Introduction to PyTorch

Jingfeng Yang (Part of tutorials and slides are made by Nihal Singh)
Outline

● **Pytorch**
 ○ **Introduction**
 ○ **Basics**
 ○ **Examples**
Introduction to PyTorch
What is PyTorch?

- Open source machine learning library
- Developed by Facebook's AI Research lab
- It leverages the power of GPUs
- Automatic computation of gradients
- Makes it easier to test and develop new ideas.
Other libraries?
Why PyTorch?

- It is pythonic - concise, close to Python conventions
- Strong GPU support
- Autograd - automatic differentiation
- Many algorithms and components are already implemented
- Similar to NumPy
Why PyTorch?

Computation Graph

- `x` * `y` → `a`
- `a` + `z` → `b`
- `b` → `c`

Numpy

```python
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad_c = 1.0
g = grad_c * np.ones((N, D))
g_a = g_b.copy()
g = grad_a.copy()
g_a = grad_a * y
g_b = grad_b.copy()
g = grad_b * x
```

Tensorflow

```python
import tensorflow as tf
N, D = 3, 4
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
a = x * y
b = a + z
c = tf.reduce_sum(b)
grad_x, grad_y, grad_z = tf.gradients(c, [x, y, z])
```

PyTorch

```python
import torch
N, D = 3, 4
x = torch.randn((N, D), requires_grad=True)
y = torch.randn((N, D), requires_grad=True)
z = torch.randn((N, D), requires_grad=True)
a = x * y
b = a + z
c = torch.sum(b)
c.backward()
```
Getting Started with PyTorch

Installation

Via Anaconda/Miniconda:
conda install pytorch

Via pip:
pip3 install torch
PyTorch Basics
iPython Notebook Tutorial

bit.ly/pytorchbasics
Tensors

Tensors are similar to NumPy’s ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

Common operations for creation and manipulation of these Tensors are similar to those for ndarrays in NumPy. (rand, ones, zeros, indexing, slicing, reshape, transpose, cross product, matrix product, element wise multiplication)
Tensors

Attributes of a tensor 't':

- \(t = \text{torch.randn}(1) \)

requires_grad - making a trainable parameter

- By default False
- Turn on:
 - \(t.\text{requires_grad}() \)
 - \(t = \text{torch.randn}(1, \text{requires_grad=True}) \)

- Accessing tensor value:
 - \(t.\text{data} \)

- Accessing tensor gradient
 - \(t.\text{grad} \)

grad_fn - history of operations for autograd

- \(t.\text{grad}_\text{fn} \)
Loading Data, Devices and CUDA

Numpy arrays to PyTorch tensors

- `torch.from_numpy(x_train)`
- Returns a cpu tensor!

PyTorch tensor to numpy

- `t.numpy()`

Using GPU acceleration

- `t.to()`
- Sends to whatever device (cuda or cpu)

Fallback to cpu if gpu is unavailable:

- `torch.cuda.is_available()`

Check cpu/gpu tensor OR numpy array?

- `type(t) or t.type()` returns
 - `numpy.ndarray`
 - `torch.Tensor`
 - CPU - `torch.cpu.FloatTensor`
 - GPU - `torch.cuda.FloatTensor`
Autograd

- Automatic Differentiation Package
- Don’t need to worry about partial differentiation, chain rule etc.
 - `backward()` does that
- Gradients are accumulated for each step by default:
 - Need to zero out gradients after each update
 - `tensor.grad_zero()`

```python
# Create tensors.
x = torch.tensor(1., requires_grad=True)
w = torch.tensor(2., requires_grad=True)
b = torch.tensor(3., requires_grad=True)

# Build a computational graph.
y = w * x + b  # y = 2 * x + 3

# Compute gradients.
y.backward()

# Print out the gradients.
print(x.grad)  # x.grad = 2
print(w.grad)  # w.grad = 1
print(b.grad)  # b.grad = 1
```
Optimizer and Loss

Optimizer

- Adam, SGD etc.
- An optimizer takes the parameters we want to update, the learning rate we want to use along with other hyper-parameters and performs the updates.

Loss

- Various predefined loss functions to choose from
- L1, MSE, Cross Entropy

```python
a = torch.randn(1, requires_grad=True, dtype=torch.float, device=device)
b = torch.randn(1, requires_grad=True, dtype=torch.float, device=device)

# Defines a SGD optimizer to update the parameters
optimizer = optim.SGD([a, b], lr=lr)

for epoch in range(n_epochs):
    yhat = a + b * x_train_tensor
    error = y_train_tensor - yhat
    loss = (error ** 2).mean()

    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

print(a, b)
```
Model

In PyTorch, a model is represented by a regular Python class that inherits from the Module class.

- Two components
 - __init__(self): it defines the parts that make up the model, in our case, two parameters, a and b
 - forward(self, x): it performs the actual computation, that is, it outputs a prediction, given the input x

```python
class ManualLinearRegression(nn.Module):
    def __init__(self):
        super().__init__()

        # To make "a" and "b" real parameters of the model, we need to wrap them with nn.Parameter
        self.a = nn.Parameter(torch.randn(1, requires_grad=True, dtype=torch.float))
        self.b = nn.Parameter(torch.randn(1, requires_grad=True, dtype=torch.float))

    def forward(self, x):
        # Computes the outputs / predictions
        return self.a + self.b * x
```
PyTorch Example
(neural bag-of-words (ngrams) text classification)

bit.ly/pytorchexample
Overview

Sentence → Embedding Layer → Linear Layer → Softmax

Training: Cross Entropy
Evaluation: Prediction
Design Model

- Initialize modules.
- Use linear layer here.
- Can change it to RNN, CNN, Transformer etc.

