CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Convolutional Neural Networks
 - Transposed convolutions
- Recurrent Neural Networks (RNNs)

Dhruv Batra Georgia Tech

Administrativia

- 5 min talk by Vadini Agrawal (of CS + Social Good)
 - Talk on Ethical considerations within deep learning

Administrativia

- HW3 Reminder
 - Due: 10/07 11:59pm
 - Theory: Convolutions, Representation Capacity, Double Descent
 - Implementation: Saliency methods (e.g. Grad-CAM) in Python and PyTorch/Captum

Thoughts on Zhang et al. ICLR17

Error Decomposition

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data *too* well so we don't fit noise in the data

Thoughts on Zhang et al. ICLR17

- Randomization testing is a powerful tool.
- What does 0 training error on random labels mean?
 - No optimization error
 - No approximation/modeling error
- Explicit regularization is helpful, but not essential
- Inductive bias
 - Conv is a specific inductive bias, but even when data doesn't satisfy that, the model class is expressive enough
- Implicit regularization of SGD
 See HW3 Q6
- These results are not specific to deep learning / NN

(C) Dhruv Batralso known to happen for decision trees

Plan for Today

- (Finish) Convolutional Neural Networks
 Transposed convolutions
- Recurrent Neural Networks (RNNs)

 A new model class
 Learning: BackProp Through Time (BPTT)

Other Computer Vision Tasks

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

2D Object Detection

DOG, DOG, CAT

Object categories + 2D bounding boxes

3D Object Detection

Car

Object categories + 3D bounding boxes

This image is CC0 public domain

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: "Unpooling"

In-Network upsampling: "Max Unpooling"

Transposed Convolutions

- Deconvolution (bad)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: Transpose Convolution

Figure Credit: https://medium.com/apache-mxnet/transposed-convolutionsexplained-with-ms-excel-52d13030c7e8

Transpose Convolution: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Output

Need to crop one pixel from output to make output exactly 2x input

In-Network upsampling: "Unpooling"

Why this operation?

Why is it called "transposed convolution"?

Toeplitz Matrix

• Diagonals are constants

(C) Dhruv Batra

Why do we care?

(Discrete) Convolution = Matrix Multiplication
 – with Toeplitz Matrices

$$\begin{array}{c|c} \mathbf{w}_{k} & \mathbf{w}_{k} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{w}_{k-1} & \mathbf{w}_{k} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{w}_{k-2} & \mathbf{w}_{k-1} & \dots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{w}_{1} & \dots & \mathbf{w}_{k} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{w}_{1} & \dots & \mathbf{w}_{k-1} & \mathbf{w}_{k} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \vdots & \mathbf{w}_{1} & \mathbf{w}_{2} \\ \mathbf{0} & \mathbf{0} & \vdots & \mathbf{0} & \mathbf{w}_{1} \end{array} \right] \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} \mathbf{v}$$
(C) Dhruv Batra

25

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_

with_itself2.gif

(C) Dhruv Batra

Transpose Convolution: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in

the output

Output

Need to crop one pixel from output to make output exactly 2x input

What is deconvolution?

• (Non-blind) Deconvolution

(onv $y = m \times m$) > Blind: Given y. producer w, X > Blind: Given y. producer w, X estimate > Non-blind: Given y. w. find/ X

What does "deconvolution" have to do with "transposed convolution"?

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv. kernel size=3, stride=1, padding=1

"transposed convolution" is a convolution!

We can express convolution in Convolution transpose multiplies by the terms of a matrix multiplication transpose of the same matrix: $\vec{x} *^T \vec{a} = X^T \vec{a}$ $\vec{x} * \vec{a} = X \vec{a}$ ax $\begin{bmatrix} z & 0 & 0 & 0 \\ y & z & 0 & 0 \\ x & y & z & 0 \\ 0 & x & y & z \end{bmatrix} \begin{vmatrix} 0 \\ a \\ b \\ c \\ d \end{vmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$ 0 0 Example: 1D conv, kernel size=3, stride=1, padding=1

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & x & y & z & 0 & 0 \\ 0 & 0 & x & y & z & 0 \\ 0 & 0 & 0 & x & y & z \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ ax + by + cz \\ bx + cy + dz \\ cx + dy \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$\vec{x} *^{T} \vec{a} = X^{T} \vec{a}$$

$$\begin{bmatrix} x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} ax \\ ay + bx \\ az + by + cx \\ bz + cy + dx \\ cz + dy \\ dz \end{bmatrix}$$

When stride=1, convolution transpose is just a regular convolution (with different padding rules)

Plan for Today

- (Finish) Convolutional Neural Networks Transposed convolutions
- Recurrent Neural Networks (RNNs)
 A new model class
 Learning: BackProp Through Time (BPTT)
New Topic: RNNs

many to many

(C) Dhruv Batra

You gotta know when to quit

New Words

- Recurrent Neural Networks (RNNs)
- Recursive Neural Networks
 - General family; think graphs instead of chains.

