CS 4803 / 7643: Deep Learning

Topics:
- Policy Gradients
- Actor Critic

Zsolt Kira
Georgia Tech
Administrative

- PS3/HW3 due Tuesday 03/31
- PS4/HW4 is **optional** and due 04/03
 - There are lots of bonus/Extra credit questions there!
- Sessions with Facebook for project (fill out spreadsheet)

<table>
<thead>
<tr>
<th>Dhruv Batra & Sameer Dharur</th>
<th>Habitat Embodied Navigation 3/31 (12:30pm EST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lucia Specia & Paco Guzman</td>
<td>Transfer learning for machine translation quality estimation 4/1 (11:30am EST)</td>
</tr>
<tr>
<td>Matt Muckley & Anuroop Sriram</td>
<td>Attentive Reconstruction/ fastMRI 4/1 (2:00pm EST)</td>
</tr>
<tr>
<td>Marc'Aurelio Ranzato</td>
<td>Confident Machine Translation 4/2 (10:30am EST)</td>
</tr>
</tbody>
</table>
Administrative

• How to ask questions during live lecture:
 • Use Q&A window (other students can upvote)
 • Raise hands
Topics we’ll cover

• Overview of RL
 • RL vs other forms of learning
 • RL “API”
 • Applications
• Framework: Markov Decision Processes (MDP’s)
 • Definitions and notations
 • Policies and Value Functions
 • Solving MDP’s
 • Value Iteration (recap)
 • Q-Value Iteration (new)
 • Policy Iteration
• Reinforcement learning
 • Value-based RL (Q-learning, Deep-Q Learning)
 • Policy-based RL (Policy gradients)
 • Actor-Critic
Recap: MDPs

• Markov Decision Processes (MDP):
 • States: S
 • Actions: A
 • Rewards: $R(s, a, s')$
 • Transition Function: $T(s, a, s') = p(s' | s, a)$
 • Discount Factor: γ
Value Function

Following policy π that produces sample trajectories $s_0, a_0, r_0, s_1, a_1, \ldots$

How good is a state?
The value function at state s, is the expected cumulative reward from state s (and following the policy thereafter):

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s (and following the policy thereafter):

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$
Optimal Quantities

Given *optimal* policy π^* that produces sample trajectories $s_0, a_0, r_0, s_1, a_1, \ldots$

How good is a state?
The **optimal value function** at state s, and acting optimally thereafter

$$V^*(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi^* \right]$$

How good is a state-action pair?
The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter

$$Q^*(s, a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^* \right]$$
Recap: Optimal Value Function

The **optimal Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and acting optimally thereafter.

$$Q^*(s, a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t \middle| s_0 = s, a_0 = a, \pi^* \right]$$
Recap: Optimal Value Function

The **optimal Q-value function** at state \(s \) and action \(a \), is the expected cumulative reward from taking action \(a \) in state \(s \) and acting optimally thereafter.

\[
Q^*(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi^* \right]
\]

Optimal policy:

\[
\pi^*(s) = \arg \max_a Q^*(s, a)
\]
Bellman Optimality Equations

• Relations:

\[V^*(s) = \max_a Q^*(s, a) \]
\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

• Recursive optimality equations:

\[Q^*(s, a) = \mathbb{E}_{s' \sim p(s'|s,a)} \left[r(s, a) + \gamma V^*(s) \right] \]
\[= \sum_{s'} p(s'|s,a) \left[r(s, a) + \gamma V^*(s) \right] \]
\[= \sum_{s'} p(s'|s,a) \left[r(s, a) + \gamma \max_{a'} Q^*(s', a') \right] \]

\[V^*(s) = \max_a \sum_{s'} p(s'|s,a) \left[r(s, a) + \gamma V^*(s') \right] \]
Value Iteration (VI)

\[V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right] \]

\[V^2(\langle 3, 3 \rangle) = \sum_{s'} P(s'|\text{right}, \langle 3, 3 \rangle) \left[r(\langle 3, 3 \rangle) + \gamma V^1(s') \right] \]

\[= 0.9[0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0] \]

[NOTE: Here we are showing calculations for the action we know is argmax (go right), but in general we have to calculate this for each actions and return max]

Slide credit: Pieter Abbeel
\[V^{i+1}(s) \leftarrow \max_a \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^i(s')] \]
Snapshot of Demo – Gridworld V Values

Slide Credit: http://ai.berkeley.edu

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Actions from Values

• Let’s imagine we have the optimal values $V^*(s)$

• How should we act?
 • It’s not obvious!