- Randomly initialize parameters

- Forward pass

```python
import torch.nn as nn
import torch.nn.functional as F

class TextSentiment(nn.Module):
    def __init__(self, vocab_size, embed_dim, num_class):
        super().__init__()
        self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()

    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)
```
Preprocess

- Build and preprocess dataset
- Build vocabulary

```python
import torch
import torchtext
from torchtext.datasets import text_classification

NGRAMS = 2

import os
if not os.path.isdir('./data'):
    os.makedirs('./data')

train_dataset, test_dataset = text_classification.DATASETS['AG_NEWS'](
    root='./data', ngrams=NGRAMS, vocab=None)

BATCH_SIZE = 16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

VOCAB_SIZE = len(train_dataset.get_vocab())
EMBED_DIM = 32
NUN_CLASS = len(train_dataset.get_labels())

model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUN_CLASS).to(device)
```
Preprocess

- One example of dataset:

```python
def generate_batch(batch):
    label = torch.tensor([entry[0] for entry in batch])
    text = [entry[1] for entry in batch]
    offsets = [0] + [len(entry) for entry in text]
    # torch.Tensor.cumsum returns the cumulative sum
    # of elements in the dimension dim.
    # torch.Tensor([1.0, 2.0, 3.0]).cumsum(dim=0)
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
    text = torch.cat(text)
    return text, offsets, label
```

- Create batch (Used in SGD)
- Choose pad or not (Using [PAD])
Training each epoch

```python
from torch.utils.data import DataLoader

def train_func(sub_train):
    # Train the model
    train_loss = 0
    train_acc = 0
    data = DataLoader(sub_train, batch_size=BATCH_SIZE, shuffle=True, collate_fn=generate_batch)
    for i, (text, offsets, cls) in enumerate(data):
        optimizer.zero_grad()
        text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
        output = model(text, offsets)
        loss = criterion(output, cls)
        train_loss += loss.item()
        loss.backward()
        optimizer.step()
        train_acc += (output.argmax(1) == cls).sum().item()

    # Adjust the learning rate
    scheduler.step()

    return train_loss / len(sub_train), train_acc / len(sub_train)
```

- **Iterable batches**
- **Before each optimization, make previous gradients zeros**
- **Forward pass to compute loss**
- **Backforward propagation to compute gradients and update parameters**
- **After each epoch, do learning rate decay (optional)**
Test process

Do not need back propagation or parameter update!

```python
def test(data_):
    loss = 0
    acc = 0
    data = DataLoader(data_, batch_size=BATCH_SIZE, collate_fn=generate_batch)
    for text, offsets, cls in data:
        text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
        with torch.no_grad():
            output = model(text, offsets)
            loss = criterion(output, cls)
            loss += loss.item()
            acc += (output.argmax(1) == cls).sum().item()
    return loss / len(data_), acc / len(data_)
```
The whole training process

- Use CrossEntropyLoss() as the criterion. The input is the output of the model. First do logsoftmax, then compute cross-entropy loss.
- Use SGD as optimizer.
- Use exponential decay to decrease learning rate

Print information to monitor the training process

```python
import time
from torch.utils.data.dataset import random_split
N_EPOCHS = 5
min_valid_loss = float('inf')
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=4.0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)

train_len = int(len(train_dataset) * 0.95)
sub_train_, sub_valid_ = random_split(train_dataset, [train_len, len(train_dataset) - train_len])

for epoch in range(N_EPOCHS):
    start_time = time.time()
    train_loss, train_acc = train_func(sub_train_)
    valid_loss, valid_acc = test(sub_valid_)
    secs = int(time.time() - start_time)
    mins = secs / 60
    secs = secs % 60
    print('Epoch: %d | time in %d minutes, %d seconds' % (epoch + 1, mins, secs))
    print(f'\tLoss: {train_loss:.4f} | \tAcc: {train_acc * 100:.1f} % (train)')
    print(f'\tLoss: {valid_loss:.4f} | \tAcc: {valid_acc * 100:.1f} % (valid)')
```
Evaluation with test dataset or random news

```python
import torchtext.data.utils


def predict(text, model, vocab, ngrams):
    tokenizer = get_tokenizer("basic_english")
    with torch.no_grad():
        text = torch.tensor([vocab[token]
            for token in ngrams_iterator(tokenizer(text), ngrams)])
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item() + 1

ex_text_str = "MEMPHIS, Tenn. - Four days ago, Jon Rahm was \nenduring the season's worst weather conditions on Sunday at The \nOpen on his way to a closing 75 at Royal Portrush, which \nconsidering the wind and the rain was a respectable showing. \nThursday's first round at the WGC-FedEx St. Jude Invitational \nwas another story. With temperatures in the mid-80s and hardly any \nwind, the Spaniard was 13 strokes better in a flawless round. \nThanks to his best putting performance on the PGA Tour, Rahm \nfinished with an 8-under 62 for a three-stroke lead, which \nwas even more impressive considering he'd never played the \nfront nine at TPC Southwind."

vocabulary = train_dataset.get_vocab()
model = model.to("cpu")

print("This is a %s news" %ag_news_label[predict(ex_text_str, model, vocabulary, 2)])
```