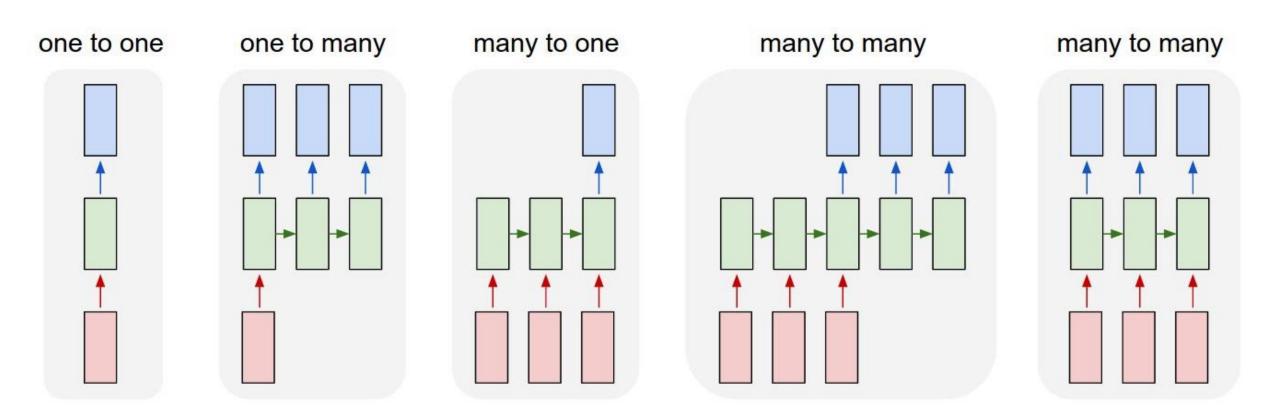
Attention, Transformers, BERT, and Vilbert

Arjun Majumdar Georgia Tech

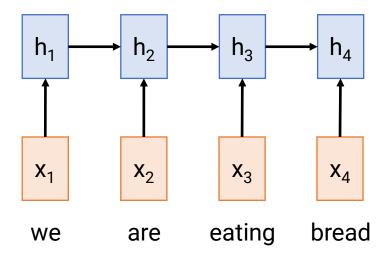
Recall: Recurrent Neural Networks



Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Encoder: $h_t = f_W(x_t, h_{t-1})$



Input: Sequence $x_1, ... x_T$

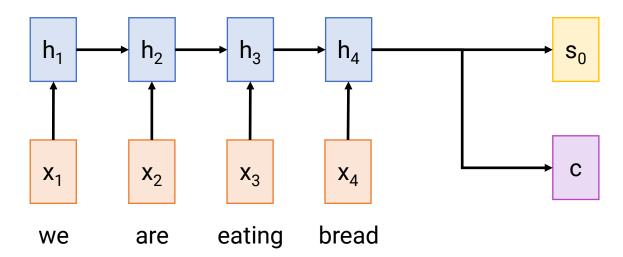
Output: Sequence y₁, ..., y_{T'}

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s₀

Context vector c (often $c=h_T$)

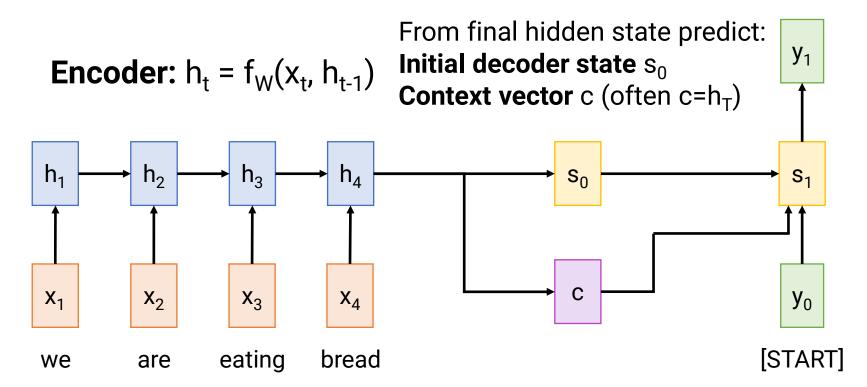


Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, h_{t-1}, c)$

estamos



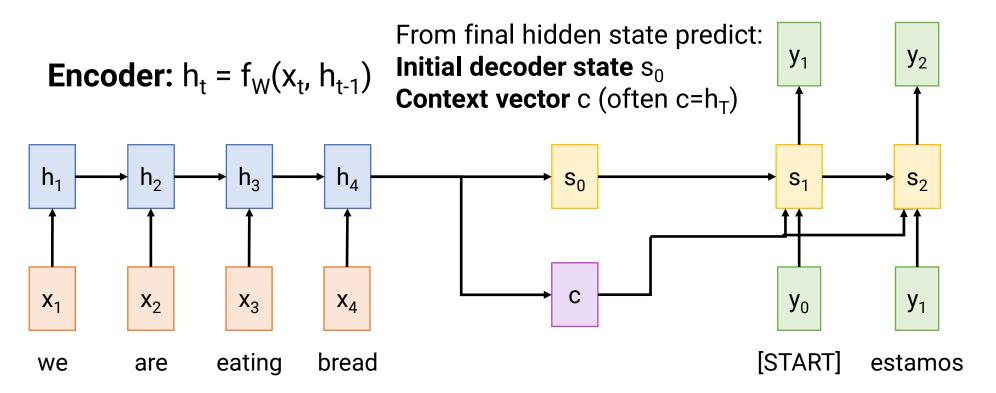
Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, h_{t-1}, c)$

estamos comiendo



Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, h_{t-1}, c)$

estamos comiendo [STOP] pan From final hidden state predict: y_1 **y**₂ **y**₃ y_4 **Initial decoder state** s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ **Context vector** c (often $c=h_T$) h_2 h_4 h_3 S_0 S_1 S_2 S_3 X_3 X_1 X_2 X_4 y_2 **y**₃ eating [START] estamos bread comiendo we are pan

Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, h_{t-1}, c)$

[STOP] estamos comiendo pan **Problem: Input sequence y**₁ **y**₂ **y**₃ y_4 bottlenecked through **Encoder:** $h_t = f_W(x_t, h_{t-1})$ fixed-sized vector. h_2 h_4 h₁ h_3 S_0 S_1 S_2 S_3 X_3 X_1 X_2 X_4 y_2 **y**₃ eating [START] comiendo bread estamos we are pan

Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, h_{t-1}, c)$

[STOP] estamos comiendo pan **Problem: Input sequence y**₁ **y**₂ **y**₃ y_4 bottlenecked through **Encoder:** $h_t = f_W(x_t, h_{t-1})$ fixed-sized vector. h_2 h_4 h₁ h_3 S_4 S_0 S_1 S_2 S_3 X_3 X_1 X_2 X_4 y_2 **y**₃ [START] eating bread estamos comiendo we are Idea: use new context vector pan at each step of decoder!

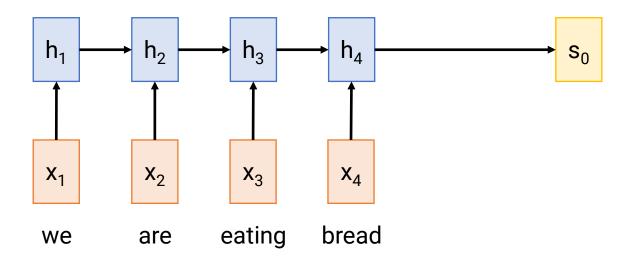
Sutskever et al, "Sequence to sequence learning with neural networks", NeurIPS 2014

Input: Sequence $x_1, ... x_T$

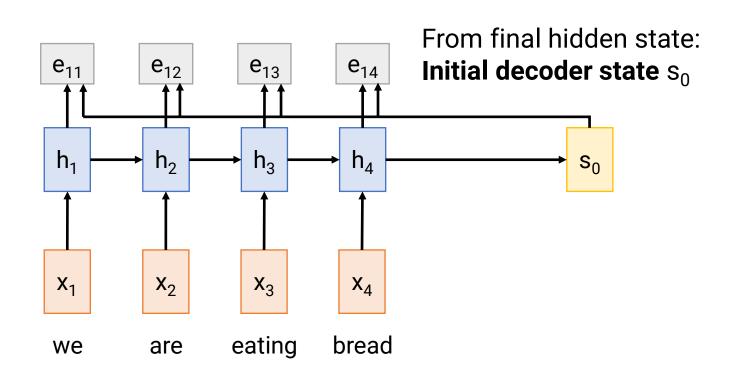
Output: Sequence y₁, ..., y_T

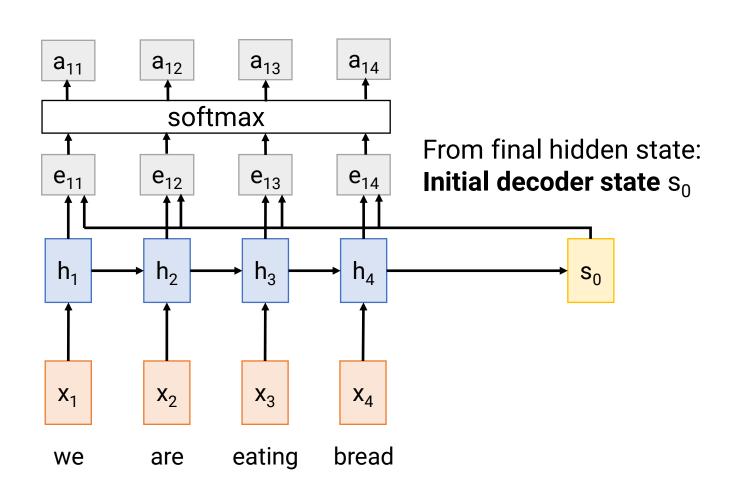
Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state: **Initial decoder state** s_0



