Multiclass Classification

Wei Xu

(many slides from Greg Durrett, Vivek Srikumar, Stanford CS231n)
This Lecture

- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
- Multiclass SVM
- Optimization
Multiclass Fundamentals
A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY

Text Classification

- A Cancer Conundrum: Too Many Drug Trials, Too Few Patients
- Yankees and Mets Are on Opposite Tracks This Subway Series

~20 classes

Health

Sports
Image Classification

 Thousands of classes (ImageNet)

 Dog

 Car
Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified Armstrong from his seven consecutive Tour de France wins from 1999–2005.

- 4,500,000 classes (all articles in Wikipedia)

Lance Edward Armstrong is an American former professional road cyclist.

Armstrong County is a county in Pennsylvania...
Binary classification: one weight vector defines positive and negative classes
Can we just use binary classifiers here?
Multiclass Classification

- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?
Not all classes may even be separable using this approach.

Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features).
Multiclass Classification

- All-vs-all: train $n(n-1)/2$ classifiers to differentiate each pair of classes
- Again, how to reconcile?
Multiclass Classification

- Binary classification: one weight vector defines both classes
- Multiclass classification: different weights and/or features per class
Multiclass Classification

- Formally: instead of two labels, we have an output space \mathcal{Y} containing a number of possible classes.
- Same machinery that we’ll use later for exponentially large output spaces, including sequences and trees.
- Decision rule: $\arg\max_{y \in \mathcal{Y}} w^\top f(x, y)$
 - Multiple feature vectors, one weight vector.
 - Can also have one weight vector per class: $\arg\max_{y \in \mathcal{Y}} w_y^\top f(x)$
 - The single weight vector approach will generalize to structured output spaces, whereas per-class weight vectors won’t.

features depend on choice of label now! note: this isn’t the gold label
Feature Extraction
Block Feature Vectors

- Decision rule: \(\text{argmax}_{y \in \mathcal{Y}} w^\top f(x, y) \)

 too many drug trials, too few patients

- Base feature function:

 \[f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] = [1, 1, 0] \]

 feature vector blocks for each label

 \[f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0] \]

 \[f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0] \]

- Equivalent to having three weight vectors in this case
Making Decisions

too many drug trials, too few patients

\[f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] \]

\[f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0] \]

\[f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0] \]

“word drug in Science article” = +1.1

\[w = [+2.1, +2.3, -5, -2.1, -3.8, 0, +1.1, -1.7, -1.3] \]

\[w^\top f(x, y) = \text{Health: +4.4} \quad \text{Sports: -5.9} \quad \text{Science: -0.6} \]

\[\text{argmax} \]
Another example: POS tagging

- Classify *blocks* as one of 36 POS tags
- Example x: sentence with a word (in this case, *blocks*) highlighted
- Extract features with respect to this word:
 \[f(x, y=VBZ) = I[\text{curr}_\text{word}=blocks \& \text{tag} = VBZ], \]
 \[I[\text{prev}_\text{word}=router \& \text{tag} = VBZ] \]
 \[I[\text{next}_\text{word}=the \& \text{tag} = VBZ] \]
 \[I[\text{curr}_\text{suffix}=s \& \text{tag} = VBZ] \]
- Next two lectures: sequence labeling!

\[\text{not saying that the is tagged as VBZ! saying that the follows the VBZ word} \]
Multiclass Logistic Regression
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp(w^\top f(x, y))}{\sum_{y' \in \mathcal{Y}} \exp(w^\top f(x, y'))} \]

- Compare to binary:
 \[P(y = 1|x) = \frac{\exp(w^\top f(x))}{1 + \exp(w^\top f(x))} \]

negative class implicitly had
\[f(x, y=0) = \text{the zero vector} \]
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp\left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp\left(w^\top f(x, y') \right)} \]

Why? Interpret raw classifier scores as probabilities

Too many drug trials, too few patients

Health: +2.2
Sports: +3.1
Science: -0.6

\[w^\top f(x, y) \]

too many drug trials, too few patients

probabilities must be \(\geq 0 \)

unnormalized probabilities

log(0.21) = -1.56

compare

probabilities

\(\mathcal{L}(x_j, y_j^*) = \log P(y_j^*|x_j) \)

correct (gold) probabilities

\[
\begin{align*}
6.05 & \quad 0.21 \\
22.2 & \quad 0.77 \\
0.55 & \quad 0.02 \\
0.02 & \quad 0.00 \\
0.02 & \quad 0.00
\end{align*}
\]
Multiclass Logistic Regression

\[
P_w(y|x) = \frac{\exp \left(w^\top f(x, y) \right)}{\sum_{y' \in \mathcal{Y}} \exp \left(w^\top f(x, y') \right)}
\]

sum over output space to normalize

- **Training:** maximize \(\mathcal{L}(x, y) = \sum_{j=1}^{n} \log P(y_j^* | x_j) \)

 \[
 = \sum_{j=1}^{n} \left(w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y)) \right)
 \]
Training