• We need to do a one step calculation

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

Slide Credit: http://ai.berkeley.edu
Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Slide Credit: http://ai.berkeley.edu
Computing Actions from Q-Values

• Let’s imagine we have the optimal q-values:

• How should we act?
 • Completely trivial to decide!

\[\pi^*(s) = \arg \max_a Q^*(s, a) \]

• Important lesson: actions are easier to select from q-values than values!

Slide Credit: http://ai.berkeley.edu
Recap: Learning Based Methods

• Typically, we don’t know the environment

 • $\mathbb{T}(s, a, s')$ unknown, how actions affect the environment.

 • $\mathcal{R}(s, a, s')$ unknown, what/when are the good actions?
Recap: Learning Based Methods

• Typically, we don’t know the environment

 • $T(s, a, s')$ unknown, how actions affect the environment.

 • $R(s, a, s')$ unknown, what/when are the good actions?

• But, we can learn by trial and error.

 • Gather experience (data) by performing actions.

 $\{s, a, s', r\}_{i=1}^{N}$

 • Approximate unknown quantities from data.
Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action $\pi(s)$) and average:

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$
$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$
$$\ldots$$
$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_i sample_i$$

What’s the difficulty of this algorithm?
Temporal Difference Learning

• Big idea: learn from every experience!
 • Update $V(s)$ each time we experience a transition (s, a, s', r)
 • Likely outcomes s' will contribute updates more often

• Temporal difference learning of values
 • Policy still fixed, still doing evaluation!
 • Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: \[\text{sample} = R(s, \pi(s), s') + \gamma V^\pi(s') \]
Update to $V(s)$: \[V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + (\alpha) \text{sample} \]
Same update: \[V^\pi(s) \leftarrow V^\pi(s) + \alpha(\text{sample} - V^\pi(s)) \]
Deep Q-Learning

• Q-Learning with linear function approximators
 \[Q(s, a; w, b) = w_a^\top s + b_a \]
 • Has some theoretical guarantees

• Deep Q-Learning: Fit a deep Q-Network
 • Works well in practice

• Q-Network can take RGB images
Recap: Deep Q-Learning

- Collect a dataset $\{(s, a, s', r)\}_{i=1}^{N}$
- Loss for a single data point:

 $$\text{MSE Loss} := \left(Q_{\text{new}}(s, a) - (r + \max_a Q_{\text{old}}(s', a)) \right)^2$$

 - Predicted Q-Value
 - Target Q-Value

- Act optimally according to the learnt Q function:

 $$\pi(s) = \arg\max_{a \in A} Q(s, a)$$

 - Pick action with best Q value
Exploration Problem

• What should π_{gather} be?

 • Greedy? -> Local minima, no exploration

 $\arg \max_a Q(s, a; \theta)$

• An exploration strategy:

 ϵ-greedy

 $a_t = \begin{cases}
 \arg \max_a Q(s, a) & \text{with probability } 1 - \epsilon \\
 \text{random action} & \text{with probability } \epsilon
 \end{cases}$
Experience Replay

• Address this problem using experience replay

 • A replay buffer stores transitions \((s, a, s', r)\)

 • Continually update replay buffer as game (experience) episodes are played, older samples discarded

 • Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Getting to the optimal policy

Transition function \mathcal{T} and reward function \mathcal{R} known

Use value / policy iteration

Obtain "optimal" policy
Getting to the optimal policy

Transition function T and reward function R

Use value / policy iteration

Obtain "optimal" policy

Estimate Q values From data

Previous class: Q - learning

known

unknown

Previous class: Q - learning
Getting to the optimal policy

Transition function \mathcal{T} and reward function \mathcal{R}

known

Estimate \mathcal{T} and \mathcal{R} from data

unknown

Estimate Q values From data

Use value / policy iteration

Obtain “optimal” policy

Homework!
Getting to the optimal policy

Transition function T and reward function R

Use value / policy iteration

Obtain “optimal” policy

Estimate T and R from data

Estimate Q values From data

This class!
Learning the optimal policy

• Class of policies defined by parameters θ

$$\pi_{\theta}(a|s) : S \rightarrow A$$

• Eg: θ can be parameters of linear transformation, deep network, etc.
Learning the optimal policy

• Class of policies defined by parameters θ

$$\pi_\theta(a|s) : \mathcal{S} \rightarrow \mathcal{A}$$

• Eg: θ can be parameters of linear transformation, deep network, etc.

