
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– Convolutional Neural Networks

– Pooling layers
– Fully-connected layers as convolutions
– Backprop in conv layers [Derived in notes]
– Toeplitz matrices and convolutions = matrix-mult



Administrativia
• HW2 Reminder

– Due: 09/23, 11:59pm
– https://evalai.cloudcv.org/web/challenges/challenge-page/6

84/leaderboard/1853

• Project Teams
– https://gtvault-my.sharepoint.com/:x:/g/personal/dba

tra8_gatech_edu/EY4_65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRz
R6KnglIFEQ?e=4tnKWI

– Project Title
– 1-3 sentence project summary TL;DR
– Team member names
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https://evalai.cloudcv.org/web/challenges/challenge-page/684/leaderboard/1853
https://evalai.cloudcv.org/web/challenges/challenge-page/684/leaderboard/1853
https://gtvault-my.sharepoint.com/:x:/g/personal/dbatra8_gatech_edu/EY4_65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRzR6KnglIFEQ?e=4tnKWI
https://gtvault-my.sharepoint.com/:x:/g/personal/dbatra8_gatech_edu/EY4_65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRzR6KnglIFEQ?e=4tnKWI
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Recap from last time
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Convolutions for programmers

(C) Dhruv Batra 4



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolution Layer



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolution Layer



32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolution Layer



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– 1x1 convolutions
– Backprop in conv layers [Derived in notes]
– Pooling layers
– Fully-connected layers as convolutions
– Toeplitz matrices and convolutions = matrix-mult

(C) Dhruv Batra 10



A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
       F = 5 => zero pad with 2
       F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– 1x1 convolutions
– Backprop in conv layers [Derived in notes]
– Pooling layers
– Fully-connected layers as convolutions
– Toeplitz matrices and convolutions = matrix-mult
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Can we have 1x1 filters?
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1x1 convolution layers make perfect sense

64

56

56
1x1 CONV
with 32 filters

32
56

56

(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3072
1

Fully Connected Layer as 1x1 Conv

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– 1x1 convolutions
– Backprop in conv layers [Derived in notes]
– Pooling layers
– Fully-connected layers as convolutions
– Toeplitz matrices and convolutions = matrix-mult
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Any DAG of differentiable 
modules is allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 39

Computational Graph



Key Computation: Forward-Prop

(C) Dhruv Batra 40Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Key Computation: Back-Prop
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Backprop in Convolutional Layers
• Notes

– https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/sli
des/L11_cnns_backprop_notes.pdf
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Backprop in Convolutional Layers
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https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/slides/L11_cnns_backprop_notes.pdf
https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/slides/L11_cnns_backprop_notes.pdf


Backprop in Convolutional Layers
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Backprop in Convolutional Layers
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Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– 1x1 convolutions
– Backprop in conv layers [Derived in notes]
– Pooling layers
– Fully-connected layers as convolutions
– Toeplitz matrices and convolutions = matrix-mult
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two more layers to go: POOL/FC

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Let us assume filter is an “eye” detector.
Q.: how can we make the detection robust to 
the exact location of the eye?

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 48



By “pooling” (e.g., taking max) filter
responses at different locations we gain 
robustness to the exact spatial location of 
features.

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 49



Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

dim 1

dim 2

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Max-pooling:

Average-pooling:

L2-pooling:

Pooling Layer: Examples

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 53



Conv.
layer

Pool.
layer

Receptive Field

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 54



Conv.
layer

Pool.
layer

Pooling Layer: Receptive Field Size

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 55



Conv.
layer

Pool.
layer

Pooling Layer: Receptive Field Size

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 56

If convolutional filters are FxF and stride 1, and 
pooling layer has pools of size PxP, 
then each unit in the pooling layer depends upon a patch in h(l-1) of 
size: (P+F-1)x(P+F-1)



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Common settings:

F = 2, S = 2
F = 3, S = 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks
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Classical View

(C) Dhruv Batra 61Figure Credit: [Long, Shelhamer, Darrell CVPR15]



NxNxC1, N small

C2 hidden units 

Fully conn. layer 

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 62



Classical View

(C) Dhruv Batra 63Figure Credit: [Long, Shelhamer, Darrell CVPR15]



Classical View = Inefficient
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Classical View
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Re-interpretation
• Just squint a little!

(C) Dhruv Batra 66Figure Credit: [Long, Shelhamer, Darrell CVPR15]



NxNxC1, N small

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 67

Fully conn. layer /
Conv. layer (C2 kernels of size NxNxC1)

C2 hidden units / 
1x1xC2 feature maps



Re-interpretation
• Just squint a little!
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“Fully Convolutional” Networks
• Can run on an image of any size!

(C) Dhruv Batra 69Figure Credit: [Long, Shelhamer, Darrell CVPR15]



Benefit of this thinking
• Mathematically elegant

• Efficiency
– Can run network on arbitrary image 
– Without multiple crops
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Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– 1x1 convolutions
– Backprop in conv layers [Derived in notes]
– Pooling layers
– Fully-connected layers as convolutions
– Toeplitz matrices and convolutions = matrix-mult
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Toeplitz Matrix
• Diagonals are constants

• Aij = ai-j
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Why do we care?
• (Discrete) Convolution = Matrix Multiplication 

– with Toeplitz Matrices
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. . .
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"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons - 

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_
with_itself2.gif



(C) Dhruv Batra 76Figure Credit: Dumoulin and Visin, https://arxiv.org/pdf/1603.07285.pdf
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