CS 4803 / 7643: Deep Learning

Topics:

- (Finish) Convolutional Neural Networks
- Transposed convolutions I
- Recurrent Neural Networks (RNNs)

Dhruv Batra
Georgia Tech

Administrativia

- 5 min talk by Vadini Agrawal (of CS + Social Good)
- Talk on Ethical considerations within deep learning

Administrativia

- HW3 Reminder
- Due: 10/07 11:59pm
- Theory: Convolutions, Representation Capacity, Double Descent
- Implementation: Saliency methods (e.g. Grad-CAM) in Python and PyTorch/Captum

Thoughts on Zhang et al. ICLR17

Error Decomposition

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

Thoughts on Zhang et al.ICLR17

- Randomizationtestingis a powerful tool
- What does training error-on kandom labols mean?
- No_optimmization error
- Ne-approximation/modelingerror \square
- Explicit regularization is helplul, but not essential
- Inductive bias
- Conv is a specific inductive bias, but even when data doesn'tsatisfy that, themodetclass is expressive enough
- Implicit regularization of SGD
- See HW3 Q 6
- These results are not specific to deep learning / NN

Plan for Today

- (Finish) Convolutional Neural Networks
- Transposed convolutions
- Recurrent Neural Networks (RNNs)
- A new model class
- Learning: BackProp Through Time (BPTT)

Other Computer Vision Tasks

No objects, just pixels

2D Object

DOG, DOG, CAT
Object categories +
2D bounding boxes

3D Object Detection

Car
Object categories + 3D bounding boxes

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Semantic Segmentation Idea: Fully Convolutional

Input:
$3 \times H \times W$

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res:
$D_{1} \times \mathrm{H} / 2 \times \mathrm{W} / 2$
High-res:
$D_{1} \times \mathrm{H} / 2 \times \mathrm{W} / 2$

Upsampling: 222

Predictions:
H x W

In-Network upsampling: "Unpooling"

In-Network upsampling: "Max Unpooling"

Max Pooling
Remember which element was max!

Max Unpooling
Use positions from pooling layer

Input: 2×2

Output: 4×4

Corresponding pairs of downsampling and upsampling layers

Transposed Convolutions

- Deconvolution (bad)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: Transpose Convolution

Recall: Normal 3×3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output
Output: 2 x 2

Learnable Upsampling: Transpose Convolution

 3×3 transpose convolution, stride 2 pad 1
$p a d=1$

Padding happens in output
\qquad
\qquad

Transpose Convolution: 1D Example

Output

Input
 Output contains copies of the filter weighted by the input, summing at where at overlaps in the output
 Need to crop one pixel from output to make output exactly $2 x$ input

In-Network upsampling: "Unpooling"

Why this operation?

(C) Dhruv Batra

Why is it called "transposed convolution"?

Toeplitz Matrix

- Diagonals are constants

- $\widehat{A_{i}}=a_{6}$

$$
A=\left[\begin{array}{cccccc}
a_{0} & a_{-1} & a_{-2} & \ldots & \ldots & a_{-n+1} \\
a_{1} & a_{0} & a_{-1} & \ddots & & \vdots \\
a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\
\vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\
a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

(C) Dhruv Batra

Why do we care?

- (Discrete) Convolution = Matrix Multiplication
- with Toeplitz Matrices

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif\#/media/File:Convolution_of_box_signal_ (C) Dhruv Batra with_itself2.gif

Why is it called "transposed convolution"

Transpose Convolution: 1D Example

Output

Input
 Output contains copies of the filter weighted by the input, summing at where at overlaps in the output
 Need to crop one pixel from output to make output exactly $2 x$ input

What is deconvolution?

- (Non-blind) Deconvolution
conve $y=x * w$
Deconv \rightarrow Blind: Given y, pestoncele w, x
\rightarrow Non-blind: Given y, w, find/. estimate

What is deconvolution?
Assume: $\varepsilon \omega$ is esthonsamal aivicon

- (Non-blind) Deconvolution

$\bar{\omega}=\left[\begin{array}{lll}-1 & 0 & +1\end{array}\right] \frac{1}{2}$

$\int \underline{y=\underline{w}-x}$

(C) Dhruv Batra

$$
y=\omega_{x} \Rightarrow x=\bar{\omega}^{\top} y
$$

What does "deconvolution" have to do with "transposed convolution"?

