network}}
 \begin{array}{c}
 \text{Q-Values per action} \\
 B \times n_{actions} \\
 \end{array}
 \]

- Compute loss:
 \[
 \left(Q_{\text{new}}(s, a) - \left(r + \gamma \max_{a} Q_{\text{old}}(s', a) \right) \right)^{2}
 \]
 \[
 \begin{array}{c}
 \text{\(\theta_{\text{new}} \)} \\
 \text{\(\theta_{\text{old}} \)} \\
 \end{array}
 \]
Deep Q-Learning

- Minibatch of $\{(s, a, s', r)\}_{i=1}^B$

- Forward pass:
 - State $B \times D$
 - Q-Network
 - Q-Values per action $B \times n_{actions}$

- Compute loss:
 $\left(\theta_{new} \left(Q_{new}(s, a) - (r + \gamma \max_a Q_{old}(s', a)) \right) \right)^2$

- Backward pass:
 $\frac{\partial \text{Loss}}{\partial \theta_{new}}$
Deep Q-Learning

MSE Loss := \((Q_{new}(s, a) - (r + \max_a Q_{old}(s', a)))^2 \)

- In practice, for stability:
 - Freeze \(Q_{old} \) and update \(Q_{new} \) parameters
 - Set \(Q_{old} \leftarrow Q_{new} \) at regular intervals
How to gather experience?

\[\{(s, a, s', r)_i\}_{i=1}^{N} \]

This is why RL is hard
How To Gather Experience?

\[\pi_{\text{gather}} \rightarrow \text{Environment} \rightarrow \text{Data} \rightarrow \text{Train} \rightarrow \pi_{\text{trained}} \]

\[\{(s, a, s', r)_i\}_{i=1}^N \]
How To Gather Experience?

\[\pi_{\text{gather}} \rightarrow \text{Environment} \rightarrow \text{Data} \rightarrow \text{Train} \]

\[\{(s, a, s', r)_i\}_{i=1}^{N} \]

Update

\[\pi_{\text{gather}} \leftarrow \pi_{\text{trained}} \]

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data
Exploration Problem

- What should π_{gather} be?
 - Greedy? -> Local minimas, no exploration
 $$\arg \max_a Q(s, a; \theta)$$
Exploration Problem

• What should π_{gather} be?

 – Greedy? -> Local minimas, no exploration

\[
\arg \max_a Q(s, a; \theta)
\]

• An exploration strategy:

 – ϵ-greedy

\[
a_t = \begin{cases}
\arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
\text{random action} & \text{with probability } \epsilon
\end{cases}
\]
Correlated Data Problem

- Samples are correlated => high variance gradients => inefficient learning

- Current Q-network parameters determines next training samples => can lead to bad feedback loops
 - e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Experience Replay

• Address this problem using experience replay

 – A replay buffer stores transitions \((s, a, s', r)\)
Experience Replay

• Address this problem using experience replay

 – A replay buffer stores transitions \((s, a, s', r)\)

 – Continually update replay buffer as game (experience) episodes are played, older samples discarded
Experience Replay

• Address this problem using experience replay

 – A replay buffer stores transitions \((s, a, s', r)\)

 – Continually update replay buffer as game (experience) episodes are played, older samples discarded

 – Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples
Q-Learning Algorithm

Algorithm 1: Deep Q-learning with Experience Replay

1. Initialize replay memory D to capacity N
2. Initialize action-value function Q with random weights
3. for episode = 1, M do
 4. Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 5. for $t = 1, T$ do
 6. With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 7. Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 8. Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 9. Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
 10. Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D
 11. Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 12. Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
 13. end for
5. end for

Experience Replay
Epsilon-greedy
Q Update
Case study: Playing Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs from the game state
- Action: Game controls e.g.: Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Playing Atari Games

• Q-Network architecture

• State:
 – Stack of 4 image frames, grayscale conversion, down-sampling and cropping to (84 x 84 x 4)

• Last FC layer has #(actions) dimensions (predicts Q-values)
Atari Games

Breakout

Pong

https://www.youtube.com/watch?v=V1eYniJ0Rnk
Summary

So far, we looked at

- Dynamic Programming
 - Q-Value Iteration
 - Policy Iteration

- Reinforcement Learning (RL)
 - The challenges of (deep) learning based methods
 - Value-based RL algorithms
 - Deep Q-Learning

Next:
- Policy-based RL algorithms