CS 4803 / 7643: Deep Learning

Topics:

- Recurrent Neural Networks (RNNs)
- (Truncated) BackProp Through Time (BPTT)
- LSTMs

Dhruv Batra
Georgia Tech

Administrativia

- HW3 Reminder
- Due: 10/07 11:59pm
- Theory: Convolutions, Representation Capacity, Double Descent
- Implementation: Saliency methods (e.g. Grad-CAM) in Python and PyTorch/Captum
- Project Teams
[- https://gtvaultmy.sharepoint.com/:x:/g/personal/dbatra8 gatech edu/EY4 65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRzR6KngIIFEQ?e= 4tnKWI
- Project Title
- 1-3 sentence project summary TL;DR
- Team member names

Administrativia

- Guest Lecture: Arjun Majumdar
- Next class (10/8)
- Transformers, BERT, ViLBERT

https://arjunmajum.github.io/

Recap from last time

New Topic: RNNs

formuly of models

Recurrent Neural Networks (RNNs)

- Recursive Neural Networks
- General family; think graphs instead of chains
- Types:
- "Vanilla" RNNs (Elman Networks)
- Long Short Term Memory (LSTMs)]
- Gated Recurrent Units (GRUs)]
- Algorithms
- BackProp Through Time (BPTT)]
- BackProp Through Structure (BPTS)

What's wrong with MLPs?

- Problem 1: Can't model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure
- Problem 2: Pure feed-forward processing
- No "memory", no feedback

Why model sequences?

Sequences are everywhere...

Foreign Minister.

FOREIGN MINISTER.

THE SOUND OF

$$
\begin{array}{ccccccc}
a_{1}=2 & a_{2}=0 & a_{3}=1 & a_{4}=3 & a_{5}=4 & a_{6}=2 & a_{7}=5 \\
\boldsymbol{x}= & \text { bringen } & \text { sie } & \text { bitte } & \text { das } & \text { auto } & \text { zurück }
\end{array}
$$

Sequences in Input or Output?

- It's a spectrum...
one to one

Input: No sequence

Output: No sequence

Example: "standard" classification / regression problems
many to one

Input: Sequence Output: No sequence
Example: sentence classification, multiple-choice question answering

many to many

Input: Sequence
Output: Sequence
Example: machine translation, video classification, video captioning, open-ended question answering

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients

Computational Graph

(C) Dhruv Batra

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients
- "Unrolling"
- in computation graphs with parameter sharing

How do we model sequences?

- No input

How do we model sequences?

- With inputs

$$
\left.\underline{s} t=\underline{f \theta}_{\underline{s}} s_{t-1}, \boldsymbol{x} t\right)
$$

2 Key Ideas

- Parameter Sharing
- in computation graphs = adding gradients
- "Unrolling"
- in computation graphs with parameter sharing
- Parameter sharing + Unrolling
- Allows modeling arbitrary sequence lengths!
- Keeps numbers of parameters in check

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
\left[\begin{array}{l}
\qquad \begin{array}{l}
h_{t} \\
\text { new state }
\end{array}=\frac{f_{W}}{\left(h_{t-1}\right.} \text { old stat } \\
\begin{array}{l}
\text { some function } \\
\text { with parameters } \mathrm{W}
\end{array}
\end{array}\right.
$$

$$
y=f_{w_{2}}\left(h_{t}\right)
$$

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Notice: the same function and the same set of parameters are used at every time step.

$$
P\left(y_{t} \mid \& x_{1} \ldots x_{t}\right) \approx P\left(y_{t} \mid h_{t}\right)
$$

(Vanilla) Recurrent Neural Network
The state consists of a single "hidden" vector \mathbf{h} :

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Seq 25 eq

Sequence to Sequence: Many-to-one + one-to-many

Plan for Today

- Recurrent Neural Networks (RNNs)
- Example Problem: (Character-level) Language modeling
- Learning: (Truncated) BackProp Through Time (BPTT)
- Visualizing RNNs
- Example: Image Captioning
- Inference: Beam Search
- Multilayer RNNs
- Problems with gradients in "vanilla" RNNs
- LSTMs (and other RNN variants)