"transposed convolution" is a convolution!

 win filter wWe can express convolution in terms of a matrix multiplication

$$
\underline{\vec{x}} * \vec{a}=X \vec{a}
$$

Example: 1D conv_kernel
size $=3$, stride $=1$, padding $=1$

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$
\vec{x} * \vec{a}=X \vec{a}
$$

$$
\left[\begin{array}{cccccc}
x & y & z & 0 & 0 & 0 \\
0 & x & y & z & 0 & 0 \\
0 & 0 & x & y & z & 0 \\
0 & 0 & 0 & x & y & z
\end{array}\right]\left[\begin{array}{c}
0 \\
a \\
b \\
c \\
d \\
0
\end{array}\right]=\left[\begin{array}{c}
a y+b z \\
a x+b y+c z \\
b x+c y+d z \\
c x+d y
\end{array}\right] \quad\left[\begin{array}{cccc}
x & 0 & 0 & 0 \\
y & x & 0 & 0 \\
z & y & x & 0 \\
0 & z & y & x \\
0 & 0 & \underline{z} & y \\
0 & 0 & 0 & z
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
a x \\
a y+b x \\
a z+b y+c x \\
b z+c y+d x \\
c z+d y \\
d z
\end{array}\right]
$$

Example: 1D conv, kernel size $=3$, stride $=1$, padding $=1$
$\left[\begin{array}{lll}x & y & 2\end{array}\right]$

"transposed convolution" is a convolution!

We can express convolution in terms of a matrix multiplication

$$
\vec{x} * \vec{a}=X \vec{a}
$$

$$
\left[\begin{array}{cccccc}
x & y & z & 0 & 0 & 0 \\
0 & x & y & z & 0 & 0 \\
0 & 0 & x & y & z & 0 \\
0 & 0 & 0 & x & y & z
\end{array}\right]\left[\begin{array}{l}
0 \\
a \\
b \\
c \\
d \\
0
\end{array}\right]=\left[\begin{array}{c}
a y+b z \\
a x+b y+c z \\
b x+c y+d z \\
c x+d y
\end{array}\right]
$$

Example: 1D conv, kernel size=3, stride=1, padding=1

Convolution transpose multiplies by the transpose of the same matrix:

$$
\vec{x} *^{T} \vec{a}=X^{T} \vec{a}
$$

$\left[\begin{array}{cccc}x & 0 & 0 & 0 \\ y & x & 0 & 0 \\ z & y & x & 0 \\ 0 & z & y & x \\ 0 & 0 & z & y \\ 0 & 0 & 0 & z\end{array}\right]\left[\begin{array}{c}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{c}a x \\ a y+b x \\ a z+b y+c x \\ b z+c y+d x \\ c z+d y \\ d z\end{array}\right]$

When stride $=1$, convolution transpose is just a regular convolution (with different padding rules)

Plan for Today

- (Finish) Convolutional Neural Networks
- Transposed convolutions

Recurrent Neural Networks (RNNs)

- A new model class
- Learning: BackProp Through Time (BPTT)

New Topic: RNNs

New Words

- Recurrent Neural Networks (RNNs)
- Recursive Neural Networks
- General family; think graphs instead of chains

What's wrong with MLPs?

- Problem 1: Can't model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure

What's wrong with MLPs?

- Problem 1: Can't model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure
- Problem 2: Pure feed-forward processing
- No "memory", no feedback

Output Layer

Hidden Layers

Input Layer

Why model sequences?

$\lambda^{(1)}$

d

Why model sequences?

Sequences are everywhere...

Forcign Minister.

 \longrightarrow FOREIGN MINISTER.

THE SOUND OF

$$
a_{1}=2 \quad a_{2}=0 \quad a_{3}=1 \quad a_{4}=3 \quad a_{5}=4 \quad a_{6}=2 \quad a_{7}=5
$$

$\boldsymbol{y}=$ please return the ${ }_{\sim} \mathrm{car}$.

