Topics:
- Supervised Learning, Linear Classification, Loss functions
- Gradient Descent

CS 4803-DL / 7643-A
ZSOLT KIRA

Machine Learning Applications
• **PS0 due tonight!**
 • Please do it, and give others a chance at waitlist if your background is not sufficient (beef it up and take it next time)
 • Do it even if you’re on the waitlist!

• **Piazza: 147/175 enrolled**
 • Enroll now! https://piazza.com/class/kjsselshfiz18c (Code: DL2021)
 • Make it active!

• **Office hours** start this week
• **Collaboration**
 • Only on HWs and project (not allowed in PS0).
 • You may discuss the questions
 • Each student writes their own answers
 • Write on your homework anyone with whom you collaborate
 • Each student must write their own code for the programming part

• **Zero tolerance on plagiarism**
 • Neither ethical nor in your best interest
 • Always credit your sources
 • Don’t cheat. We will find out.
• **Grace period**
 • 2 days grace period for each assignment (**EXCEPT PS0**)
 • Intended for checking submission NOT to replace due date
 • No need to ask for grace, no penalty for turning it in within grace period
 • Can NOT use for PS0

• **After grace period, you get a 0 (no excuses except medical)**
 • Send all medical requests to dean of students (https://studentlife.gatech.edu/)

• **DO NOT SEND US ANY MEDICAL INFORMATION!** We do not need any details, just a confirmation from dean of students
Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great general-purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/
Machine Learning Overview
What is Machine Learning (ML)?

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

Tom Mitchell (Machine Learning, 1997)
Machine Learning is the study of algorithms that:

- Improve their performance
- on some task(s)
- Based on experience (typically data)
How is it Different than Programming?

Programming

Input → Algorithm → Output

Machine Learning

Data → Algorithm → Labels

Inference (Testing)

Input → Model → Output

Training
Machine learning thrives when it is **difficult to design an algorithm** to perform the task

Applications:

```plaintext
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
    for j := lo to hi do
        if A[j] < pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i
```
Machine Learning and Artificial Intelligence

Artificial Intelligence

Machine Learning

Deep Learning

Search

Deductive Reasoning

Abductive
Inference to best explanation/hypothesis for a set of observations

Deductive
Deduce conclusions from rules
- JESS, CLIPS
- Drools, Esper
- CEP Engines
- Spark Streams

Inductive
Reason from specific examples to general rules or model
- Scikit Learn
- TensorFlow
- Rapid Miner
- Spark MLlib

Adapted from: https://www.datanami.com/2018/03/20/u-s-pursues-abductive-reasoning-to-divine-intent/
Given an image, output class label

- Often output probability distribution over labels

Applications:

Example: Image Classification
Why Image Classification is Hard

What the computer sees

An image is just a big grid of numbers between $[0, 255]$:

e.g. $800 \times 600 \times 3$

(3 channels RGB)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Given a series of measurements, **output prediction for next time period**

Application:

Example: Time Series Prediction
Very large number of NLP sub-tasks:

- Syntax Parsing
- Parts of speech
- Named entity recognition
- Summarization
- Similarity / paraphrasing

Different from classification: Variable length sequential inputs and/or outputs

Example: Natural Language Processing (NLP)
Example: Natural Language Processing (NLP)

Sentiment Analysis:

Model

Class Scores

Negative Neutral Positive

TV Fan 88 @tv_fan1988 · 7h
This television is amazing! The picture quality is extremely high.