- Multiclass logistic regression

\[P_w(y|x) = \frac{\exp (w^\top f(x, y))}{\sum_{y' \in Y} \exp (w^\top f(x, y'))} \]

- Likelihood

\[\mathcal{L}(x_j, y_j^*) = w^\top f(x_j, y_j^*) - \log \sum_y \exp(w^\top f(x_j, y)) \]

\[\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \frac{\sum_y f_i(x_j, y) \exp(w^\top f(x_j, y))}{\sum_y \exp(w^\top f(x_j, y))} \]

\[\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \sum_y f_i(x_j, y) P_w(y|x_j) \]

\[\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \mathbb{E}_y [f_i(x_j, y)] \]

model’s expectation of feature value

gold feature value
Training

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \sum_y f_i(x_j, y) P_w(y|x_j)
\]

too many drug trials, too few patients

\[
f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0] \quad P_w(y|x) = [0.21, 0.77, 0.02]
\]

\[
f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
\]

gradient:

\[
[1, 1, 0, 0, 0, 0, 0, 0, 0] - 0.21 [1, 1, 0, 0, 0, 0, 0, 0, 0] \\
- 0.77 [0, 0, 0, 1, 1, 0, 0, 0, 0] - 0.02 [0, 0, 0, 0, 0, 0, 1, 1, 0] \\
= [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0]
\]

update \(w^\top : \)

\[
[1.3, 0.9, -5, 3.2, -0.1, 0, 1.1, -1.7, -1.3] + [0.79, 0.79, 0, -0.77, -0.77, 0, -0.02, -0.02, 0] \\
= [2.09, 1.69, 0, 2.43, -0.87, 0, 1.08, -1.72, 0]
\]

\(\text{new } P_w(y|x) = [0.89, 0.10, 0.01] \)
Logistic Regression: Summary

- **Model:**
 \[P_w(y|x) = \frac{\exp(w^\top f(x, y))}{\sum_{y' \in Y} \exp(w^\top f(x, y'))} \]

- **Inference:**
 \[\arg\max_y P_w(y|x) \]

- **Learning:** gradient ascent on the discriminative log-likelihood
 \[
 f(x, y^*) - \mathbb{E}_y[f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x) f(x, y)]
 \]
 “towards gold feature value, away from expectation of feature value”
Optimization
Recap

- Four elements of a machine learning method:
 - Model: probabilistic, max-margin, deep neural network
 - Inference: just maxes and simple expectations so far, but will get harder
 - Objective:
 - Training: gradient descent?

![Graph showing loss versus \(w^T x\) with lines for Hinge (SVM), Logistic, and Perceptron.]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]

Vanilla Gradient Descent

```python
while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if loss changes quickly in one direction and slowly in another direction?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if loss changes quickly in one direction and slowly in another direction?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - What if the loss function has a local minima or saddle point?

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]

“Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”
Dauphin et al. (2014)
Optimization

- Stochastic gradient *ascent*
 - Very simple to code up
 - “First-order” technique: only relies on having gradient

\[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]
Optimization

- **Stochastic gradient *ascent***
 - Very simple to code up
 - “First-order” technique: only relies on having gradient
 - Setting step size is hard (decrease when held-out performance worsens?)

- **Newton’s method**
 - Second-order technique
 - Optimizes quadratic instantly

 \[w \leftarrow w + \alpha g, \quad g = \frac{\partial}{\partial w} \mathcal{L} \]

- **Inverse Hessian**: \[n \times n \] mat, expensive!

- **Quasi-Newton methods**: L-BFGS, etc. approximate inverse Hessian
AdaGrad

- Optimized for problems with sparse features
- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

```python
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```
AdaGrad

- Optimized for problems with sparse features

- Per-parameter learning rate: smaller updates are made to parameters that get updated frequently

\[w_i \leftarrow w_i + \alpha \frac{1}{\sqrt{\epsilon + \sum_{t=1}^{t} g_{t,i}^2}} g_{t,i} \]

(smoothed) sum of squared gradients from all updates

- Generally more robust than SGD, requires less tuning of learning rate

- Other techniques for optimizing deep models — more later!

Duchi et al. (2011)
Design tradeoffs need to reflect interactions:

- Model and objective are coupled: probabilistic model \leftrightarrow maximize likelihood
- ...but not always: a linear model or neural network can be trained to minimize any differentiable loss function
- Inference governs what learning: need to be able to compute expectations to use logistic regression