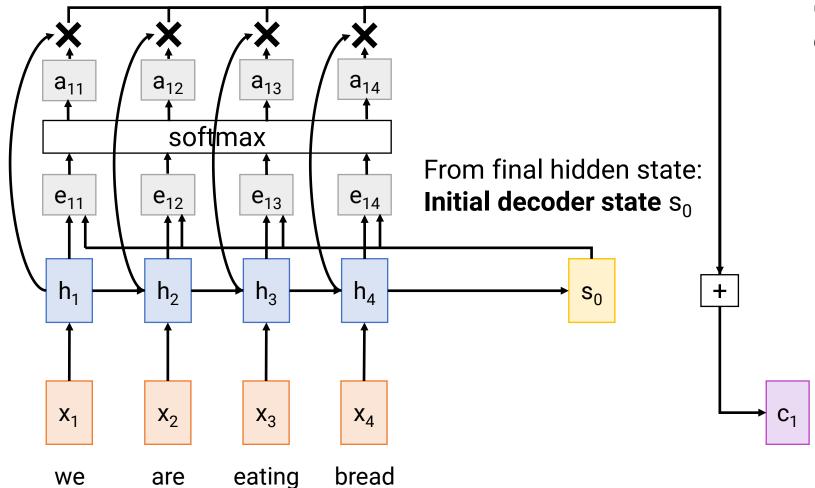
Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)





Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Normalize alignment scores to get **attention weights** $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

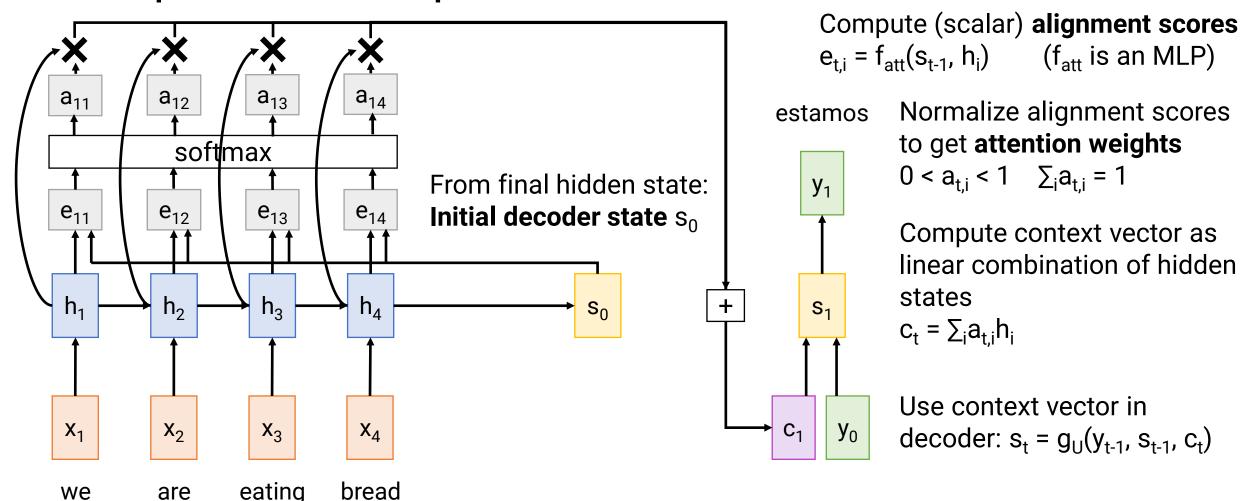


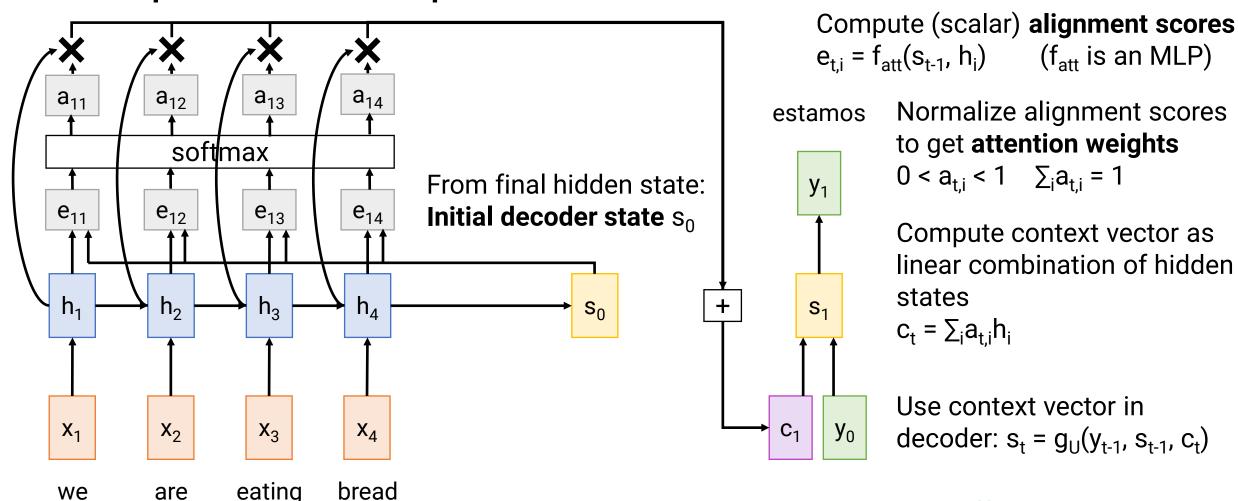
Compute (scalar) **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Normalize alignment scores to get **attention weights** $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Compute context vector as linear combination of hidden states

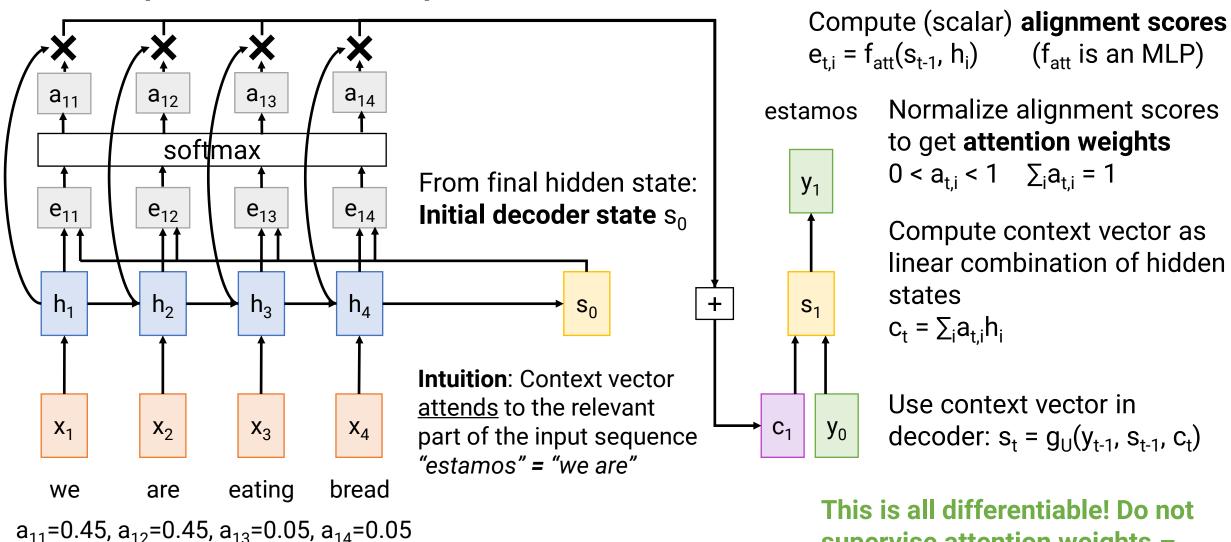
$$c_t = \sum_i a_{t,i} h_i$$





Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

This is all differentiable! Do not supervise attention weights – backprop through everything



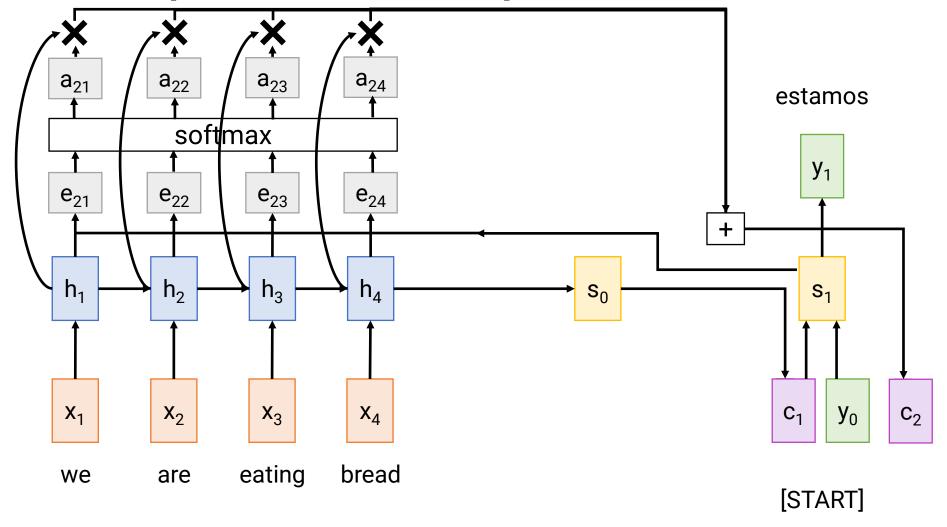
Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