646 1,2k 16,4k
Decision-making tasks

- Sequence of inputs/outputs
- Actions affect the environment

Combination of perception and decision-making/controls

Example: Decision-Making Tasks

Application:

Observations

Model

Actions affect the world

Probability distribution over actions \{left, right, up, down\}
Robotics involves a combination of AI/ML techniques:

- **Sense:** Perception
- **Plan:** Planning
- **Act:** Controls/Decision-Making

Some things are learned (perception), while others programmed

- Evolving landscape

Example: Robotics
Supervised Learning and Parametric Models
Supervised Learning

- Train Input: \{X, Y\}
- Learning output: \(f : X \rightarrow Y \), e.g. \(P(y|x) \)

Dataset

\[X = \{x_1, x_2, \ldots, x_N\} \text{ where } x \in \mathbb{R}^d \]
\[Y = \{y_1, y_2, \ldots, y_N\} \text{ where } y \in \mathbb{R}^c \]

Types of Machine Learning
Supervised Learning

- Train Input: \(\{X, Y\} \)
- Learning output: \(f : X \rightarrow Y \)
 e.g. \(P(y|x) \)

Terminology:
- Model / Hypothesis Class
 - \(H: \{h: X \rightarrow Y\} \)
- Learning is search in hypothesis space
- Note inputs \(x_i \) and \(y_i \) are each represented as vectors

Dataset

\[
X = \{x_1, x_2, ..., x_N\} \text{ where } x \in \mathbb{R}^d
\]

\[
Y = \{y_1, y_2, ..., y_N\} \text{ where } y \in \mathbb{R}^c
\]
Unsupervised Learning

- Input: \(\{X\} \)
- Learning output: \(P(x) \)
- Example: Clustering, density estimation, etc.

Dataset

\[X = \{x_1, x_2, \ldots, x_N\} \text{ where } x \in \mathbb{R}^d \]
Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

Types of Machine Learning

Adapted from: http://cs231n.stanford.edu/slides/2020/lecture_17.pdf
Reinforcement Learning

Supervision in form of reward

No supervision on what action to take

Types of Machine Learning

Supervised Learning
- Train Input: \{X, Y\}
- Learning output: \(f : X \rightarrow Y\), e.g. \(P(y|x)\)

Unsupervised Learning
- Input: \{X\}
- Learning output: \(P(x)\)
- Example: Clustering, density estimation, etc.

Very often combined
- Sometimes within the same model!
Non-Parametric Model

No explicit model for the function, **examples:**

- Nearest neighbor classifier
- Decision tree

Capacity (size of hypothesis class) grow with size of training data!

Non-Parametric – Nearest Neighbor

Example 1, cat

Example 2, dog

Example 3, car

Example 4, dog

Query

Procedure: Take label of nearest example
• **Expensive**
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset – very slow!
 - Must use tricks like approximate nearest neighbour search

• **Doesn’t work well when large number of irrelevant features**
 - Distances overwhelmed by noisy features

• **Curse of Dimensionality**
 - Distances become meaningless in high dimensions
k-Nearest Neighbor on images **never used.**

- **Curse of dimensionality**
 - Lots of weird behavior in high-dimensional spaces, e.g. orthogonality of random vectors, percentage of points around shell, etc.

Dimensions = 1
Points = 4

Dimensions = 2
Points = 4^2

Dimensions = 3
Points = 4^3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Parametric Model

Explicitly model the function $f: X \rightarrow Y$ in the form of a parametrized function $f(x, W) = y$, examples:

- Logistic regression/classification
- Neural networks

Capacity (size of hypothesis class) **does not** grow with size of training data!

Learning is search

Parametric – Linear Classifier

$$f(x, W) = Wx + b$$

Procedure:

Calculate score per class for example
Return label of maximum score (argmax)
A Learning Problem

$$y = f(x_1, x_2, x_3, x_4)$$

<table>
<thead>
<tr>
<th>Example</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

No Assumptions means no learning
Training Stage:
Training Data \{ (x_i, y_i) \} \rightarrow h \quad \text{(Learning)}

Testing Stage
Test Data \ x \rightarrow h(x) \quad \text{(Apply function, Evaluate error)}
Probabilities to rescue:
 X and Y are *random variables*
 \[D = (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \sim P(X,Y) \]

IID: Independent Identically Distributed
 Both training & testing data sampled IID from \(P(X,Y) \)
 Learn on training set
 Have some hope of *generalizing* to test set
20 years of research in Learning Theory oversimplified:

