
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– (Finish) Convolutional Neural Networks

– Transposed convolutions
– Recurrent Neural Networks (RNNs)



Administrativia
• 5 min talk by Vadini Agrawal (of CS + Social Good)

– Talk on Ethical considerations within deep learning
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Administrativia
• HW3 Reminder

– Due: 10/07 11:59pm
– Theory: Convolutions, Representation Capacity, Double 

Descent
– Implementation: Saliency methods (e.g. Grad-CAM) in 

Python and PyTorch/Captum

(C) Dhruv Batra 3



Thoughts on Zhang et al. ICLR17
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Error Decomposition
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Regularization: Prefer Simpler Models

6

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Thoughts on Zhang et al. ICLR17
• Randomization testing is a powerful tool

• What does 0 training error on random labels mean? 
– No optimization error
– No approximation/modeling error

• Explicit regularization is helpful, but not essential

• Inductive bias
– Conv is a specific inductive bias, but even when data doesn’t satisfy that, 

the model class is expressive enough

• Implicit regularization of SGD
– See HW3 Q6

• These results are not specific to deep learning / NN
– Also known to happen for decision trees(C) Dhruv Batra 7



Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)
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Other Computer Vision Tasks
Semantic

Segmentation
2D Object 
Detection

DOG, DOG, CAT

Object categories + 
2D bounding boxes

This image is CC0 public domain

GRASS, CAT, 
TREE, SKY

No objects, just pixels

3D Object 
Detection

Car

Object categories + 
3D bounding boxes

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Problem: convolutions at 
original image resolution will 
be very expensive ...



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Predictions:
H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
???

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transposed Convolutions
• Deconvolution (bad)
• Upconvolution
• Fractionally strided convolution
• Backward strided convolution
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Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio 
between movement in 
input and output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Figure Credit: https://medium.com/apache-mxnet/transposed-convolutions-

explained-with-ms-excel-52d13030c7e8



Transpose Convolution: 1D Example

a

b

x

y

z

 ax

 ay

az + bx

 by 

bz

Input Filter

Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why this operation?
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Why is it called “transposed convolution”?
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Toeplitz Matrix
• Diagonals are constants

• Aij = ai-j
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Why do we care?
• (Discrete) Convolution = Matrix Multiplication 

– with Toeplitz Matrices

(C) Dhruv Batra 25

. . .
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"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons - 

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_
with_itself2.gif



(C) Dhruv Batra 27Figure Credit: Dumoulin and Visin, https://arxiv.org/pdf/1603.07285.pdf



Why is it called “transposed convolution”
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Transpose Convolution: 1D Example

a

b

x

y

z

 ax

 ay

az + bx

 by 

bz

Input Filter

Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What is deconvolution?
• (Non-blind) Deconvolution
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What is deconvolution?
• (Non-blind) Deconvolution
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. . .



What does “deconvolution” have to do with “transposed 
convolution”?
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We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

“transposed convolution” is a convolution!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

“transposed convolution” is a convolution!

When stride=1, convolution transpose 
is just a regular convolution (with 
different padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• (Finish) Convolutional Neural Networks

– Transposed convolutions

• Recurrent Neural Networks (RNNs)
– A new model class
– Learning: BackProp Through Time (BPTT)
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New Topic: RNNs

(C) Dhruv Batra 43Image Credit: Andrej Karpathy



New Words
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)
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What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

(C) Dhruv Batra 45Image Credit: Alex Graves, book



What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback

(C) Dhruv Batra 46Image Credit: Alex Graves, book



Why model sequences?

Figure Credit: Carlos Guestrin



Why model sequences?

(C) Dhruv Batra 48Image Credit: Alex Graves



Sequences are everywhere…

(C) Dhruv Batra 49Image Credit: Alex Graves and Kevin Gimpel



Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”

Even where you might not expect a sequence… 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence… 

52Image Credit: Ba et al.; Gregor et al

• Output ordering = sequence
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Sequences in Input or Output?
• It’s a spectrum… 

(C) Dhruv Batra 54

Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 

regression 
problems

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 

regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 

regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Image Credit: Andrej Karpathy



Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 

regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 
video captioning, open-ended question answering

Image Credit: Andrej Karpathy



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients
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Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 59

Computational Graph



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing
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How do we model sequences?
• No input

(C) Dhruv Batra 63Image Credit: Bengio, Goodfellow, Courville



How do we model sequences?
• With inputs

(C) Dhruv Batra 65Image Credit: Bengio, Goodfellow, Courville



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check
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Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



h0 fW
h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

… 

x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

… 

x2x1

W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

yT

… 

x2x1

W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

yT

… 

x2x1

W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

yT

… 

x2x1

W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

x3

y

… 

x2x1

W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW
h1 fW

h2 fW
h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Distributed Representations Toy Example

• Local vs Distributed

(C) Dhruv Batra 85Slide Credit: Moontae Lee 



Distributed Representations Toy Example

• Can we interpret each dimension?

(C) Dhruv Batra 86Slide Credit: Moontae Lee 



Power of distributed representations!

(C) Dhruv Batra 87

Local

Distributed

Slide Credit: Moontae Lee 
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