 $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

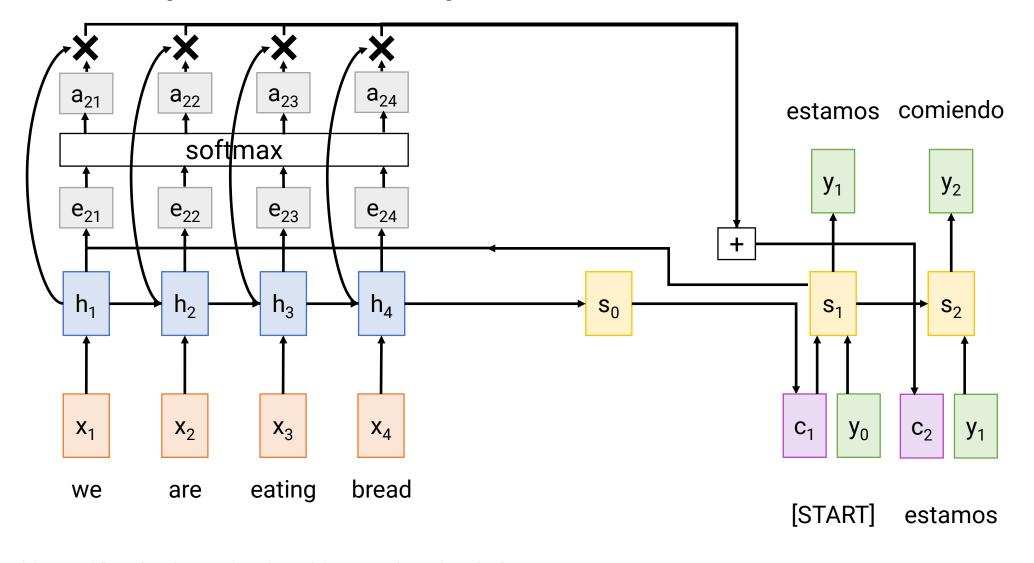
Compute context vector as linear combination of hidden

decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c_t)$

This is all differentiable! Do not supervise attention weights backprop through everything

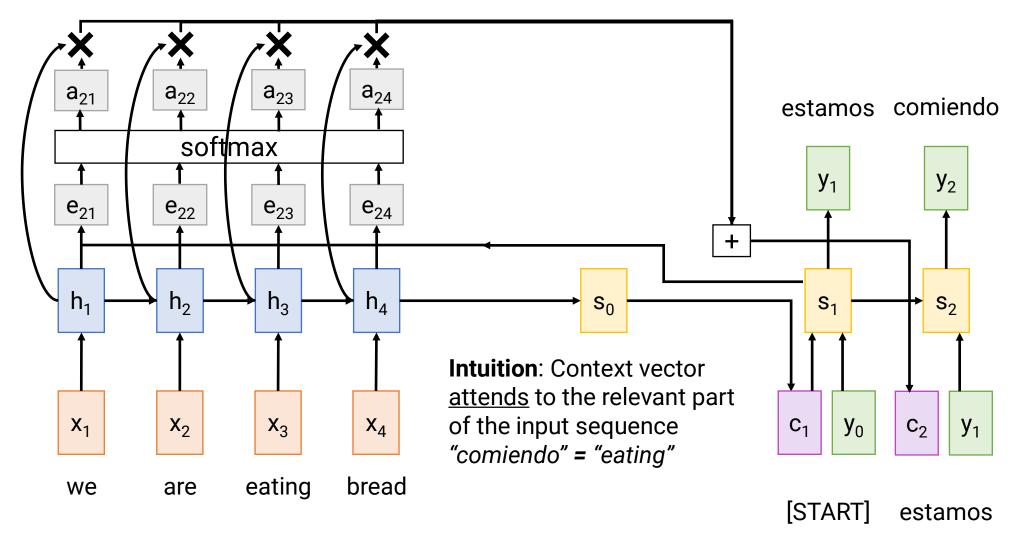


Repeat: Use s₁ to compute new context vector c₂



Repeat: Use s₁ to compute new context vector c₂

Use c_2 to compute s_2 , y_2



Repeat: Use s₁ to compute new context vector c₂

Use c_2 to compute s_2 , y_2

Use a different context vector in each timestep of decoder Input sequence not bottlenecked through single vector estamos comiendo [STOP] pan At each timestep of decoder, context vector "looks at" different parts of the input sequence **y**₂ **y**₃ **y**₄ h_2 h_4 S_3 h_3 S_0 S₁ S_2 X_3 C_3 C_1 X_1 X_2 X_4 y_0 C_2 **y**₂ **y**₃ eating bread we are [START] estamos comiendo pan

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights at i accord sur la zone économique européenne été signé en août 1992

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

<end>

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means accord words correspond in sur order zone économique européenne signé en août **Diagonal attention means** 1992 words correspond in order <end>

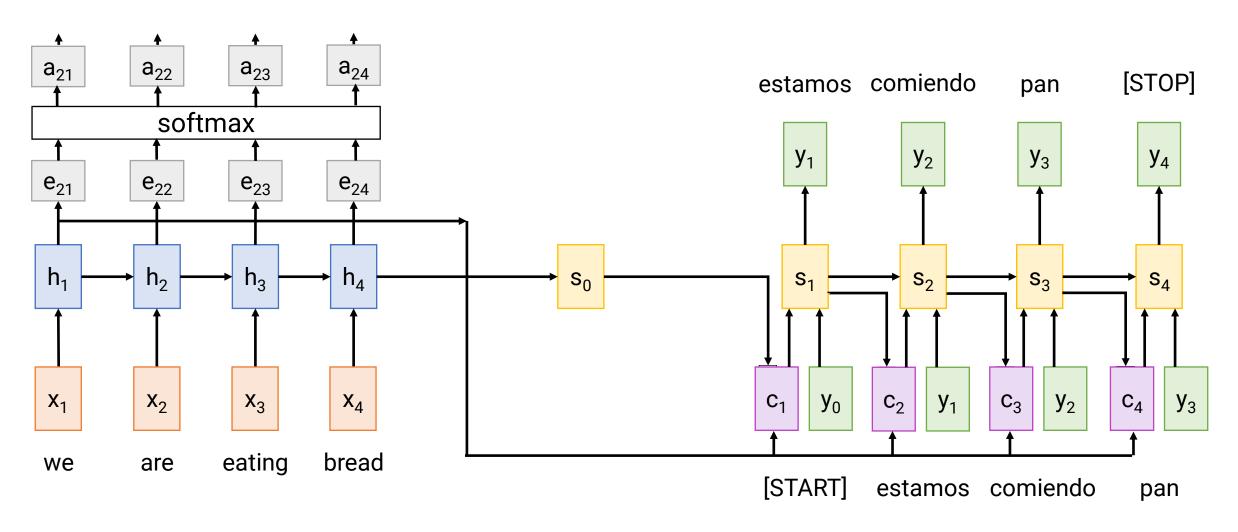
Visualize attention weights at i

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights att. **Diagonal attention means** accord words correspond in sur order la zone **Attention figures** économique out different word européenne orders été signé en août **Diagonal attention means** 1992 words correspond in order <end>

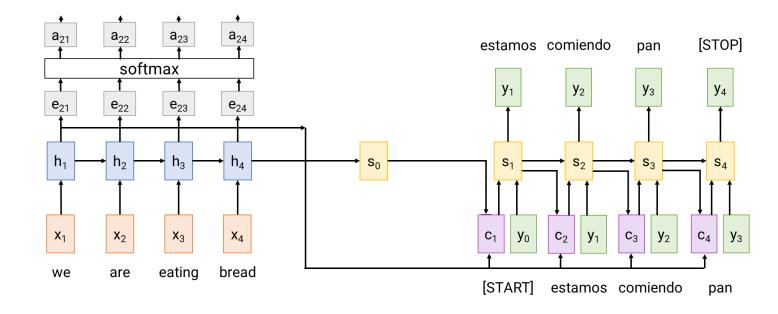


Inputs:

State vector: **s**_i (Shape: D_Q)

Hidden vectors: \mathbf{h}_{i} (Shape: $N_{X} \times D_{H}$)

Similarity function: fatt



Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(s_{t-1}, h_i)$

Attention weights: a = softmax(e) (Shape: N_X)

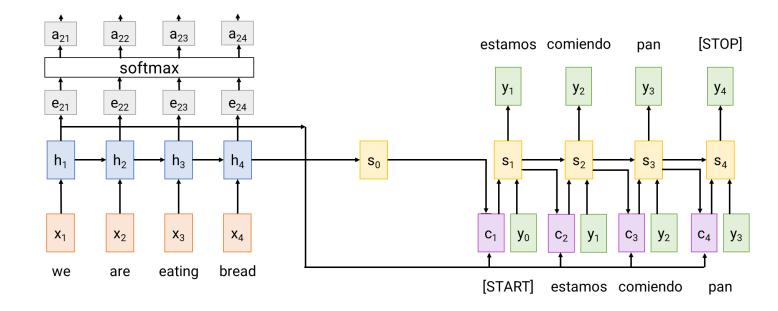
Output vector: $y = \sum_{i} a_{i} h_{i}$ (Shape: D_{x})

Inputs:

Query vector: **q** (Shape: D₀)

Input vectors: X (Shape: $N_X \times D_X$)

Similarity function: fatt



Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(\mathbf{q}, \mathbf{X}_i)$

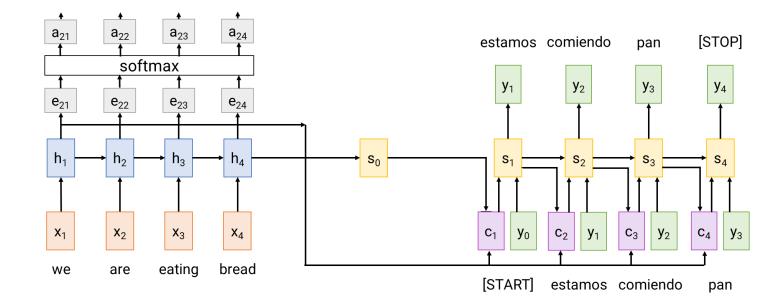
Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_{i} a_i X_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_X \times D_Q$) Similarity function: dot product



Computation:

Similarities: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_{i} a_i X_i$ (Shape: D_X)

Changes:

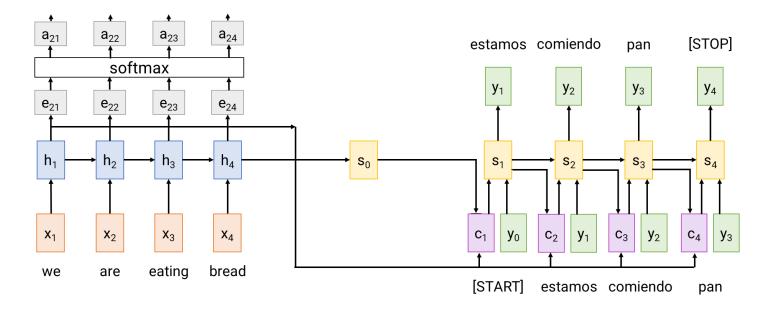
- Use dot product for similarity

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_x \times D_0$)