Language Modeling

of-6xt

- Given a dataset, build an accurate model:

$$
\left[\mathrm{P}_{\theta}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{T}}\right)\right]
$$

$$
P_{\theta}\left(y_{t} \mid y_{1} \ldots y_{t-1}\right)
$$

(:) The next word

$$
\begin{aligned}
& \text { Character-level } \\
& \text { Language Model } \\
& \text { Vocabulary: } \\
& {[\text { hoe, }, \text {, }, \mathrm{o}]=V} \\
& \text { Example training }
\end{aligned}
$$

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Example: Character-level Language Model

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

char embedding

Example: Character-level Language Model

$$
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Distributed Representations Toy Example

- Local vs Distributed

$$
\begin{aligned}
& \text { (a) } \\
& \downarrow . \downarrow \downarrow . h_{t} \\
& \text { no pattern } \\
& \text { a ! •००० } \\
& \triangleright \square \\
& \bigcirc 00 \\
& \text { c } 0 \\
& 000 \\
& \text { to } 000 \text {. }
\end{aligned}
$$

Distributed Representations Toy Example

- Can we interpret each dimension?
(a)
no pattern
0000
(b)
\square
- 000
no pattern

\square
$\bigcirc \bigcirc 0$

$\bigcirc \bullet$

○○○

000

$\bigcirc \bullet-$

Power of distributed representations!

Local

$$
=\mathrm{VR}+\mathrm{HR}+\mathrm{HE}=?
$$

Distributed

Training Time: MLE / "Teacher Forcing"

 $\left.P\left(y_{1}-y_{T}\right)=\prod P\left(y_{t}\right) \mid y-y_{y}\right)_{\text {age chase }}$ Example: Character-level Language ModelVocabulary: [h,e,l,o]

Example training sequence:
"hello"

Test Time: Sample / Argmax / Beam Search

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
 Character-level Language Model Sampling

Vocabulary:
[h,e,l,o]

At test-time sample characters one at a time, feed back to model

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
And only herald to the gaudy spring,

When forty winters shall besiege thy brow And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eye To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse, Proving his beauty by succession thine!

This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

PANDARUS: $\langle>$

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world;
When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:

o, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

The Stacks Project: open source algebraic geometry textbook

$\square \square$ The Stacks Project					
home about tags explained tag lookup	browse	search	bibliography	recent comments	blog add slogans
Browse chapters					Parts
Part Chapter Preliminaries		online	TeX source	view pdf	1. Preliminaries 2. Schemes 3. Topics in Scheme Theory
1. Introduction		online	tex (1)	pdf >	4. Algebraic Spaces
2. Conventions		online	tex (1)	pdf $>$	5. Topics in Geometry 6. Deformation Theory
3. Set Theory		online	tex()	pdf $>$	7. Algebraic Stacks
4. Categories		online	tex()	pdf $>$	8. Miscellany
5. Topology		online	tex(pdf $>$	Statistics
6. Sheaves on Spaces		online	tex()	pdf $>$	Staistics
7. Sites and Sheaves		online	tex ()	pdf $>$	The Stacks project now consists of
8. Stacks		online	tex 0	pdf $>$	- 455910 lines of code
9. Fields		online	tex(pdf $>$	- 14221 tags (56 inactive tags)
10. Commutative Algebra		online	tex()	pdf $>$	- 2366 sections

For $\bigoplus_{n=1, \ldots, m}$ where $\mathcal{L}_{m_{0}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any set $\mathcal{F} \mathcal{F} \bar{X}, U$ is a closed immersion of S, then $U \rightarrow T$ is a separated algebraic space.
Proof. Proof of (1). It also start we get

$$
S=\operatorname{Spec}(R)=U \times_{X} U \times_{X} U
$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\amalg Z \times_{U} U \rightarrow V$. Consider the maps M along the set of points $S c h_{\text {fppf }}$ and $U \rightarrow U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in $S h(G)$ such that $\operatorname{Spec}\left(R^{\prime}\right) \rightarrow S$ is smooth or an

$$
U=\bigcup U_{i} \times_{S_{i}} U_{i}
$$

which has a nonzero morphism we may assume that f_{i} is of finite presentation over S. We claim that $\mathcal{O}_{X, x}$ is a scheme where $x, x^{\prime}, s^{\prime \prime} \in S^{\prime}$ such that $\mathcal{O}_{X, x^{\prime}} \rightarrow \mathcal{O}_{X^{\prime}, x^{\prime}}^{\prime}$ is separated. By Algebra, Lemma ?? we can define a map of complexes GL $S^{\prime}\left(x^{\prime} / S^{\prime \prime \prime}\right)$
and we win.
To prove study we see that $\left.\mathcal{F}\right|_{U}$ is a covering of \mathcal{X}^{\prime}, and \mathcal{T}_{i} is an object of $\mathcal{F}_{X / S}$ for $i>0$ and \mathcal{F}_{p} exists and let \mathcal{F}_{i} be a presheaf of \mathcal{O}_{X}-modules on \mathcal{C} as a \mathcal{F}-module. In particular $\mathcal{F}=U / \mathcal{F}$ we have to show that