- Types:
 - "Vanilla" FNNs (Elman Networks)
 - Long Short Term Memory (LSTMs)
 - Gated Recurrent Units (GRUs)
 - ...
- Algorithms
 - BackProp Through Time (BPTT)
 - BackProp Through Structure (BPTS)

What's wrong with MLPs?

- Problem 1: Can't model sequences
 - Fixed-sized Inputs & Outputs
 - No temporal structure

What's wrong with MLPs?

- Problem 1: Can't model sequences
 - Fixed-sized Inputs & Outputs
 - No temporal structure

Figure Credit: Carlos Guestrin

Why model sequences?

Image Credit: Alex Graves and Kevin Gimpel

Even where you might not expect a sequence...

Classify images by taking a series of "glimpses"

2	14	8	2	9	1	1	1	1	8
3	3	3	8	6	9	6	5	1	3
8	8	1	8		6	9	8	3	4
F	0	2	1	6	Õ	9	l.	4	5
7	/	4	4	4	4	4	ų	7	9
3	1	8	9	3	4	2	7	2	3
6	6	1	6	З	- An	3	3	-	0
6	1	۵	Б	3	5	1	8	3	4
9	9	ł	1	3	0	5	9	5	4
1	1	8	6	9	80	30	2	-	R

Ba, Mnih, and Kavukcuoglu, "Multiple Object Recognition with Visual Attention", ICLR 2015.

Gregor et al, "DRAW: A Recurrent Neural Network For Image Generation", ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with permission.

Even where you might not expect a sequence...

Output ordering = sequence

(C) Dhruv Batra

Image Credit: Ba et al.; Gregor et al

• It's a spectrum...

problems (C) Dhruv Batra

• It's a spectrum...

Input: No sequence Output: No sequence Example: "standard"

classification /

regression problems (C) Dhruv Batra

• It's a spectrum...

Output: No sequence Example:

"standard" classification /

> regression problems (C) Dhruv Batra

nput: No sequence Output: Sequence Example: Im2Caption

Input: Sequence

Output: No sequence

Example: sentence classification, multiple-choice question answering

It's a spectrum... ۲

Input: No sequence Output: No sequence Example: "standard" classification /

> regression problems (C) Dhruv Batra

Input: No sequence **Output: Sequence**

Example: Im2Caption

Input: Sequence Output: No sequence

Example: sentence classification. multiple-choice question answering

Output: Sequence

Example: machine translation, video classification, video captioning, open-ended question answering

2 Key Ideas

- Parameter Sharingin computation graphs = adding gradients

Computational Graph

Slide Credit: Marc'Aurelio Ranzato

Gradients add at branches

2 Key Ideas

- Parameter Sharing
 - in computation graphs = adding gradients
- "Uprolling"
 - – in computation graphs with parameter sharing

How do we model sequences?

• No input

How do we model sequences?

• With inputs

$$s_t = f\theta(s_{t-1}, x_t)$$

2 Key Ideas

- Parameter Sharing
 - in computation graphs = adding gradients
- "Unrolling"
 - in computation graphs with parameter sharing
- Parameter sharing + Unrolling
 - Allows modeling arbitrary sequence lengths!
 - Keeps numbers of parameters in check

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector h:

Sometimes called a "Vanilla RNN" or an "Elman RNN" after Prof. Jeffrey Elman

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example: Character-level Language Model

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + b_h)$$

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

Distributed Representations Toy Example

Local vs Distributed

Distributed Representations Toy Example

• Can we interpret each dimension?

Power of distributed representations!

Local $\bullet \bullet \bullet \bullet = VR + HR + HE = ?$ Distributed $\bullet \bullet \bullet \bullet = V + H + E \approx \bigcirc$