If you have:
 Enough training data D
 and H is not too complex
then *probably* we can generalize to unseen test data

Caveats: A number of recent empirical results question our intuitions built from this clean separation.
Input \{X, Y\} where:

- \(X\) is an image
- \(Y\) is a **ground truth label** annotated by an expert (human)
- \(f(x, W) = Wx + b\) is our model, chosen to be a linear function in this case
- \(W\) and \(b\) are the parameters (**weights**) of our model that must be learned

Example: Image Classification
Input image is **high-dimensional**

- For example, \(n = 512 \) so a 512x512 image = **262,144** pixels
- Learning a classifier with high-dimensional inputs is hard

Before deep learning, it was typical to perform **feature engineering**

- Hand-design algorithms for converting raw input into a lower-dimensional set of features

\[
x = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{nn}
\end{bmatrix}
\]
Example: Color histogram

- Vector of numbers representing number of pixels fitting within each bin
- We will later see that learning the feature representation itself is much more effective
Labels are categories, but we need a numerical representation
- Assigning number to each category is arbitrary
- Instead, represent probability distribution over categories
- Ground truth label then becomes a probability distribution where the correct category probability is 1, and all others are 0
- Note for regression this is not an issue as the ground truth label (e.g. housing prices) is a number already

Ground truth label: ‘Coffee Cup’

Convert to Scores (e.g. 0/1)

Class Scores

Output Representation: Representing Categories
Input \(\{X, Y\} \) where:

- \(X \) is an **image histogram**
- \(Y \) is a **ground truth label represented a probability distribution**
- \(f(x, W) = Wx + b \) is our model, chosen to be a linear function in this case
- \(W \) and \(b \) are the **weights** of our model that must be learned

Example: Image Classification
Input \(\{X, Y\} \) where:

- \(X \) is a sentence
- \(Y \) is a **ground truth label** annotated by an expert (human)
- \(f(x, W) = Wx + b \) is our model, chosen to be a linear function in this case
- \(W \) and \(b \) are the **weights** of our model that must be learned

Data: Text

```
TV Fan 88 @tv_fan1988 · 7h
This television is amazing! The picture quality is extremely high.
```

Model

\[
f(x, W) = Wx + b
\]

Class Scores

- Negative
- Neutral
- Positive

Word Histogram

<table>
<thead>
<tr>
<th>Word</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>this</td>
<td>1</td>
</tr>
<tr>
<td>that</td>
<td>0</td>
</tr>
<tr>
<td>is</td>
<td>2</td>
</tr>
<tr>
<td>extremely</td>
<td>1</td>
</tr>
<tr>
<td>hello</td>
<td>0</td>
</tr>
<tr>
<td>onomatopoeia</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Components of a Parametric Learning Algorithm
Components of a Parametric Model

- **Input (and representation)**
 - Functional form of the model
 - Including parameters
 - Performance measure to improve
 - Loss or objective function
 - Algorithm for finding best parameters
 - Optimization algorithm

Model

\[f(x, W) = Wx + b \]
- **Input:** Continuous number or vector

- **Output:** A continuous number
 - For classification typically a **score**
 - For regression what we want to regress to (house prices, crime rate, etc.)

- **w is a vector and weights** to optimize to fit target function

Model: Discriminative Parameterized Function
Deep Learning as Legos

Neural Network

Linear classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
What is the simplest function you can think of?

Our model is:

\[f(x, w) = w \cdot x + b \]

(Note if \(w \) and \(x \) are column vectors we often show this as \(w^T x \))

Image adapted from:
https://en.wikipedia.org/wiki/Linear_equation#/media/File:Linear_Function_Graph.svg
Linear Classification and Regression

Simple linear classifier:

- Calculate score:
 \[f(x, w) = w \cdot x + b \]
- Binary classification rule (\(w \) is a vector):
 \[y = \begin{cases}
 1 & \text{if } f(x, w) \geq 0 \\
 0 & \text{otherwise}
\end{cases} \]
- For multi-class classifier take class with highest (max) score
 \[f(x, W) = Wx + b \]
Idea: Separate classes via high-dimensional linear separators (hyper-planes)

One of the simplest parametric models, but surprisingly effective

Very commonly used!