Similarity function: scaled dot product



Computation:

Similarities: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i / \operatorname{sqrt}(D_Q)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_{i} a_i X_i$ (Shape: D_X)

Changes:

- Use **scaled** dot product for similarity

Inputs:

Query vectors: **Q** (Shape: $N_Q \times D_Q$) **Input vectors**: **X** (Shape: $N_X \times D_Q$)

Computation:

Similarities: $E = QX^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot X_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AX (Shape: $N_Q \times D_X$) $Y_i = \sum_i A_{i,i} X_i$

Changes:

- Use dot product for similarity
- Multiple query vectors

Inputs:

Query vectors: **Q** (Shape: $N_Q \times D_Q$) **Input vectors**: **X** (Shape: $N_X \times D_X$)

Key matrix: W_K (Shape: $D_X \times D_Q$) **Value matrix:** W_V (Shape: $D_X \times D_V$)

Computation:

```
Key vectors: K = XW_K (Shape: N_X \times D_Q)

Value Vectors: V = XW_V (Shape: N_X \times D_V)

Similarities: E = QK^T (Shape: N_Q \times N_X) E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)

Attention weights: A = softmax(E, dim=1) (Shape: N_Q \times N_X)

Output vectors: Y = AV (Shape: N_Q \times D_V) Y_i = \sum_i A_{i,i} V_i
```

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 X_1

 X_2

 X_3

 Q_1

 Q_2

 Q_3

 Q_4

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

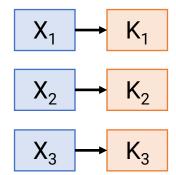
Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$



 Q_1

 Q_2

 Q_3

 Q_4

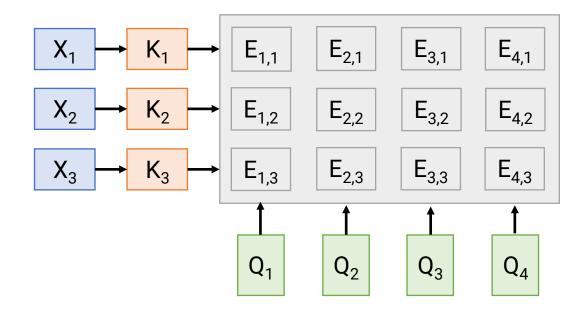
Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$) **Similarities**: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ **Attention weights**: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

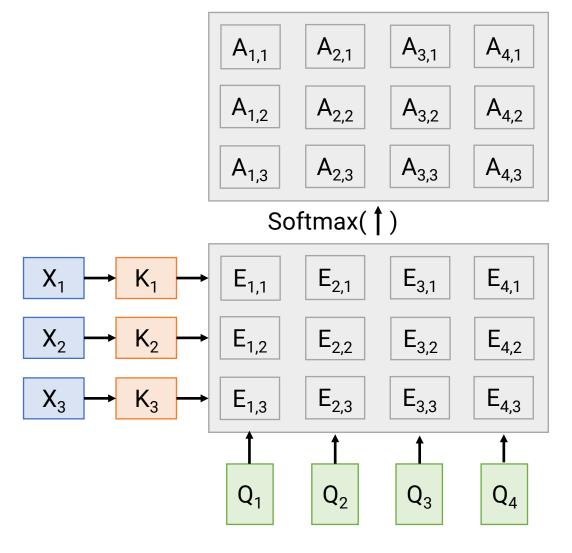


Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$) **Similarities**: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ **Attention weights**: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) **Output vectors**: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_i A_{i,i} V_j$



Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

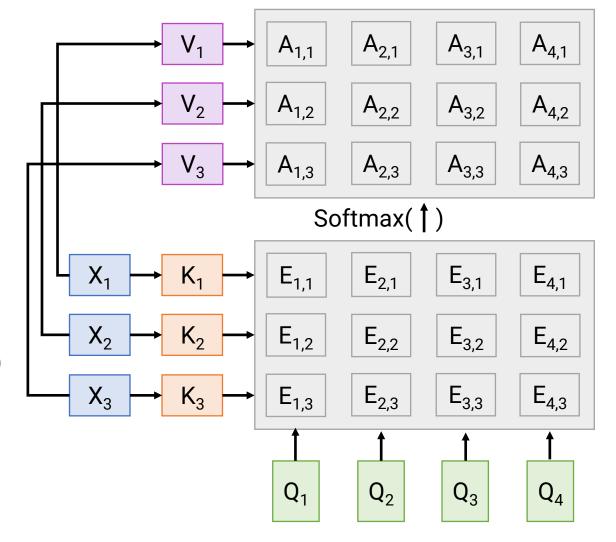
Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$



Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

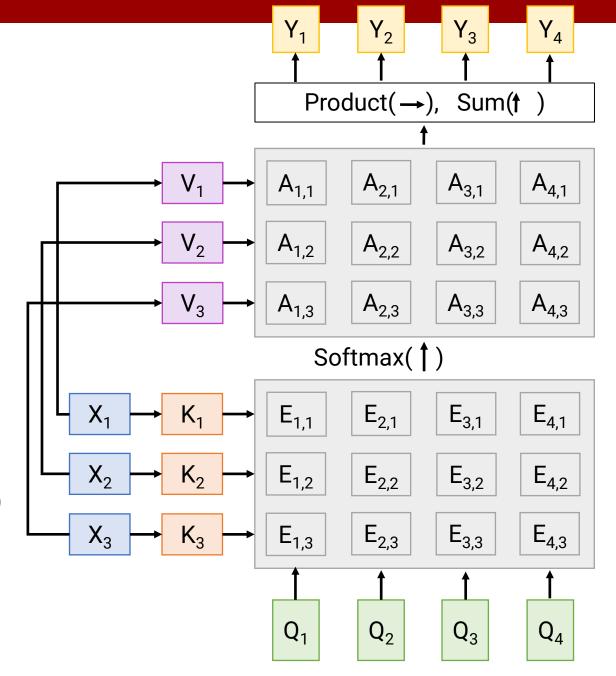
Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$



One query per input vector

```
Inputs:
```

```
Input vectors: X (Shape: N_X \times D_X)

Key matrix: W_K (Shape: D_X \times D_Q)

Value matrix: W_V (Shape: D_X \times D_V)

Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW<sub>Q</sub>
```

```
Key vectors: K = XW_K (Shape: N_X \times D_Q)
Value Vectors: V = XW_V (Shape: N_X \times D_V)
```

Similarities:
$$E = QK^T$$
 (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape:
$$N_X \times N_X$$
)

Output vectors:
$$Y = AV$$
 (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 $X_1 \mid X_2 \mid X_3$

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

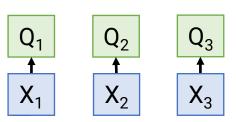
Computation:

```
Query vectors: Q = XW<sub>Q</sub>
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

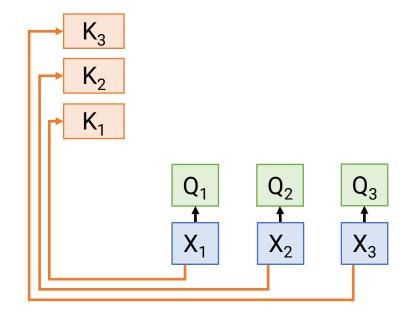
Computation:

```
Query vectors: Q = XW<sub>Q</sub>
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim= $\tilde{1}$) (Shape: N_X x \tilde{N}_X)



One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)

Key matrix: W_K (Shape: D_X \times D_Q)

Value matrix: W_V (Shape: D_X \times D_V)

Query matrix: W_Q (Shape: D_X \times D_Q)
```

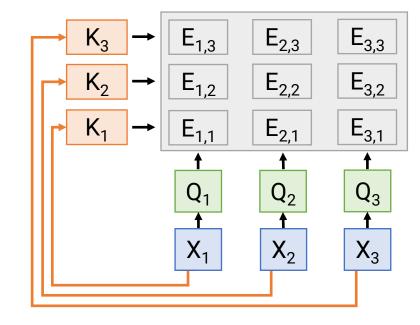
Computation:

```
Query vectors: Q = XW<sub>Q</sub>
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

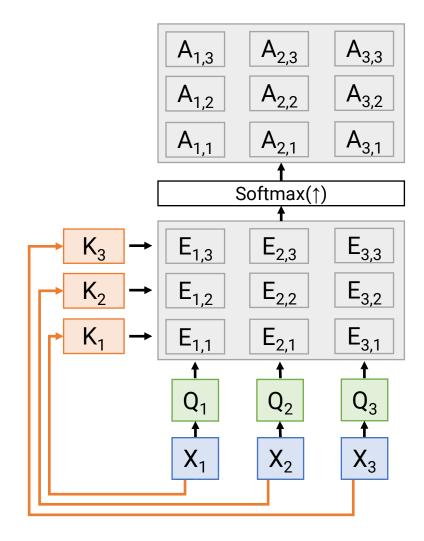
Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)