• Want to maximize:

$$J(\pi) = \mathbb{E} \left[\sum_{t=1}^{T} R(s_t, a_t) \right]$$
Learning the optimal policy

• Class of policies defined by parameters θ
 \[\pi_\theta(a|s) : \mathcal{S} \to \mathcal{A} \]

 • Eg: θ can be parameters of linear transformation, deep network, etc.

• Want to maximize:
 \[J(\pi) = \mathbb{E} \left[\sum_{t=1}^{T} R(s_t, a_t) \right] \]

• In other words,
 \[\pi^* = \arg \max_{\pi : \mathcal{S} \to \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^{T} R(s_t, a_t) \right] \quad \rightarrow \quad \theta^* = \arg \max_{\theta} \mathbb{E} \left[\sum_{t=1}^{T} R(s_t, a_t) \right] \]
Learning the optimal policy

\[J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} [R(\tau)] \]

\[= \mathbb{E}_{a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)} \left[\sum_{t=0}^{T} R(s_t, a_t) \right] \]

Sample a few trajectories \(\{\tau_i\}_{i=1}^{N} \) by acting according to \(\pi \theta \)

\[\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} r(s_t^i, a_t^i) \]
REINFORCE algorithm

Mathematically, we can write:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_{\tau} r(\tau) p(\tau; \theta) d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] = \int r(\tau) p(\tau; \theta) d\tau \]
REINFORCE algorithm

Expected reward: \[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_{\tau} r(\tau) p(\tau; \theta) d\tau \]

Now let’s differentiate this: \[\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau \]
REINFORCE algorithm

Expected reward:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int_\tau r(\tau) p(\tau; \theta) d\tau \]

Now let’s differentiate this:

\[\nabla_\theta J(\theta) = \int_\tau r(\tau) \nabla_\theta p(\tau; \theta) d\tau \]

Intractable! Expectation of gradient is problematic when p depends on \(\theta \)
REINFORCE algorithm

Expected reward: \[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int r(\tau)p(\tau; \theta) d\tau \]

Now let’s differentiate this: \[\nabla_\theta J(\theta) = \int r(\tau) \nabla_\theta p(\tau; \theta) d\tau \] Intractable! Expectation of gradient is problematic when \(p \) depends on \(\theta \)

However, we can use a nice trick: \[\nabla_\theta p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_\theta p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_\theta \log p(\tau; \theta) \]
REINFORCE algorithm

Expected reward: $J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)]$

$= \int_{\tau} r(\tau)p(\tau; \theta) \, d\tau$

Now let's differentiate this: $\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) \, d\tau$

However, we can use a nice trick: $\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$

If we inject this back:

$\nabla_{\theta} J(\theta) = \int_{\tau} (r(\tau) \nabla_{\theta} \log p(\tau; \theta)) \, d\tau$

$= \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_{\theta} \log p(\tau; \theta)]$

Intractable! Expectation of gradient is problematic when p depends on θ

Can estimate with Monte Carlo sampling

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: \(p(\tau; \theta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \)
REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: $p(\tau; \theta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t)$

Thus: $\log p(\tau; \theta) = \sum_{t \geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t)$
REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: \(p(\tau; \theta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \)

Thus: \(\log p(\tau; \theta) = \sum_{t \geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t) \)

And when differentiating: \(\nabla_\theta \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_\theta \log \pi_\theta(a_t|s_t) \) Doesn’t depend on transition probabilities!
REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have:

\[p(\tau; \theta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \]

Thus:

\[\log p(\tau; \theta) = \sum_{t \geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t) \]

And when differentiating:

\[\nabla_\theta \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_\theta \log \pi_\theta(a_t|s_t) \]

Doesn’t depend on transition probabilities!