$$
\left.\widetilde{M}^{\bullet}=\mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S, s}-i_{X}^{-1} \mathcal{F}\right)
$$

is a unique morphism of algebraic stacks. Note that

$$
\text { Arrows }=(S c h / S)_{f p p f}^{o p p},(S c h / S)_{f p p f}
$$

and

$$
V=\Gamma(S, \mathcal{O}) \longmapsto(U, \operatorname{Spec}(A))
$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.
The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{\text {spaces,étale }}$ which gives an open subspace of X and T equal to $S_{Z a r}$, see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose $X=\lim |X|$ (by the formal open covering X and a single map Prof $_{X}(\mathcal{A})=$ $\operatorname{Spec}(B)$ over U compatible with the complex

$$
\operatorname{Set}(\mathcal{A})=\Gamma\left(X, \mathcal{O}_{\left.X, \mathcal{O}_{X}\right)}\right.
$$

When in this case of to show that $\mathcal{Q} \rightarrow \mathcal{C}_{Z / X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X^{\prime} is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since $S=\operatorname{Spec}(R)$ and $Y=\operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \rightarrow X$. Let $U \cap U=\coprod_{i=1, \ldots, n} U_{i}$ be the scheme X over S at the schemes $X_{i} \rightarrow X$ and $U=\lim _{i} X_{i}$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_{0}}=\mathcal{F}_{x_{0}}=$ $\mathcal{F}_{\mathcal{X}, \ldots, 0 .}$
Lemma 0.2. Let X be a locally Noetherian scheme over $S, E=\mathcal{F}_{X / S}$. Set $\mathcal{I}=$ $J_{1 \subset I_{n} \text {. Since }} \mathcal{I}^{n} \subset \mathcal{I}^{n}$ are nonzero over $i_{0} \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n, 0} \circ \bar{A}_{2}$ works.
Lemma 0.3. In Situation ??. Hence we may assume $\mathfrak{q}^{\prime}=0$.
Proof. We will use the property we see that \mathfrak{p} is the mext functor (??). On the other hand, by Lemma ?? we see that

$$
D\left(\mathcal{O}_{X^{\prime}}\right)=\mathcal{O}_{X}(D)
$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Proof. Omitted.

Lemma 0.1. Let \mathcal{C} be a set of the construction.
Let \mathcal{C} be a gerber covering. Let \mathcal{F} be a quasi-coherent sheaves of \mathcal{O}-modules. We have to show that

$$
\mathcal{O}_{\mathcal{O}_{X}}=\mathcal{O}_{X}(\mathcal{L})
$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\text {étale }}$ we have

$$
\mathcal{O}_{X}(\mathcal{F})=\left\{\text { morph }_{1} \times_{\mathcal{O}_{X}}(\mathcal{G}, \mathcal{F})\right\}
$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \rightarrow \mathcal{F}$ of \mathcal{O}-modules.
Lemma 0.2. This is an integer \mathcal{Z} is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

$$
b: X \rightarrow Y^{\prime} \rightarrow Y \rightarrow Y \rightarrow Y^{\prime} \times_{X} Y \rightarrow X
$$

be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_{X}-modules. The following are equivalent
(1) \mathcal{F} is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_{X}(U)$ which is locally of finite type.

This since $\mathcal{F} \in \mathcal{F}$ and $x \in \mathcal{G}$ the diagram

is a limit. Then \mathcal{G} is a finite type and assume S is and \mathcal{F} and \mathcal{G} is a finite type f_{*}. This is of finite type diagrams, and

- the composition of \mathcal{G} is a regular sequence,
- $\mathcal{O}_{X^{\prime}}$ is a sheaf of rings.