One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)
Key matrix: W_K (Shape: D_X \times D_Q)
Value matrix: W_V (Shape: D_X \times D_V)
Query matrix: W_Q (Shape: D_X \times D_Q)
```

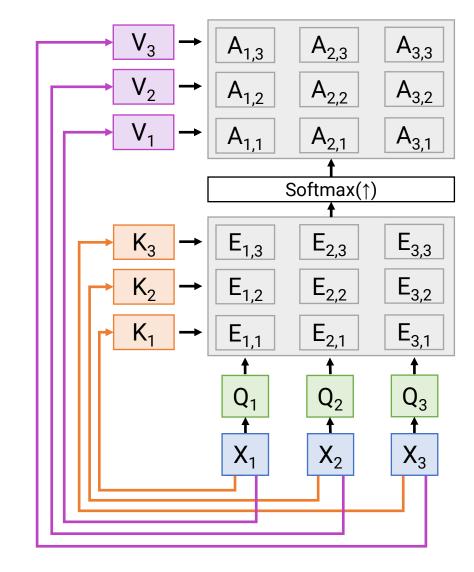
Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

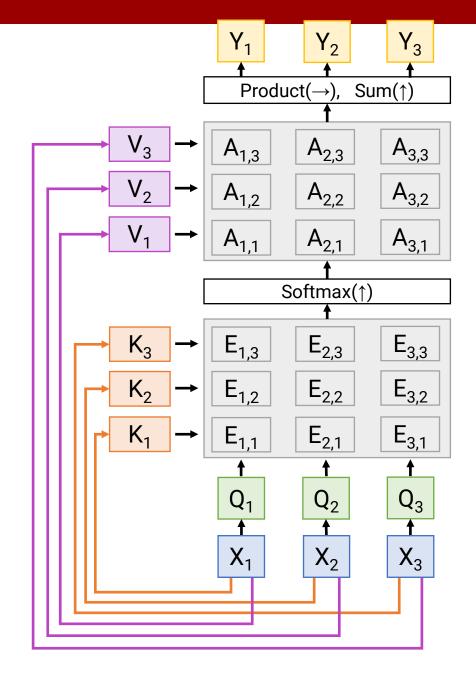
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$) Consider **permuting** the input vectors:

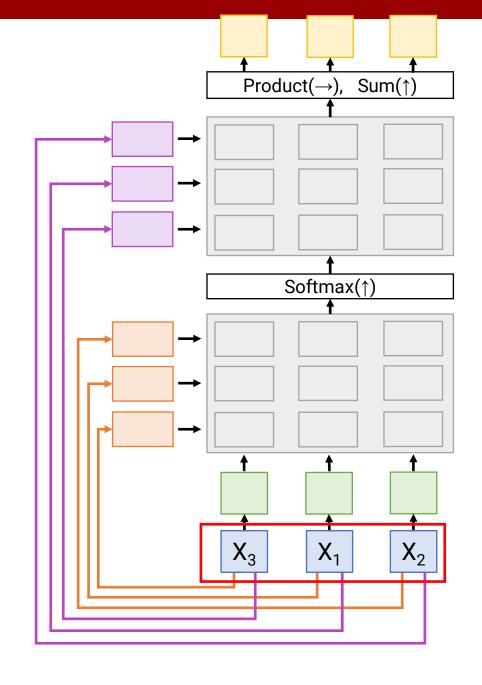
Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: \mathbf{X} (Shape: $N_X \times D_X$) Key matrix: \mathbf{W}_K (Shape: $D_X \times D_Q$) Value matrix: \mathbf{W}_V (Shape: $D_X \times D_V$) Query matrix: \mathbf{W}_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Queries and Keys will be the same, but permuted

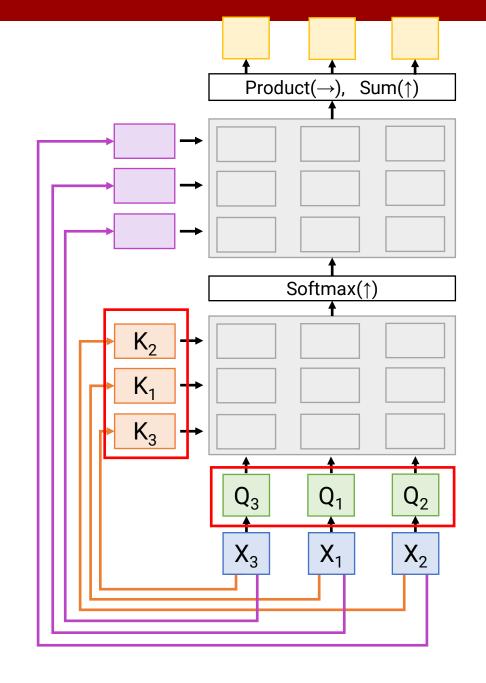
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Similarities will be the same, but permuted

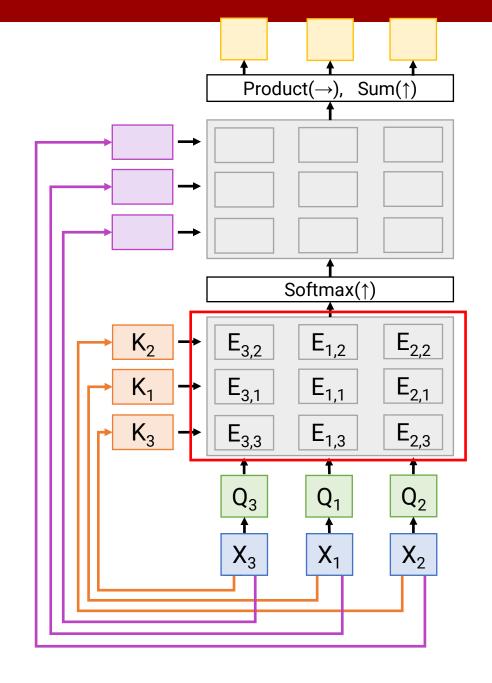
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: \mathbf{X} (Shape: $N_X \times D_X$) Key matrix: \mathbf{W}_K (Shape: $D_X \times D_Q$) Value matrix: \mathbf{W}_V (Shape: $D_X \times D_V$) Query matrix: \mathbf{W}_O (Shape: $D_X \times D_O$)

Consider **permuting** the input vectors:

Attention weights will be the same, but permuted

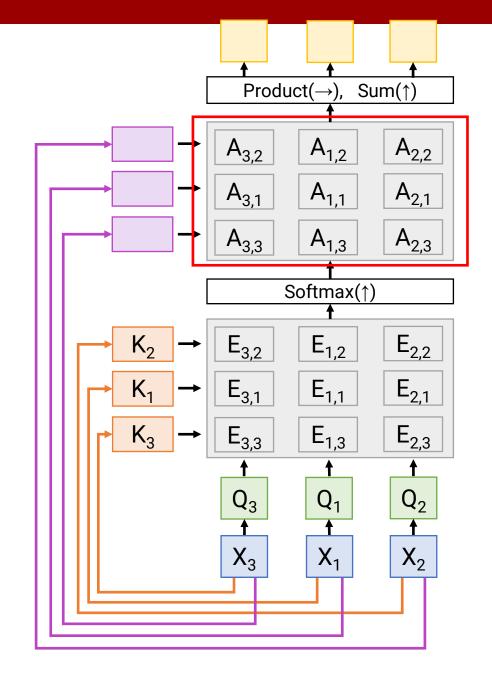
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Values will be the same, but permuted

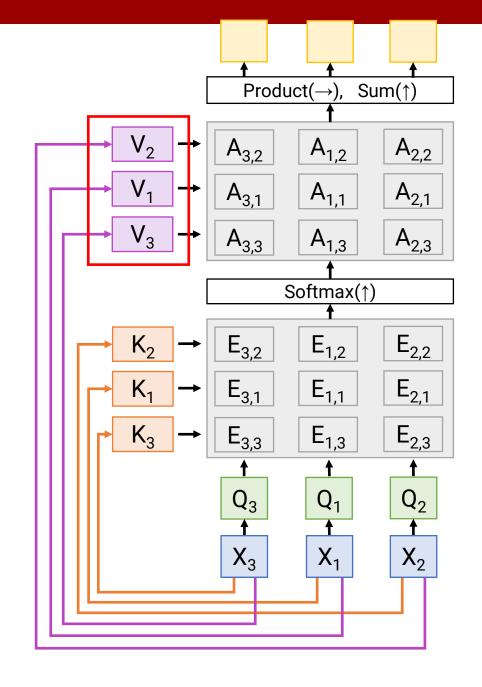
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Consider **permuting** the input vectors:

Outputs will be the same, but permuted

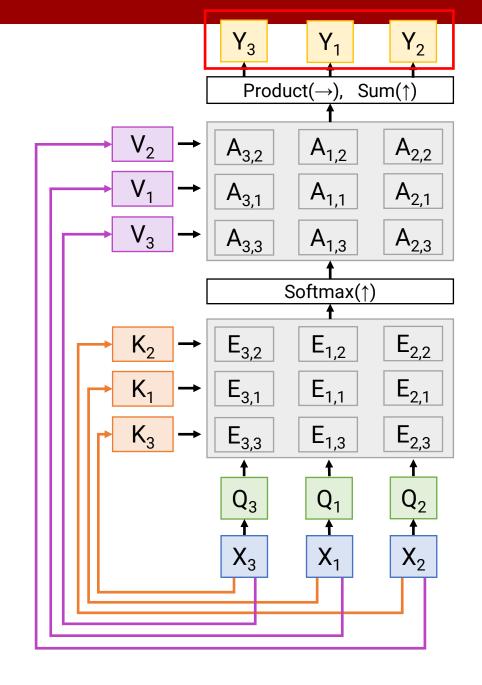
Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_x \times D_x$) **Key matrix**: W_{κ} (Shape: $D_{\chi} \times D_{0}$) **Value matrix:** W_V (Shape: $D_X \times D_V$) **Query matrix**: W_0 (Shape: $D_x \times D_0$)

Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_O$)

Value Vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_i A_{i,i} V_i$

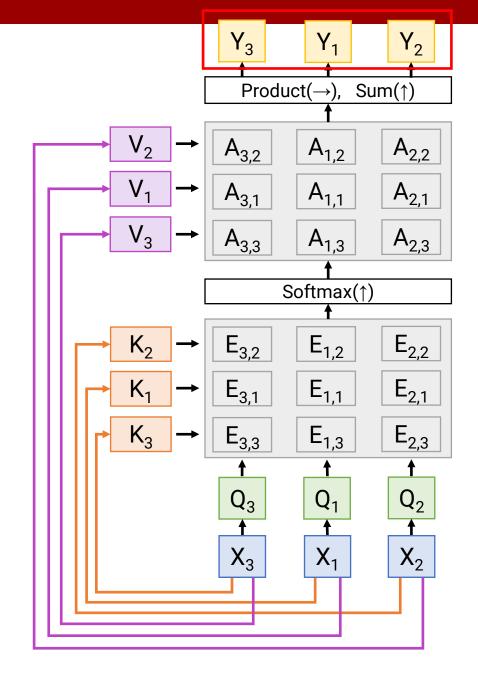
Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Self-attention layer is

Permutation Equivariant

f(s(x)) = s(f(x))



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$) Self attention doesn't "know" the order of the vectors it is processing!

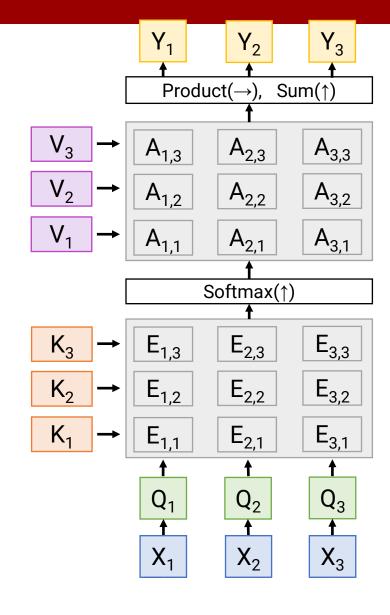
Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value Vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

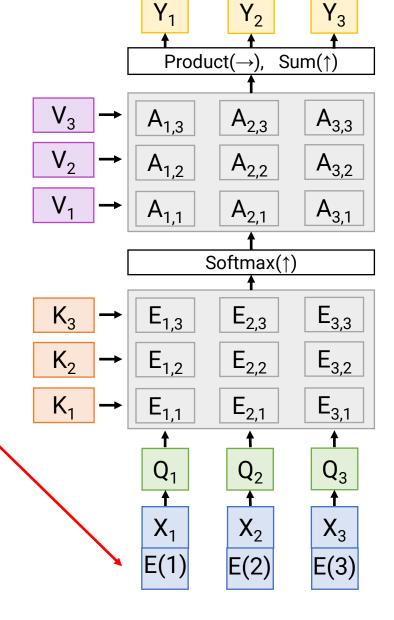
Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Self attention doesn't "know" the order of the vectors it is processing!

In order to make processing position-aware, concatenate input with **positional encoding**

E can be learned lookup table,

or fixed function



Masked Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Don't let vectors "look ahead" in the sequence

Used for language modeling (predict next word)

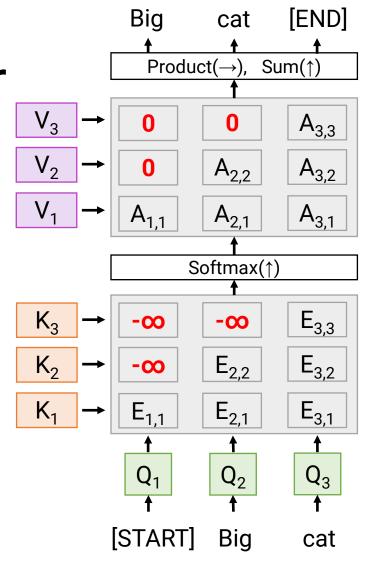
Computation:

Query vectors: Q = XW_Q

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)



Multihead Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_O$)

Use H independent "Attention Heads" in parallel

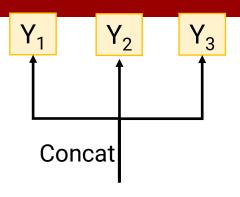
Computation:

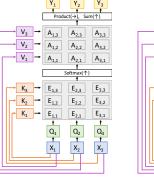
Query vectors: $Q = XW_0$

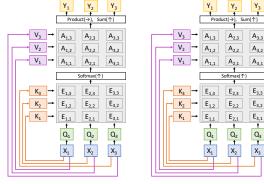
Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

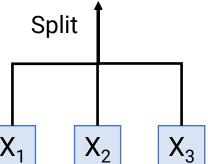
Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)

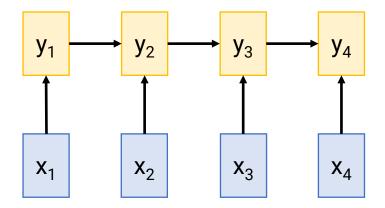








Recurrent Neural Network

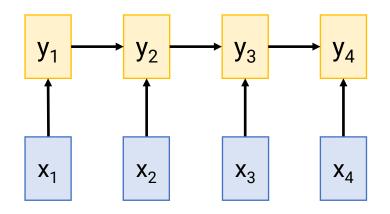


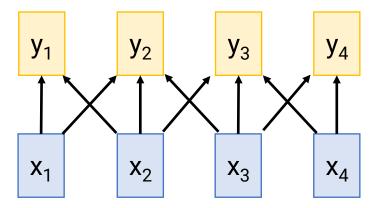
Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Recurrent Neural Network

1D Convolution





Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

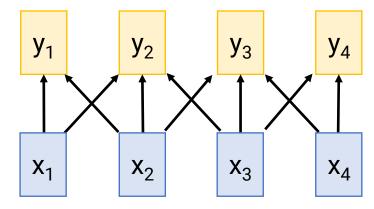
Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

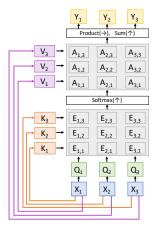
Slide Credit: Justin Johnson

Recurrent Neural Network

1D Convolution



Self-Attention



Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Works on **Sets of Vectors**

- (-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Slide Credit: Justin Johnson

Recurrent Neural Network

1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurIPS 2017

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Works on **Sets of Vectors**

- (+) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Slide Credit: Justin Johnson

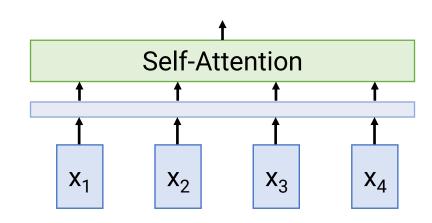
 X_1

 X_2

 X_3

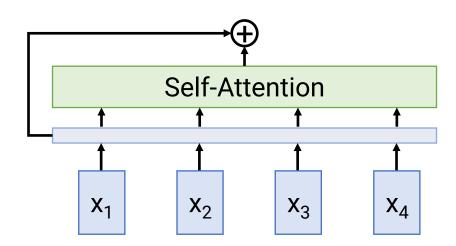
 X_4

All vectors interact with each other



Vaswani et al, "Attention is all you need", NeurIPS 2017

Residual connection



Recall Layer Normalization:

