Topics:
• Variational Autoencoders
• **Projects!**
 • Due May 3\(^{rd}\) (May 5\(^{th}\) with grace period)
 • Cannot extend due to grade deadlines!

• **CIOS**
 • Please make sure to fill out! Let us know about things you liked and didn’t like in comments so that we can keep or improve!
Introduction
Spectrum of Low-Labeled Learning

Supervised Learning
- Train Input: \(\{X, Y\} \)
- Learning output: \(f : X \rightarrow Y, P(y|x) \)
- e.g. classification

Unsupervised Learning
- Input: \(\{X\} \)
- Learning output: \(P(x) \)
- Example: Clustering, density estimation, etc.

Less Labels
Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Models
Factorized Models for Images

$$p(x) = p(x_1)p(x_2|x_1)p(x_3|x_1) \prod_{i=1}^{n^2} p(x_i|x_1, \ldots, x_{i-1})$$

- **Training:**
 - We can train similar to language models: Teacher/student forcing
 - Maximum likelihood approach

- **Downsides:**
 - Slow sequential generation process
 - Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks
- Input can be a vector with (independent) Gaussian random numbers
- We can use a CNN to generate images!
Generative Adversarial Networks (GANs)

- **Generator**: Update weights to improve realism of generated images
- **Discriminator**: Update weights to better discriminate

Question: What loss functions can we use (for each network)?

- **Generator**: Update weights to improve realism of generated images
- **Discriminator**: Update weights to better discriminate

Cross-entropy
(Real or Fake?)
We know the answer (self-supervised)
Generative Adversarial Networks (GANs)

Vector of Random Numbers

Generator

Discriminator

Cross-entropy (Real or Fake?)
We know the answer (self-supervised)

\[
\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D \left(G \left(z^{(i)}\right)\right)\right).
\]

Generator Loss

\[
\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D \left(x^{(i)}\right) + \log \left(1 - D \left(G \left(z^{(i)}\right)\right)\right) \right].
\]

Discriminator Loss

Mini-batch of real & fake data
Early Results

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

- Low-resolution images but look decent!
- Last column are nearest neighbor matches in dataset
GANs are very difficult to train due to the mini-max objective

Advancements include:
- More stable architectures
- Regularization methods to improve optimization
- Progressive growing/training and scaling
Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.
Training GANs is difficult due to:

- Minimax objective – For example, what if generator learns to memorize training data (no variety) or only generates part of the distribution?
- Mode collapse – Capturing only some modes of distribution

Several theoretically-motivated regularization methods

- Simple example: Add noise to real samples!

\[\lambda \cdot \mathbb{E}_{x \sim P_{real}, \delta \sim N_d(0, cI)} \left[\| \nabla_x D_\theta (x + \delta) \| - k \right]^2 \]

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)
Generative Adversarial Nets: Convolutional Architectures

Samples from the model look much better!

Radford et al, ICLR 2016
Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in latent space

Radford et al, ICLR 2016
Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN
Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class leakage in a partially trained model (d).
A few other examples:

- Deep nostalgia: https://www.myheritage.com/deep-nostalgia
- High-resolution outputs: https://compvis.github.io/taming-transformers/
GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as \(p(x) \), \(p(z|x) \)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications
Mode Collapse

• Optimization of GANs is tricky
 – Not guaranteed to find Nash equilibrium

• Large number of methods to combat:
 – Use history of discriminators
 – Regularization
 – Different divergence measures
Application: Data Augmentation
Application: Domain Adaptation

- **Idea:** Train a model on *source* data and adapt to *target* data using unlabeled examples from target.
Approach

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.
Aside: Other ways to Align

[Ganin et al., JMLR 2016]
Generative Adversarial Networks (GANs) can produce amazing images!

Several drawbacks
- High-fidelity generation heavy to train
- Training can be unstable
- No explicit model for distribution

Larger number of extensions:
- GANs conditioned on labels or other information
- Adversarial losses for other applications
Variational Autoencoders (VAEs)
Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks
Autoencoders

Minimize the difference (with MSE)

Low dimensional embedding

Encoder

Decoder

Linear layers with reduced dimension or Conv-2d layers with stride

Linear layers with increasing dimension or Conv-2d layers with bilinear upsampling
Formalizing the Generative Model

What is this?
Hidden/Latent variables
Factors of variation that produce an image:
(digit, orientation, scale, etc.)

\[P(X) = \int P(X|Z; \theta)P(Z)dZ \]

- We cannot maximize this likelihood due to the integral
- Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes
We can combine the probabilistic view, sampling, autoencoders, and approximate optimization

Just as before, sample Z from simpler distribution

We can also output parameters of a probability distribution!

Example: μ, σ of Gaussian distribution

For multi-dimensional version output diagonal covariance

How can we maximize

$$P(X) = \int P(X|Z; \theta)P(Z)dZ$$
We can combine the probabilistic view, sampling, autoencoders, and approximate optimization.

Given an image, estimate Z

Again, output \textit{parameters of a distribution}

Variational Autoencoder: Encoder
We can tie the encoder and decoder together into a probabilistic autoencoder.