Proof. We have see that $X=\operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.
Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??.
A reduced above we conclude that U is an open covering of \mathcal{C}. The functor \mathcal{F} is a "field

$$
\mathcal{O}_{X, x} \longrightarrow \mathcal{F}_{\bar{x}}-1\left(\mathcal{O}_{\left.X_{\text {tetate }}\right)} \longrightarrow \mathcal{O}_{X_{t}}^{-1} \mathcal{O}_{X_{\lambda}}\left(\mathcal{O}_{X_{\eta}}^{\bar{U}}\right)\right.
$$

is an isomorphism of covering of $\mathcal{O}_{X_{i}}$. If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.
The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{X}-algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.


```
static void do_command(struct seq_file *m, void *v)
```

\{
int column $=32 \ll($ cmd[2] \& $0 \times 80)$;
if (state)
cmd $=$ (int) (int_state ^ (in_8(\&ch->ch_flags) \& Cmd) ? 2 : 1);
else
seq $=1$;
for $\quad(\underset{i f}{(k \&} \underset{(1 \ll 1))}{i<16}$; $i++)\{$
pipe $=($ in_use $\&$ UMXTHREAD_UNCCA $)+$
$(($ count \& $0 x 00000000$ fffffffi $) \& 0 x 000000 f) \ll 8$;
if (count $==0$)
sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set_bytes(i, 0);
\}
/* Free our user pages pointer to place camera if all dash */
subsystem_info = \&of_changes[PAGE_SIZE];
rek_controls(offset, idx, \&soffset);
/* Now we want to deliberately put it to device */
control_check_polarity(\&context, val, 0);
for ($i=0$; $i<$ COUNTER; i++)
seq_puts(s, "policy ");

Generated C code

\}

```
<y*)-2, (%)
(c)
2006-2010, Intel Mobile Communications. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
    *
    *
    * but WITHOUT ANY WARRANTY; without even the implied warranty of
    * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    GNU General Public License for more details.
    *
    * You should have received a copy of the GNU General Public License
    * along with this program; if not, write to the Free Software Foundation,
    * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
```

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa_slot_addr_pack
#define PFM NOCOMP AFSR(0, load)
#define STACK_DDR(type) (func)
#define SWAP_ALLOCATE(nr) (e)
#define emulate_sigs() arch_get_unaligned_child()
#define access_rw(TST) asm volatile("movd %%>sp, %0, %3" : : "r" (0));
    if (__type & DO_READ)
static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
    pC>[1]);
static void
os_prefix(unsigned long sys)
{
#ifdef CONFIG_PREEMPT
    PUT_PARAM_RAID(2, sel) = get_state_state();
    set_pid_sum((unsigned long)state, current_state_str(),
        (unsigned long)-1->lr_full; low;
}
```


Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Searching for interpretable cells

Searching for interpretable cells

quote detection cell

Searching for interpretable cells

Cell sensitive to position in line:

line length tracking cell

Searching for interpretable cells

```
static int _-dequeue_signal(struct sigpending**pending, sigset_t *mask,
    siginfo_t
I
    int sigg= next_signal(pendingg, mask);
```



```
            clear_thread_flag(TIF_SIGPENDING);
            returno;
                ]
        }
            collect_signal(sig, pending, info);
    }
    return sig;
}
```


if statement cell

Searching for interpretable cells

Cell that turns on inside comments and quotes:

```
T* Duplicate LSM field information.
                                The lsm_rule is opaque
                                So
    * re-initialized
static inline int audit_dupe_lsm_field(struct audit_field* *df,
I
            int ret=0;1
            if (unlikely(!lsm_str))
            return-ENOMEM;
        df->1sm-str = lsm-str;
            /* our own (refreshed) copy of lsm_rule./
                    (voidd*)&dff->1sm_rule);
/* Keep currently invalid ficelds around in case they
            become valid after a policy reload
            pr_warn("audit rule for LSM \'%s\, is invalid\n",
            ret = 0;
    }
    return ret;
                        quote/comment cell
}
```

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bitss(int class,ume *mask)
{
```



```
    }
    return 1;
I
```


code depth cell

Plan for Today

- Recurrent Neural Networks (RNNs)
- Example Problem: (Character-level) Language modeling
- Learning: (Truncated) BackProp Through Time (BPTT)
- Visualizing RNNs
- Example: Image Captioning
- Inference: Beam Search
- Multilayer RNNs
- Problems with gradients in "vanilla" RNNs
- LSTMs (and other RNN variants)

Multilayer RNNs

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:
Exploding gradients
Largest singular value <1 :
Vanishing gradients

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1: Exploding gradients

Largest singular value <1 :
Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```


Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1:
Exploding gradients
Largest singular value < $1:$
Vanishing gradients \rightarrow Change RNN architecture

Long Short Term Memory (LSTM)

Vanilla RNN

 LSTM$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

$$
\begin{aligned}
\left(\begin{array}{l}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Meet LSTMs

(C) Dhruv Batra

LSTMs Intuition: Memory

- Cell State / Memory

LSTMs Intuition: Forget Gate

- Should we continue to remember this "bit" of information or not?