```
Given h_1, ..., h_N (Shape: D)

scale: \gamma (Shape: D)

shift: \beta (Shape: D)

\mu_i = (1/D)\sum_j h_{i,j} (scalar)

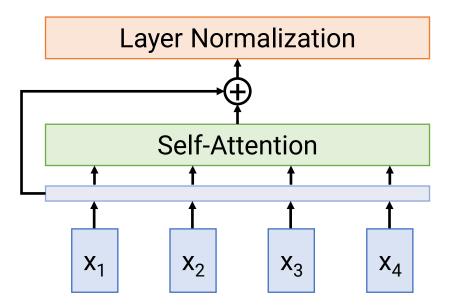
\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2)^{1/2} (scalar)

z_i = (h_i - \mu_i) / \sigma_i

y_i = \gamma * z_i + \beta
```

Ba et al, 2016

Residual connection



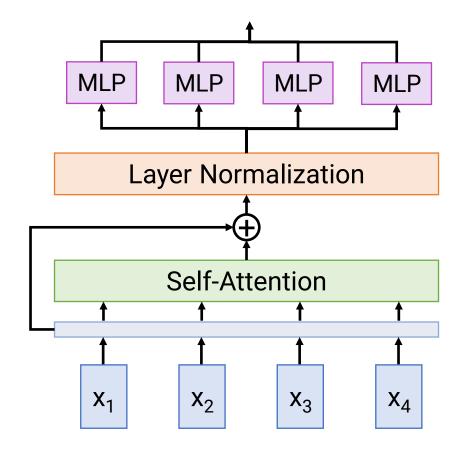
Recall Layer Normalization:

Given h_1 , ..., h_N (Shape: D) scale: γ (Shape: D) shift: β (Shape: D) $\mu_i = (1/D)\sum_j h_{i,j}$ (scalar) $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2)^{1/2}$ (scalar) $z_i = (h_i - \mu_i) / \sigma_i$ $y_i = \gamma * z_i + \beta$

Ba et al, 2016

MLP independently on each vector

Residual connection



Recall Layer Normalization:

Given h_1 , ..., h_N (Shape: D) scale: γ (Shape: D) shift: β (Shape: D) $\mu_i = (1/D)\sum_j h_{i,j}$ (scalar) $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2)^{1/2}$ (scalar) $z_i = (h_i - \mu_i) / \sigma_i$ $y_i = \gamma * z_i + \beta$

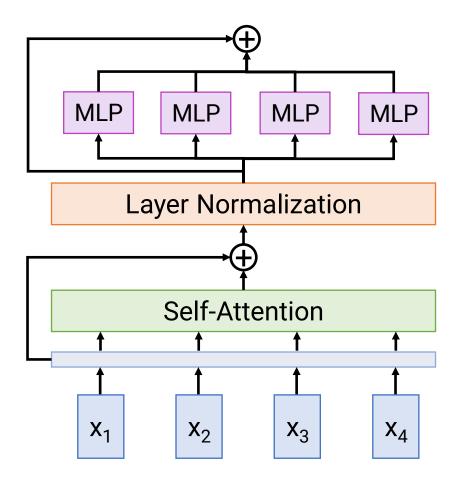
Ba et al, 2016

Residual connection

MLP independently on each vector

Residual connection

All vectors interact with each other



Vaswani et al, "Attention is all you need", NeurIPS 2017

Recall Layer Normalization:

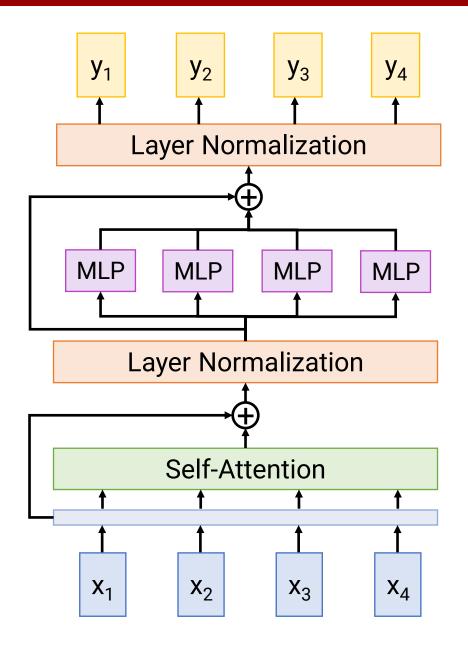
Given h_1 , ..., h_N (Shape: D) scale: γ (Shape: D) shift: β (Shape: D) $\mu_i = (1/D)\sum_j h_{i,j}$ (scalar) $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2)^{1/2}$ (scalar) $z_i = (h_i - \mu_i) / \sigma_i$ $y_i = \gamma * z_i + \beta$

Ba et al, 2016

Residual connection

MLP independently on each vector

Residual connection



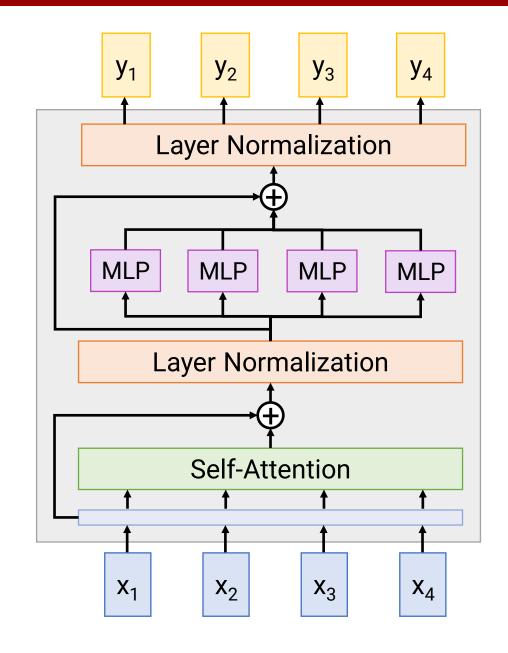
Transformer Block:

Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable



Transformer Block:

Input: Set of vectors x

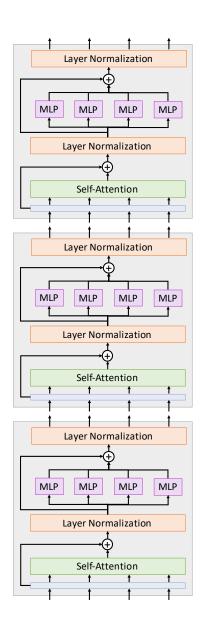
Output: Set of vectors y

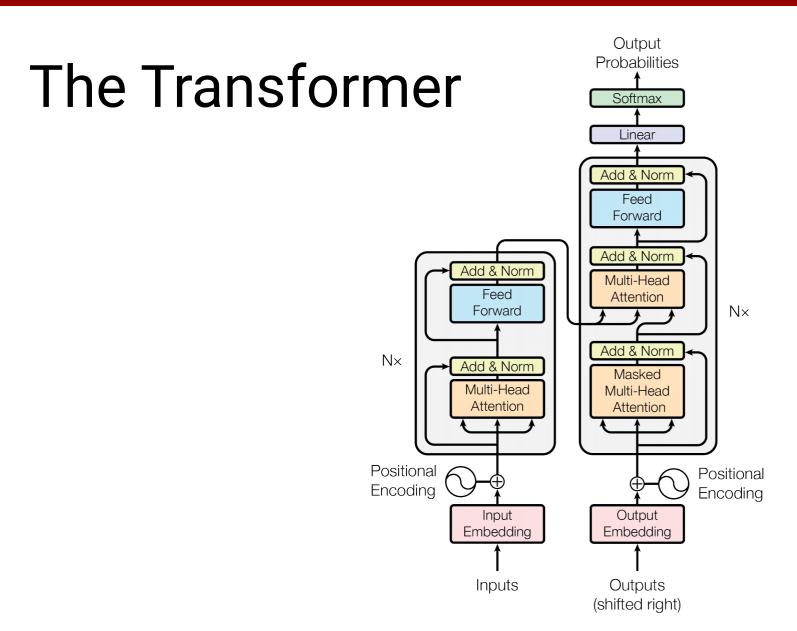
Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

A **Transformer** is a sequence of transformer blocks



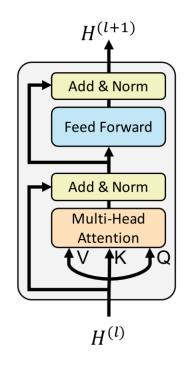


Encoder-Decoder

From Transformers To BERT

Bert Architecture

Get rid of the decoder.



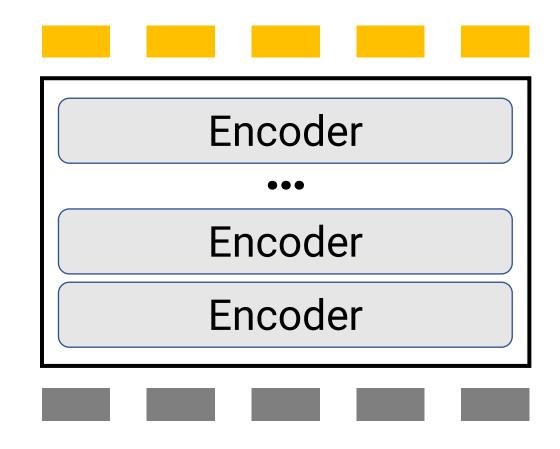
Encoder Block

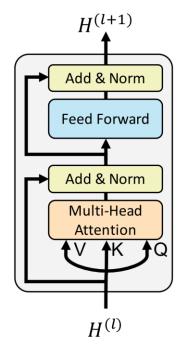
From Transformers To BERT

Bert Architecture

Get rid of the decoder.

Stack a series of Transformer encoder blocks.





Encoder Block

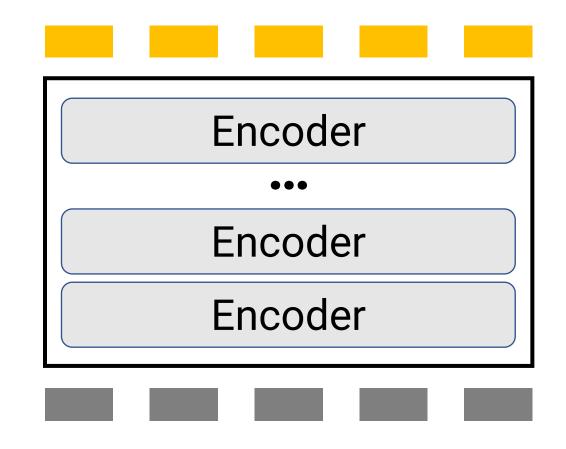
From Transformers To BERT

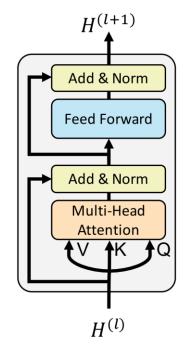
Bert Architecture

Get rid of the decoder.

Stack a series of Transformer encoder blocks.

Pre-train with *Masked*Language Modeling and
Next Sentence Prediction
(on massive datasets).





Encoder Block

GLUE Benchmark

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP MNLI-m MNLI-mm		QNLI	RTE	WNLI	AX	
	1	HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6
+	2	Alibaba DAMO NLP	StructBERT + TAPT		90.6	75.3	97.3	93.9/91.9	93.2/92.7	74.8/91.0	90.9	90.7	97.4	91.2	94.5	49.1
+	3	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2
	4	ERNIE Team - Baidu	ERNIE		90.4	74.4	97.5	93.5/91.4	93.0/92.6	75.2/90.9	91.4	91.0	96.6	90.9	94.5	51.7
	5	T5 Team - Google	Т5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1
	6	Microsoft D365 AI & MSR AI & GATECH	MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
+	7	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.7	91.4	91.1	95.8	90.0	94.5	51.6
+	8	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.8	91.3	90.8	95.8	89.8	91.8	50.7
+	9	Huawei Noah's Ark Lab	NEZHA-Large		89.1	69.9	97.3	93.3/91.0	92.4/91.9	74.2/90.6	91.0	90.7	95.7	88.7	93.2	47.9
+	10	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.3	91.1	90.7	95.6	88.7	89.0	50.1
	11	Junjie Yang	HIRE-RoBERTa	♂	88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
	12	Facebook Al	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	95.4	88.2	89.0	48.7
+	13	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	14	GLUE Human Baselines	GLUE Human Baselines	♂	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
	15	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	65.1	39.9

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

Ra	ank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP I	MNLI-m MI	NLI-mm	QNLI	RTE	WNLI	AX
	1	HFL iFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6
+	2	Alibaba DAMO NLP	StructBERT + TAPT		90.6	75.3	97.3	93.9/91.9	93.2/92.7	74.8/91.0	90.9	90.7	97.4	91.2	94.5	49.1
+	3	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2
	4	ERNIE Team - Baidu	ERNIE		90.4	74.4	97.5	93.5/91.4	93.0/92.6	75.2/90.9	91.4	91.0	96.6	90.9	94.5	51.7
	5	T5 Team - Google	T5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1
	6	Microsoft D365 AI & MSR AI & GATECH	H MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
+	7	Zihang Dai	Funnel-Transformer (Ensemble B10-10-10H1024)		89.7	70.5	97.5	93.4/91.2	92.6/92.3	75.4/90.7	91.4	91.1	95.8	90.0	94.5	51.6