Let’s look more closely at each element
To simplify notation we will refer to inputs as $x_1 \cdots x_m$ where $m = n \times n$.
Classifier for class 1 $\rightarrow \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} \end{bmatrix}$
Classifier for class 2 $\rightarrow \begin{bmatrix} w_{21} & w_{22} & \cdots & w_{2m} \end{bmatrix}$
Classifier for class 3 $\rightarrow \begin{bmatrix} w_{31} & w_{32} & \cdots & w_{3m} \end{bmatrix}$

$\text{Model} \quad f(x, W) = WX + b$

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)
We can move the bias term into the weight matrix, and a “1” at the end of the input.

Results in **one** matrix-vector multiplication!

\[
\begin{bmatrix}
 w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\
 w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\
 w_{31} & w_{32} & \cdots & w_{3m} & b_3
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_m \\
 1
\end{bmatrix}
\]

\[
W
\]

Model

\[
f(x, W) = Wx + b
\]
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Interpreting a Linear Classifier

Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize.

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Geometric Viewpoint

\[f(x, W) = Wx + b \]

Array of 32x32x3 numbers (3072 numbers total)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Hard Cases for a Linear Classifier

Class 1: number of pixels > 0 odd
Class 2: number of pixels > 0 even

Class 1: 1 ≤ L2 norm ≤ 2
Class 2: Everything else

Class 1: Three modes
Class 2: Everything else

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Linear Classifier: Three Viewpoints

Algebraic Viewpoint

\[f(x, W) = Wx \]

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Performance Measure for a Classifier
- Input (and representation)
- Functional form of the model
 - Including parameters
- **Performance measure to improve**
 - Loss or objective function
- Algorithm for finding best parameters
 - Optimization algorithm

Components of a Parametric Model

- Data: Image
- Features: Histogram
- Model: \(f(x, W) = Wx + b \)
- Class Scores
 - Car
 - Coffee Cup
 - Bird
- Loss Function
- Optimizer
The output of a classifier can be considered a **score**

For binary classifier, use rule:

\[y = \begin{cases}
1 & \text{if } f(x, w) \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

Can be used for many classes by considering one class versus all the rest (one versus all)

For multi-class classifier can take the maximum
Several issues with scores:

- Not very interpretable (no bounded value)

We often want **probabilities**

- More interpretable

- Can relate to probabilistic view of machine learning

We use the **softmax** function to convert scores to probabilities

\[
s = f(x, W)
\]

\[
P(Y = k|X = x) = \frac{e^{s_k}}{\sum_j e^{s_j}}
\]
We need a performance measure to optimize

- Penalizes model for being wrong
- Allows us to modify the model to reduce this penalty
- Known as an **objective** or **loss** function

In machine learning we use **empirical risk minimization**

- Reduce the loss over the **training** dataset
- We **average** the loss over the training data

Given a dataset of examples:

$$\{(x_i, y_i)\}_{i=1}^{N}$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum L_1(f(x_i, W), y_i)$$
Multiclass SVM loss:
Given an example \((x_i,y_i)\) where \(x_i\) is the image and where \(y_i\) is the (integer) label,

and using the shorthand for the scores vector: \(s = f(x_i, W)\)

the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \begin{cases}
0 & \text{if } s_{y_i} \geq s_j + 1 \\
(s_j - s_{y_i} + 1) & \text{otherwise}
\end{cases}
= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Example: “Hinge Loss”

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Multiclass SVM loss:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x,W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losses:</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