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

LSTMs Intuition: Input Gate

- Should we update this "bit" of information or not?
- If so, with what?

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

LSTMs Intuition: Memory Update

- Forget that + memorize this

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

LSTMs Intuition: Output Gate

- Should we output this "bit" of information to "deeper" layers?

$$
\begin{aligned}
& o_{t}=\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
& h_{t}=o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTMs Intuition: Additive Updates

Backpropagation from
c_{t} to c_{t-1} only elementwise multiplication by f, no matrix multiply by W

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs

- A pretty sophisticated cell

믄ㄹㄹ

LSTM Variants \#1: Peephole Connections

- Let gates see the cell state / memory

$$
\begin{aligned}
f_{t} & =\sigma\left(W_{f} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
i_{t} & =\sigma\left(W_{i} \cdot\left[\boldsymbol{C}_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
o_{t} & =\sigma\left(W_{o} \cdot\left[\boldsymbol{C}_{t}, h_{t-1}, x_{t}\right]+b_{o}\right)
\end{aligned}
$$

LSTM Variants \#2: Coupled Gates

- Only memorize new if forgetting old

$$
C_{t}=f_{t} * C_{t-1}+\left(1-f_{t}\right) * \tilde{C}_{t}
$$

LSTM Variants \#3: Gated Recurrent Units

- Changes:
- No explicit memory; memory = hidden output
- Z = memorize new and forget old

$$
\begin{aligned}
z_{t} & =\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
r_{t} & =\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
\tilde{h}_{t} & =\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \\
h_{t} & =\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

Other RNN Variants

[An Empirical Exploration of

 Recurrent Network Architectures, Jozefowicz et al., 2015]```
MUT1:
 z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{z}{})
 r= sigm(W (Wr }\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{}
ht+1}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\operatorname{tanh}(\mp@subsup{x}{t}{})+\mp@subsup{b}{\textrm{h}}{})\odot
 + ht\odot (1-z)
MUT2:
 z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{z}}{})
 r= sigm((tt + Whritht +\mp@subsup{b}{\textrm{r}}{})
 ht+1}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\mp@subsup{W}{xh}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{\textrm{h}}{})\odot
 + ht}\odot(1-z
MUT3:
 r r = \operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\operatorname{tanh}(\mp@subsup{h}{t}{})+\mp@subsup{b}{\textrm{z}}{})
```


## Plan for Today

- Recurrent Neural Networks (RNNs)
- Example Problem: (Character-level) Language modeling
- Learning: (Truncated) BackProp Through Time (BPTT)
- Visualizing RNNs
- Example: Image Captioning
- Inference: Beam Search
- Multilayer RNNs
- Problems with gradients in "vanilla" RNNs
- LSTMs (and other RNN variants)


## Neural Image Captioning



## Neural Image Captioning

## Image Embedding (VGGNet)



## Neural Image Captioning



## Neural Image Captioning



## Sequence Model Factor Graph



## Beam Search Demo

- http://dbs.cloudcv.org/captioning\&mode=interactive


## Image Captioning: Example Results



A cat sitting on a suitcase on the floor


Two people walking on the beach with surfboards


A cat is sitting on a tree branch


A tennis player in action on the court


A dog is running in the grass with a frisbee


Two giraffes standing in a grassy field
neuraltalk2
cat suitcase cat public domain surfers tennis airaffe


A white teddy bear sitting in the grass


A man riding a dirt bike on a dirt track

## Image Captioning: Failure Cases

Captions generated using neuraltalk2 All images are CCO Public domain: fur coat handstand spider web, basebal


A woman is holding a cat in her hand


A person holding a computer mouse on a desk


A woman standing on a beach holding a surfboard


A bird is perched on a tree branch


A man in a baseball uniform throwing a ball

## Typical VQA Models

## Image Embedding (VGGNet)



Question Embedding (LSTM)


Neural Network Softmax
over top K answers


## Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

