CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Convolutional Neural Networks
 - Fully-connected layers as convolutions
 - Toeplitz matrices and convolutions = matrix-mult
 - Transposed convolutions

Dhruv Batra Georgia Tech

Administrativia

- HW2 Challenge Final Analysis
 - <u>https://evalai.cloudcv.org/web/challenges/challenge-page/6</u>
 <u>84/leaderboard/1853</u>
 - Qualitative Trends
- HW3 Reminder
 - Due: 10/07 11:59pm
 - Theory: Convolutions, Representation Capacity, Double Descent
 - Implementation: Saliency methods (e.g. Grad-CAM) in Python and PyTorch/Captum

ssingh633 submission accuracy

vaibhav submission accuracy

0.82 --- test_public ---- test_private 0.81 0.80 0.79 0.78 0.77 2020092318:22:10 202009-2401:51:41 2020.09.25.20.34.26 2020092311:59:51

aghosh submission accuracy

Submitted at

Accuracy

Ford Prefect submission accuracy

Plan for Today

- (Finish) Convolutional Neural Networks
 - Fully-connected layers as convolutions
 - Toeplitz matrices and convolutions = matrix-mult

Transposed convolutions

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

Classical View

Classical View

(C) Dhruv Batra

Figure Credit: [Long, Shelhamer, Darrell CVPR15]

Classical View = Inefficient

 $227 \times 227 \quad 55 \times 55 \qquad 27 \times 27 \qquad 13 \times 13$

Re-interpretation

• Just squint a little!

Fully conn. layer / Conv. layer (C₂ kernels of size NxNxC₁)

Re-interpretation

• Just squint a little!

"Fully Convolutional" Networks

Can run on an image of any size!
 [at test long]

 $H \times W$ $H/4 \times W/4$ $H/8 \times W/8$ $H/16 \times W/16$ $H/2 \times W/2$ 2×2

Benefit of this thinking

- Mathematically elegant •
- Efficiency
 - Can run network on arbitrary image
 Without multiple crops

Plan for Today

- (Finish) Convolutional Neural Networks
 - Fully-connected layers as convolutions
 - Toeplitz matrices and convolutions = matrix-mult
 - Transposed convolutions

So far: Image Classification

Other Computer Vision Tasks

Semantic Segmentation

GRASS, CAT, TREE, SKY No objects, just pixels 2D Object Detection

DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection

Car

Object categories + 3D bounding boxes

This image is CC0 public domain

Semantic Segmentation

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

2D Object Detection

DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection

Car

Object categories + 3D bounding boxes

This image is CC0 public domain

Semantic Segmentation

This image is CC0 public domain

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Sky

Semantic Segmentation Idea: Sliding Window

Parabet et al, "Learning Hierarchical Features for Scene Labeling," I PAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Time Distribution of AlexNet

GPU Forward Time Distribution

CPU Forward Time Distribution

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: "Unpooling"

Transposed Convolutions

- Deconvolution (bad name)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

3 x 3 transpose convolution, stride 2 pad 1

Transpose Convolution: 1D Example

Output

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

(C) Dhruv Batra

Figure Credit: https://medium.com/apache-mxnet/transposed-convolutionsexplained-with-ms-excel-52d13030c7e8

Transposed Convolution

https://distill.pub/2016/deconv-checkerboard/

Why this operation?

What is deconvolution?

.

Toeplitz Matrix

• Diagonals are constants

$$\begin{bmatrix} a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end{bmatrix}.$$

• $A_{ij} = a_{i-j}$

$$A = \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \dots & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \dots & \dots & a_2 & a_1 & a_0 \end{bmatrix}$$

(C) Dhruv Batra

Why do we care?

• (Discrete) Convolution = Matrix Multiplication

- with Toeplitz Matrices

	$\ \ w_k$	0	• • •	0	0]	
	w_{k-1}	w_k	• • •	0	0	
	w_{k-2}	w_{k-1}	•••	0	0	
	•	• •	• •	• •	• •	$\begin{bmatrix} x_1 \end{bmatrix}$
	w_1		• • •	w_k	0	x_2
y = w * x	•	• •	• •	• •	• •	x_3
	0	w_1	• • •	w_{k-1}	w_k	•
	÷	• • •	• •	• • •	• •	$\lfloor x_n \rfloor$
	0	0	• •	w_1	w_2	
(C) Dhruv Batra	0	0	•	0	w_1	

55

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_

(C) Dhruv Batra

with_itself2.gif

1	$w_{0,0}$	$w_{0,1}$	$w_{0,2}$	0	$w_{1,0}$	$w_{1,1}$	$w_{1,2}$	0	$w_{2,0}$	$w_{2,1}$	$w_{2,2}$	0	0	0	0	0 \
I	0	$w_{0,0}$	$w_{0,1}$	$w_{0,2}$	0	$w_{1,0}$	$w_{1,1}$	$w_{1,2}$	0	$w_{2,0}$	$w_{2,1}$	$w_{2,2}$	0	0	0	0
I	0	0	0	0	$w_{0,0}$	$w_{0,1}$	$w_{0,2}$	0	$w_{1,0}$	$w_{1,1}$	$w_{1,2}$	0	$w_{2,0}$	$w_{2,1}$	$w_{2,2}$	0
	0	0	0	0	0	$w_{0,0}$	$w_{0,1}$	$w_{0,2}$	0	$w_{1,0}$	$w_{1,1}$	$w_{1,2}$	0	$w_{2,0}$	$w_{2,1}$	$w_{2,2}$

(C) Dhruv Batra

Figure Credit: Dumoulin and Visin, https://arxiv.org/pdf/1603.07285.pdf

What is deconvolution?

• (Non-blind) Deconvolution

What does "deconvolution" have to do with "transposed convolution"?

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

When stride=1, convolution transpose is just a regular convolution (with different padding rules)