- Given data \(X\), estimate \(\mu_z, \sigma_z\) and sample from \(N(\mu_z, \sigma_z)\).
- Given \(Z\), estimate \(\mu_x, \sigma_x\) and sample from \(N(\mu_x, \sigma_x)\).
How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

$$\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)$$
\[\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z) \]

\[= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)} \]

\[= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \cdot \frac{q_\phi(z | x^{(i)})}{q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)} \]

\[= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)} \]
Aside: KL Divergence (distance measure for distributions), always ≥ 0

$$KL(p||q) = H_c(p, q) - H(p) = \sum p(x) \log p(x) - \sum p(x) \log q(x)$$

Definition of Expectation

$$\mathbb{E}[f] = \mathbb{E}_{x \sim q}[f(x)] = \sum_{x \in \Omega} q(x)f(x)$$

$$KL(q(z)||p(z|x)) = \mathbb{E} [\log q(z)] - \mathbb{E} [\log p(z|x)]$$
log \(p_\theta(x^{(i)}) \) = \(\mathbb{E}_{z \sim q_\phi(z \mid x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \) (\(p_\theta(x^{(i)}) \) Does not depend on \(z \))

= \(\mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} \mid z)p_\theta(z)}{p_\theta(z \mid x^{(i)})} \right] \) (Bayes’ Rule)

= \(\mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} \mid z)p_\theta(z)}{p_\theta(z \mid x^{(i)})} \frac{q_\phi(z \mid x^{(i)})}{q_\phi(z \mid x^{(i)})} \right] \) (Multiply by constant)

= \(\mathbb{E}_z \left[\log p_\theta(x^{(i)} \mid z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z \mid x^{(i)})}{p_\theta(z \mid x^{(i)})} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z \mid x^{(i)})}{p_\theta(z \mid x^{(i)})} \right] \) (Logarithms)

= \(\mathbb{E}_z \left[\log p_\theta(x^{(i)} \mid z) \right] - D_{KL}(q_\phi(z \mid x^{(i)}) \parallel p_\theta(z)) + D_{KL}(q_\phi(z \mid x^{(i)}) \parallel p_\theta(z \mid x^{(i)})) \)

The expectation wrt. \(z \) (using encoder network) let us write nice KL terms

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood
\[
\log p_\theta(x^{(i)}) = E_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right]
\]

\[
= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]

\[
= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \frac{q_\phi(z | x^{(i)})}{q_\phi(z | x^{(i)})} \quad \text{(Multiply by constant)}
\]

\[
= E_z \left[\log p_\theta(x^{(i)} | z) \right] - E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]

\[
= E_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \parallel p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) \parallel p_\theta(z | x^{(i)}))
\]

Decoder network gives \(p_\theta(x | z) \), can compute estimate of this term through sampling. (Sampling differentiable through reparam. trick. see paper.)

This KL term (between Gaussians for encoder and z prior) has nice closed-form solution!

\(p_\theta(z | x) \) intractable (saw earlier), can’t compute this KL term :(But we know KL divergence always \(>= 0 \).

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung
\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]
\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]
\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)}{p_\theta(z | x^{(i)})} \right] q_\phi(z | x^{(i)}) \quad \text{(Multiply by constant)}
\]
\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]
\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z | x^{(i)}))
\]
\[
\mathcal{L}(x^{(i)}, \theta, \phi) \geq 0
\]
\[
\log p_\theta(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi)
\]
Variational lower bound ("ELBO")

\[
\theta^*, \phi^* = \underset{\theta, \phi}{\arg \max} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi)
\]
Training: Maximize lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung
Putting it all together: maximizing the likelihood lower bound

\[\mathbb{E}_z \left[\log p_{\theta}(x^{(i)} | z) \right] - D_{KL}(q_{\phi}(z | x^{(i)} || p_{\theta}(z)) \]

\[\mathcal{L}(x^{(i)}, \theta, \phi) \]

Make approximate posterior distribution close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung
Putting it all together: maximizing the likelihood lower bound

\[\mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) \]

Sample from \(Q(Z|X) \sim N(\mu_z, \sigma_z) \)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung
Putting it all together: maximizing the likelihood lower bound

$$
\mathbb{E}_z \left[\log p_\theta(x^{(i)} \mid z) \right] - D_{KL}(q_\phi(z \mid x^{(i)}) \parallel p_\theta(z))
$$

$$
\mathcal{L}(x^{(i)}, \theta, \phi)
$$

Maximize likelihood of original input being reconstructed

Sample from $P(X \mid Z; \theta) \sim N(\mu_x, \sigma_x)$
Problem with respect to the VLB: updating ϕ

$$L_{VAE} = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(z, x)}{q_{\phi}(z|x)} \right]$$

$$= - D_{KL}(q_{\phi}(z|x) || p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z)$$

$Z \sim Q(Z|X; \phi)$: need to differentiate through the sampling process w.r.t ϕ

(Encoder is probabilistic)
Solution: make the randomness independent of encoder output, making the encoder deterministic.

Gaussian distribution example:

- Previously: encoder output = random variable $z \sim N(\mu, \sigma)$
- Now encoder output = distribution parameter $[\mu, \sigma]$
- $z = \mu + \epsilon \ast \sigma, \epsilon \sim N(0, 1)$

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes
Variational Autoencoders (VAEs) provide a principled way to perform approximate maximum likelihood optimization
 - Requires some assumptions (e.g. Gaussian distributions)

Samples are often not as competitive as GANs

Latent features (learned in an unsupervised way!) often good for downstream tasks:
 - Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018
Several ways to learn generative models via deep learning

PixelRNN/CNN:
- Simple tractable densities we can model via a NN and optimize
- Slow generation – limited scaling to large complex images

Generative Adversarial Networks (GANs):
- Pro: Amazing results across many image modalities
- Con: Unstable/difficult training process, computationally heavy for good results
- Con: Limited success for discrete distributions (language)
- Con: Hard to evaluate (implicit model)

Variational Autoencoders:
- Pro: Principled mathematical formulation
- Pro: Results in disentangled latent representations
- Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, *World Models*, 2018