CS 4803 / 7643: Deep Learning

Topics:

- Convolutional Neural Networks
- Stride, padding l
- Pooling layers 1
- Fully-connected layers as convolutions

Dhruv Batra
Georgia Tech

Administrativia

- HW2 Reminder
- Due: 09/23, 11:59pm
- https://evalai.cloudcv.org/web/challenges/challenge-page/6 84/leaderboard/1853

Project Teams

- https://gtvault-my.sharepoint.com/:x:/g/personal/dba tra8_gatech_edu/EY4_65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRz R6KnglIFEQ? $e=4$ tnKWI
- Project Title
- 1-3 sentence project summary TL;DR
- Team member names

Recap from last time

(C) Dhruv Batra

Convolutional Neural Networks

(without the brain stuff)

[Assumption 1: Locally Connected Layer]

Assumption 2: Stationarity / Parameter Sharing

Convolutional Layer

Share the same parameters across different locations (assuming input is stationary):
Convolutions with learned kernels

Convolutions!
math \rightarrow CS \rightarrow programming

Convolutions for programmers

x
w
y

Convolution

Convolutional Layer

(C) Dhruv Batra

Convolution

Plan for Today

- Convolutional Neural Networks
- Features learned by CNN layers
- Stride, padding
- 1x1 convolutions
- Pooling layers
- Fully-connected layers as convolutions

FC vs Conv Layer

Convolution Layer

$32 \times 32 \times 3$ image

Convolution Layer

$32 \times 32 \times 3$ image

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

710, 33,64,
Filters always extend the full depth of the input volume $32 \times 32 \times 3$ image

Convolve the filter with the image
i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

Convolution Layer

 consider a second, green filter

For example, if we had 65×5 filters, we'll get 6 separate activation maps: activation maps

Im2Col

GEMM

Time Distribution of AlexNet

GPU Forward Time Distribution

CPU Forward Time Distribution

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Convolutional Neural Networks

(CI) 4 feature maps (S2) 6 feature maps
(C2) 6 feature maps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Visualizing Learned Filters

Visualizing Learned Filters

Visualizing Learned Filters

We can learn image features now!

			chey	
(5)				

eature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]
Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Plan for Today

- Convolutional Neural Networks
- Features learned by CNN layers
- Stride, padding
- 1x1 convolutions
- Pooling layers
- Fully-connected layers as convolutions

A closer look at spatial dimensions:
activation map

A closer look at spatial dimensions:

7

7×7 input (spatially) assume 3×3 filter

7

A closer look at spatial dimensions:

7

7×7 input (spatially) assume 3×3 filter

7

A closer look at spatial dimensions:

7

7×7 input (spatially) assume 3×3 filter

7

A closer look at spatial dimensions:

7

7×7 input (spatially) assume 3×3 filter

7

A closer look at spatial dimensions:

7

7×7 input (spatially) assume 3×3 filter
 => 5×5 output

A closer look at spatial dimensions:
7

7×7 input (spatially)
 assume 3×3 filter applied with stride 2

7

A closer look at spatial dimensions:

7

7×7 input (spatially)
 assume 3×3 filter applied with stride 2

7

A closer look at spatial dimensions:
7

7×7 input (spatially) assume 3×3 filter applied with stride 2 => 3×3 output!

7

A closer look at spatial dimensions:
7

7×7 input (spatially) assume 3×3 filter applied with stride 3 ?

7

A closer look at spatial dimensions:
7

7×7 input (spatially) assume 3×3 filter applied with stride 3 ?

7

doesn't fit!

cannot apply 3×3 filter on 7×7 input with stride 3.

N

Output size:
(N - F) / stride + 1
e.g. $N=7, F=3$: stride $1=>(7-3) / 1+1=5$ stride $2=>(7-3) / 2+1=3$ stride $3=>(7-3) / 3+1=2.33: 1$

Remember back to...

E.g. 32×32 input convolved repeatedly with 5×5 filters shrinks volumes spatially! (32-> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero pad the border

000000

0
0
0
e.g. input 7×7
3×3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

(recall:)

($\mathrm{N}-\mathrm{F}$) / stride +1

In practice: Common to zero pad the border

000000
e.g. input $7 x 7$
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
7x7 output!

In practice: Common to zero pad the border

000000

0
0
0
e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
7x7 output!
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)

$$
\text { e.g. F = } 3 \text { => zero pad with } 1
$$

F = 5 => zero pad with 2
F = 7 => zero pad with 3

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Output volume size: ?

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Output volume size:
$(32+2 * 2-5) / 1+1=32$ spatially, so
$32 \times 32 \times 10$

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has $5 * 5 * 3+1=76$ params
(+1 for bias) => 76*10 = 760

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

$$
\begin{aligned}
K & =(\text { powers of } 2, \text { e.g. } 32,64,128,512) \\
- & F=3, S=1, P=1 \\
- & F=5, S=1, P=2 \\
- & F=5, S=2, P=?(\text { whatever fits }) \\
- & F=1, S=1, P=0
\end{aligned}
$$

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Plan for Today

- Convolutional Neural Networks
- Features learned by CNN layers
- Stride, padding
- 1x1 convolutions
- Pooling layers
- Fully-connected layers as convolutions
- Backprop in conv layers

Can we have 1×1 filters?

1x1 convolution layers make perfect sense

Fully Connected Layer as 1x1 Conv

$32 \times 32 \times 3$ image -> stretch to 3072×1