Therefore when sampling a trajectory \(\tau \), we can estimate \(J(\theta) \) with

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \]
Policy Gradients

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) \right] \]

\[\nabla_{\theta} \left[\log p(s_0) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) + \sum_{t=1}^{T} \log p(s_{t+1}|s_t,a_t) \right] \]

Doesn’t depend on Transition probabilities!
Policy Gradients

\[\nabla_\theta J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\nabla_\theta \log \pi_\theta(\tau) \mathcal{R}(\tau) \right] \]

\[= \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_t | s_t) \cdot \sum_{t=1}^T \mathcal{R}(s_t, a_t) \right] \]
Policy Gradients

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\nabla_{\theta} \log \pi_\theta(\tau) R(\tau) \right] \]

\[\nabla_{\theta} \left[\log p(o_0) + \sum_{t=1}^{T} \log \pi_\theta(a_t|s_t) + \sum_{t=1}^{T} \log p(s_{t+1}|s_t, a_t) \right] \]

\[= \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_\theta(a_t|s_t) \cdot \sum_{t=1}^{T} R(s_t, a_t) \right] \]
REINFORCE

1. Sample trajectories $\tau_i = \{s_1, a_1, \ldots, s_T, a_T\}_i$ by acting according to π_θ

2. Compute policy gradient as

$$\nabla_\theta J(\theta) \approx \sum_i \left[\sum_{t=1}^T \nabla_\theta \log \pi_\theta(a_t^i \mid s_t^i) \cdot \sum_{t=1}^T R(s_t^i \mid a_t^i) \right]$$

3. Update policy $\theta \leftarrow \theta + \alpha \nabla_\theta J(\theta)$

Slide credit: Sergey Levine
Pong from pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/
Pong from pixels

Image Credit: http://karpathy.github.io/2016/05/31/rl/
Intuition
Policy Gradients

$$\nabla_\theta J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\nabla_\theta \log \pi_\theta(\tau) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_t | s_t) \cdot \sum_{t=1}^{T} R(s_t, a_t) \right]$$

Formalizes notion of “trial and error”:
- If reward is high, probability of actions seen is increased
- If reward is low, probability of actions seen is reduced
- But in expectation, it averages out
Issues with Policy Gradients

• Credit assignment is hard!
 • Which specific action led to increase in reward
 • Suffers from high variance \rightarrow leading to unstable training

• How to reduce the variance?
 • Subtract a constant from the reward!

$$\nabla_\theta J(\theta) = \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_t|s_t) \cdot \sum_{t=1}^{T} R(s_t, a_t) - b \right]$$
Issues with Policy Gradients

• Credit assignment is hard!
 • Which specific action led to increase in reward
 • Suffers from high variance \(\rightarrow\) leading to unstable training

• How to reduce the variance?
 • Subtract a constant from the reward!

\[
\nabla_\theta J(\theta) = E_{\tau \sim p_\theta(\tau)} \left[\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_t|s_t) \cdot \sum_{t=1}^{T} R(s_t, a_t) - b \right]
\]

• Why does it work?
• What is the best choice of \(b\)?
Variance reduction

Gradient estimator:

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]
Variance reduction

Gradient estimator: \(\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta (a_t|s_t) \)

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right) \nabla_\theta \log \pi_\theta (a_t|s_t)
\]

Second idea: Use discount factor \(\gamma \) to ignore delayed effects

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_\theta \log \pi_\theta (a_t|s_t)
\]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Issues with Policy Gradients

• Credit assignment is hard!
 • Which specific action led to increase in reward
 • Suffers from high variance → leading to unstable training
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the **expected value of what we should get from**
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if
$Q^\pi(s_t, a_t) - V^\pi(s_t)$
is large. On the contrary, we are unhappy with an action if it’s small.
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!
Actor-Critic

• Learn both policy and Q function
 • Use the “actor” to sample trajectories
 • Use the Q function to “evaluate” or “critic” the policy
Actor-Critic