= $\max(0, 5.1 - 3.2 + 1)$

+ $\max(0, -1.7 - 3.2 + 1)$

= $\max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9
Suppose: 3 training examples, 3 classes.
With some W the scores $f(x,W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>3.2</th>
<th></th>
<th>1.3</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>car</td>
<td>5.1</td>
<td></td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>frog</td>
<td>-1.7</td>
<td></td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Losses:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$
$$+ \max(0, 2.0 - 4.9 + 1)$$
$$= \max(0, -2.6) + \max(0, -1.9)$$
$$= 0 + 0$$
$$= 0$$

Multiclass SVM loss:
Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
Multiclass SVM loss:

Given an example \((x_i, y_i)\) where \(x_i\) is the image and where \(y_i\) is the (integer) label,

and using the shorthand for the scores vector: \(s = f(x_i, W)\)

the SVM loss has the form:

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

\[L = \frac{(2.9 + 0 + 12.9)}{3} = 5.27 \]

Suppose: 3 training examples, 3 classes.
With some \(W\) the scores \(f(x, W) = Wx\) are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losses</td>
<td>2.9</td>
<td>0.0</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Multiclass SVM loss:

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Q: What happens to loss if car image scores change a bit?

No change for small values

Suppose: 3 training examples, 3 classes. With some \(W \) the scores \(f(x,W)=Wx \) are:

<table>
<thead>
<tr>
<th>Class</th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Multiclass SVM loss:

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Q: What is min/max of loss value?

\[[0, \infty] \]

Suppose: 3 training examples, 3 classes. With some \(W \) the scores \(f(x,W) = Wx \) are:

- cat: 3.2, 1.3, 2.2
- car: 5.1, 4.9, 2.5
- frog: -1.7, 2.0, -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

- cat: 3.2, 1.3, 2.2
- car: 5.1, 4.9, 2.5
- frog: -1.7, 2.0, -3.1

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: At initialization W is small so all $s \approx 0$. What is the loss?

C-1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Multiclass SVM loss:

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Q: What if the sum was over all classes? (including \(j = y_i \))

No difference (add constant 1)

Suppose: 3 training examples, 3 classes. With some \(W \) the scores \(f(x,W)=Wx \) are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Suppose: 3 training examples, 3 classes. With some W the scores $f(x,W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>s_2</td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td>s_3</td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What if we used mean instead of sum?

No difference
Scaling by constant

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
E.g. Suppose that we found a W such that $L = 0$.

Q: Is this W unique?

No $2W$ also has $L=0$.
If we use the softmax function to convert scores to probabilities, the right loss function to use is **cross-entropy**.

- Can be derived by looking at the distance between two probability distributions (output of model and ground truth).
- Can also be derived from a maximum likelihood estimation perspective.

\[L_i = -\log P(Y = y_i|X = x_i) \]

Maximize log-prob of correct class =
Maximize the log likelihood = Minimize the negative log likelihood.
If we use the softmax function to convert scores to probabilities, the right loss function to use is **cross-entropy**.
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

\[s = f(x_i; W) \]

Probabilities must be \(\geq 0 \)

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Probabilities must sum to 1

\[L_i = -\log P(Y = y_i | X = x_i) \]

Unnormalized probabilities

Unnormalized log-probabilities / logits

\[\exp \]

\[\text{normalize} \]

Cat: 3.2 24.5 0.13
Car: 5.1 164.0 0.18
Frog: -1.7 0.18 0.00

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Probabilities must be >= 0

Probabilities must sum to 1

\[L_i = -\log P(Y = y_i | X = x_i) \]

\[L_i = -\log(0.13) \]

Q: What is the min/max of possible loss \(L_i \)?

Infimum is 0, max is unbounded (inf)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as \textbf{probabilities}

\[s = f(x_i; W) \]

Probabilities must be \(\geq 0 \)

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Probabilities must sum to 1

\[L_i = -\log P(Y = y_i | X = x_i) \]

\[L_i = -\log(0.13) \]

Q: At initialization all \(s \) will be approximately equal; what is the loss?

\(\log(C) \), e.g. \(\log(10) \approx 2 \)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n