Even where you might not expect a sequence...

Classify images by taking a series of "glimpses"

| 2 | 3 | 8 | 2 | 9 | 1 | 1 | 7 | 1 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 8 | 6 | 9 | 6 | 5 | 1 | 3 |
| 8 | 8 | 1 | 8 | 1 | 6 | 9 | 8 | 3 | 4 |
| 7 | 0 | 2 | 7 | 6 | 0 | 9 | 1 | 4 | 5 |
| 7 | 7 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 9 |
| 3 | 1 | 8 | 7 | 3 | 4 | 2 | 7 | 7 | 3 |
| 6 | 6 | 1 | 6 | 3 | 4 | 3 | 3 | 9 | 0 |
| 8 | 1 | 0 | 5 | 7 | 5 | 7 | 8 | 3 | 4 |
| 9 | 9 | 1 | 1 | 3 | 0 | 5 | 9 | 5 | 4 |
| 1 | 7 | 0 | 6 | 9 | 8 | 3 | 2 | 1 | 0 |

Even where you might not expect a sequence...

- Output ordering = sequence

(C) Dhruv Batra

Sequences in Input or Output?

- It's a spectrum...
one to one

Input: No
sequence
Output: No
sequence
Example:
"standard"
classification /
regression
problems Batra

Sequences in Input or Output?

- It's a spectrum...

Sequences in Input or Output?

- It's a spectrum...
one to one

Input: No sequence
Output: No
sequence
Example:
"standard" classification /
one to many

Input: No sequence Output: Sequence

Example:
Im2Caption
many to one

Input: Sequence
Output: No sequence
Example: sentence classification multiple-choice question answering

Sequences in Input or Output?

- It's a spectrum...
one to one

Input: No sequence
Output: No
sequence
Example:
"standard" classification /
many to one

Input: Sequence Output: No sequence
Example: sentence classification, multiple-choice question answering

Example: machine translation, video classification, video captioning, open-ended quēstion answering

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients

Computational Graph

$$
\begin{aligned}
& w_{1}=w_{2}=w \\
& \frac{\partial L}{\partial w}=\frac{\partial L}{\partial w_{1}}+\frac{\partial L}{\partial L}
\end{aligned}
$$

(C) Dhruv Batra

Gradients add at branches

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients
- "Unrolling"
- incomputation graphs with parameter sharing

How do we model sequences?

- No input

$$
\begin{aligned}
& \text { s国 }=\underline{f_{\theta}}\left(s_{t-1}\right) \\
& \text { (C) } \\
& \text { "uncolling) } \\
& {\left[s_{0} s f_{0} \rightarrow f_{0} s f_{0} \ldots . .\right]}
\end{aligned}
$$

How do we model sequences?

- With inputs

$$
\underline{\boldsymbol{s}_{t}}=f_{\theta}\left(\boldsymbol{s}_{t-1}, \underline{\boldsymbol{x}} t\right)
$$

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients
- "Unrolling"
- in computation graphs with parameter sharing
- Parameter sharing + Unrolling
- Allows modeling arbitrary sequence lengths!
- Keeps numbers of parameters in check

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
\boxed{h_{t}}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

new state old state input vector at
some time step
some function
with parameters W

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
y_{t}=W_{h y} h_{t}+b_{y}
$$

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to Many

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output
sequence from single input vector

Example:
 Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Example:
 Character-level Language Model

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Distributed Representations Toy Example

- Local vs Distributed
(a)
no pattern
0000

$$
\begin{array}{cc}
{\left[\begin{array}{llll}
{[} & 0000 \\
\square & 0000 \\
0 & 0000 \\
0 & 0000
\end{array}\right.}
\end{array}
$$

Distributed Representations Toy Example

- Can we interpret each dimension?

	0000	
\square	-000 []	- ○ ○
\square	$\bigcirc \bullet 00$ ص	$\bigcirc \bullet \bigcirc$
0	-0-0 0	- ○○•
0	00	

Power of distributed representations!

Local

Distributed

$$
=\mathrm{VR}+\mathrm{HR}+\mathrm{HE}=?
$$