- Learn both policy and Q function
 - Use the “actor” to sample trajectories
 - Use the Q function to “evaluate” or “critic” the policy

- REINFORCE: \(\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)R(s, a)] \)

- Actor-critic: \(\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q_{\pi_{\theta}}(s, a)] \)
Actor-Critic

• Learn both policy and Q function
 • Use the “actor” to sample trajectories
 • Use the Q function to “evaluate” or “critic” the policy

• REINFORCE: \(\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) R(s, a)] \)

• Actor-critic: \(\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a)] \)

• Q function is unknown too! Update using \(R(s, a) \)
Actor-Critic

• Initialize s, θ (policy network) and β (Q network)
Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_\theta(\cdot|s)$
Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_\theta(\cdot | s)$
- For each step:
 - Sample reward $\mathcal{R}(s, a)$ and next state $s' \sim p(s'|s, a)$
Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_\theta(\cdot | s)$
- For each step:
 - Sample reward $\mathcal{R}(s, a)$ and next state $s' \sim p(s' | s, a)$
 - evaluate “actor” using “critic” $Q_\beta(s, a)$
Actor-Critic

• Initialize s, θ (policy network) and β (Q network)
• sample action $a \sim \pi_\theta(\cdot | s)$
• For each step:
 • Sample reward $R(s, a)$ and next state $s' \sim p(s' | s, a)$
 • evaluate “actor” using “critic” $Q_\beta(s, a)$ and update policy:

$$\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(a | s)Q_\beta(s, a)$$
Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- sample action $a \sim \pi_\theta(\cdot | s)$
- For each step:
 - Sample reward $R(s, a)$ and next state $s' \sim p(s' | s, a)$
 - evaluate “actor” using “critic” $Q_\beta(s, a)$ and update policy:
 $$\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(a | s) Q_\beta(s, a)$$
 - Update “critic”:
 - Recall Q-learning
 $$\text{MSE Loss} := \left(Q_{\text{new}}(s, a) - (r + \max_a Q_{\text{old}}(s', a)) \right)^2$$
Actor-Critic

- Initialize s, θ (policy network) and β (Q network)
- Sample action $a \sim \pi_\theta(\cdot|s)$
- For each step:
 - Sample reward $\mathcal{R}(s, a)$ and next state $s' \sim p(s'|s, a)$
 - Evaluate "actor" using "critic" $Q_\beta(s, a)$ and update policy:
 \[
 \theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(a | s)Q_\beta(s, a)
 \]
- Update "critic":
 - Recall Q-learning
 \[
 \text{MSE Loss} := \left(Q_{new}(s, a) - (r + \max_a Q_{old}(s', a)) \right)^2
 \]
 - Update β accordingly
- $a \leftarrow a'$, $s \leftarrow s'$
Actor-critic

• In general, replacing the policy evaluation or the “critic” leads to different flavors of the actor-critic
 • REINFORCE:
 \[\nabla_\theta J(\pi_\theta) = \mathbb{E}_{a \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(a|s)R(s,a)] \n\]
 • Q – Actor Critic
 \[\nabla_\theta J(\pi_\theta) = \mathbb{E}_{a \sim \pi_\theta} [\nabla_\theta \log \pi_\theta(a|s)Q^{\pi_\theta}(s,a)] \]
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a_t in a state s_t if $Q^\pi(s_t, a_t) - V^\pi(s_t)$ is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator: $\nabla_\theta J(\theta) \approx \sum_{t \geq 0} (Q^\pi(s_t, a_t) - V^\pi(s_t)) \nabla_\theta \log \pi_\theta(a_t | s_t)$
Actor-critic

• In general, replacing the policy evaluation or the “critic” leads to different flavors of the actor-critic

 • REINFORCE:
 \[\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) R(s, a)] \n \]

 • Q – Actor Critic
 \[\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a)] \n \]

 • Advantage Actor Critic:
 \[\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi_{\theta}}(s, a)] \n \]
 \[= Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s) \]
 “how much better is an action than expected?”
Summary

• Policy Learning:
 • Policy gradients
 • REINFORCE
 • Reducing Variance (Homework!)

• Actor-Critic:
 • Other ways of performing “policy evaluation”
 • Variants of Actor-critic