

Apples-to-Apples: Comparing the Performance of Hate Speech Detection Models in Context Seema Baddam, Richard Huang, Kai McKeever (CS 6471: Spring 2022)

LDA vs TF-IDF as input features for SVM

LDA features underperform in most cross-domain tests and TF-IDF features also have poor performance.

Generalization evaluation on LSTM and BERT

Problem/Research Question

How well can different hate speech detection models perform across varying topics in Twitterbased datasets?

Data analysis

Property	OffensEval	Implicit Hate	Covid Hate
Num. Documents	14,100	21,480	2,290
Avg. Document Size (chars)	127	89	173
Num. Labels (Non-hate/hate/others)	2	3	3

Methods

- Topic Modeling with LDA and TF-IDF
- Training/Gridsearch pipeline for SVM, LSTM, BERT
- Cross-domain evaluation
 - Between SVM models
 - Between BERT models
- XAI analysis with Integrated Gradients on BERT
 - · Qualitative study on the sentence inputs
 - Quantitative study on attribution scores

Interpretation of BERT's inferences with XAI

Takeaways & Future work

Takeaways:

- Neat and tidy topics hardly exist for hate speech
- LDA features can't substitute for other embeddings
- Larger neural network models perform better
- Data matters for explainability and accuracy

Future work:

- Resampling datasets for data imbalance
- Concatenating features for training

Table 1: Datasets Summary