+	8	ELECTRA Team	ELECTRA-Large + Standard Tricks		89.4	71.7	97.1	93.1/90.7	92.9/92.5	75.6/90.8	91.3	90.8	95.8	89.8	91.8	50.7
+	9	Huawei Noah's Ark Lab	NEZHA-Large		89.1	69.9	97.3	93.3/91.0	92.4/91.9	74.2/90.6	91.0	90.7	95.7	88.7	93.2	47.9
+	10	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.4	68.0	96.8	93.1/90.8	92.3/92.1	74.8/90.3	91.1	90.7	95.6	88.7	89.0	50.1
	11	Junjie Yang	HIRE-RoBERTa		88.3	68.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2	90.7	90.4	95.5	87.9	89.0	49.3
	12	Facebook Al	RoBERTa		88.1	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	95.4	88.2	89.0	48.7
+	13	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	14	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
	15	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	65.1	39.9

source: https://gluebenchmark.com/leaderboard

SuperGLUE

			Leaderboard Version: 2.0												
	Rank	Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
	1	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.7
+	2	T5 Team - Google	T5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	65.6	92.7/91.9
+	3	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	58.0	87.1/74.4
+	4	Alibaba PAI&ICBU	PAI Albert		86.1	88.1	92.4/96.4	91.8	84.6/54.7	89.0/88.3	88.8	74.1	93.2	75.6	98.3/99.2
+	5	Tencent Jarvis Lab	RoBERTa (ensemble)		85.9	88.2	92.5/95.6	90.8	84.4/53.4	91.5/91.0	87.9	74.1	91.8	57.6	89.3/75.6
	6	Zhuiyi Technology	RoBERTa-mtl-adv		85.7	87.1	92.4/95.6	91.2	85.1/54.3	91.7/91.3	88.1	72.1	91.8	58.5	91.0/78.1
	7	Facebook Al	RoBERTa		84.6	87.1	90.5/95.2	90.6	84.4/52.5	90.6/90.0	88.2	69.9	89.0	57.9	91.0/78.1
+	8	Infosys : DAWN : AI Research	RoBERTa-iCETS		77.4	84.7	88.2/91.6	85.8	78.4/37.5	82.9/82.4	83.8	69.1	65.1	35.2	93.8/68.8
+	9	Timo Schick	iPET (ALBERT) - Few-Shot (32 Examples)		75.4	81.2	79.9/88.8	90.8	74.1/31.7	85.9/85.4	70.8	49.3	88.4	36.2	97.8/57.9
	10	IBM Research Al	BERT-mtl		73.5	84.8	89.6/94.0	73.8	73.2/30.5	74.6/74.0	84.1	66.2	61.0	29.6	97.8/57.3
	11	Ben Mann	GPT-3 few-shot - OpenAl		71.8	76.4	52.0/75.6	92.0	75.4/30.5	91.1/90.2	69.0	49.4	80.1	21.1	90.4/55.3
	12	SuperGLUE Baselines	BERT++		71.5	79.0	84.8/90.4	73.8	70.0/24.1	72.0/71.3	79.0	69.6	64.4	38.0	99.4/51.4
			BERT		69.0	77.4	75.7/83.6	70.6	70.0/24.1	72.0/71.3	71.7	69.6	64.4	23.0	97.8/51.7

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

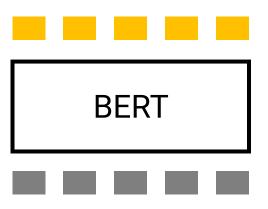
Source: OpenAI, "Better Language Models and Their Implications" https://openai.com/blog/better-language-models/

Can Attention/Transformers be used from more than text processing?

ViLBERT: A Visolinguistic Transformer

Vilbert Architecture

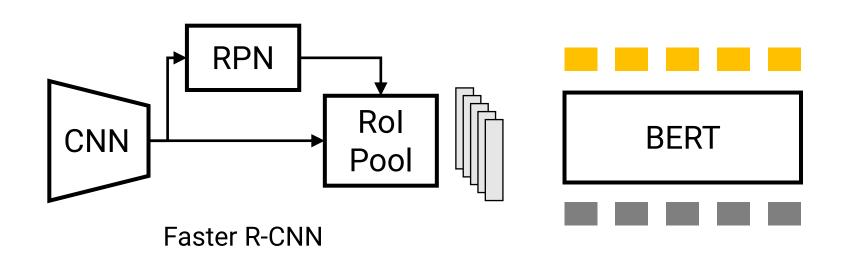
Start with a pre-trained BERT model.



Vilbert Architecture

Start with a pre-trained BERT model.

Extract regions from an image using pre-trained detector.

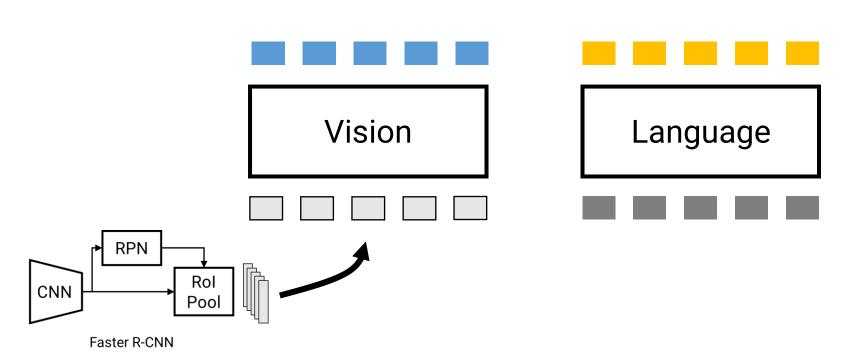


VILBERT Architecture

Start with a pre-trained BERT model.

Extract regions from an image using pre-trained detector.

Use another BERT-like model to process the visual "tokens."



Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." *NeurIPS*. 2019. Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." *NeurIPS*. 2015.

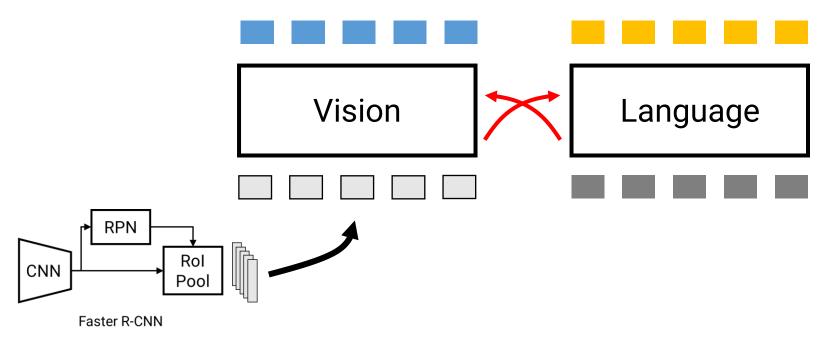
VILBERT Architecture

Start with a pre-trained BERT model.

Extract regions from an image using pre-trained detector.

Use another BERT-like model to process the visual "tokens."

Connect the vision and language processing!

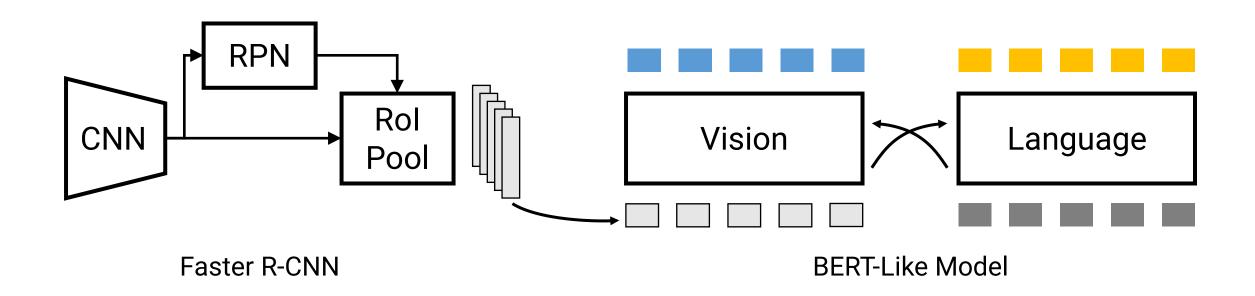


Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." *NeurIPS*. 2019. Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." *NeurIPS*. 2015.

ViLBERT: A Visolinguistic Transformer

Visual Encoder

Visual and Language Processing



Vilbert Pre-Training

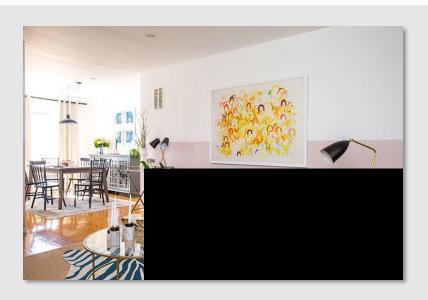
pop artist performs at the festival in a city.

a worker helps to clear the debris.

blue sofa in the living room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

Vilbert Pre-Training



pop artist performs at the festival in a city.

a worker helps to clear the debris.

blue sofa in the living room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

Vilbert Pre-Training

pop artist performs at the festival in a city.

a worker helps to clear the debris.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VilBERT Demo:

https://vilbert.cloudcv.org/

VLN-BERT: Transformers for VLN

Large-scale Web Data (Conceptual Captions)

Embodied Visual Navigation (Room-to-Room)

Transfer Grounding

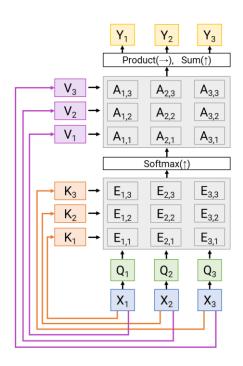
Blue sofa in the living room.

Walk through the bedroom and out of the door into the hallway. Walk down the hall along the banister rail through the open door. Continue into the bedroom with a round mirror on the wall and butterfly sculpture.

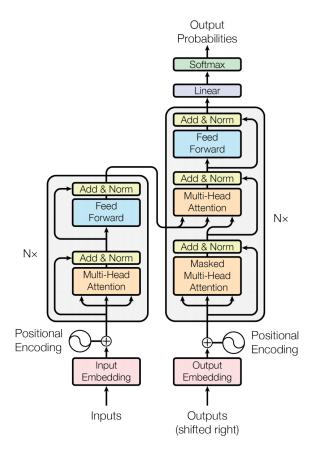
Majumdar et al. "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web." *ECCV* 2020

Summary

Self-Attention



Transformer Model



VILBERT

