CS 4803 / 7643: Deep Learning

Topics:

- Variational Auto-Encoders (VAEs)
 - AEs, Variational Inference

Dhruv Batra Georgia Tech

Administrativia

- Project submission instructions
 - Due: 11/24, 11:59pm
 - Last deliverable in the class
 - Can't use late days
 - <u>https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/</u>
- Aware of the discussions on Piazza

Recap from last time 2 lectures ago

Types of Learning

- Supervised learning

 - Learning from a "teacher"
 Training data includes desired outputs
- Reinforcement learning
 - Learning to act under delayed evaluative feedback (rewards)
- Unsupervised learning $D = \{ \vec{z}_i \}$ Discover structure in data Training data does not include desired outputs

 $D=\left\{\left(\bar{x}_{i},\bar{g}_{i}\right)\right\}$

Q(S,a)

S-a

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Training data is cheap **Data**: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Holy grail: Solve **Data**: (x, y) unsupervised learning x is data, y is label => understand structure of visual world

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

This image is CC0 public domai

Supervised vs Reinforcement vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structur*e of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

This image from Matthias Scholz is <u>CC0 public domain</u>

Supervised vs Reinforcement vs Unsupervised Learning $x \rightarrow p(x)$

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

Generative Models

Given training data, generate new samples from same distribution

(apal:

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Taxonomy of Generative Models

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Plan for Today

- Goal: Variational Autoencoders
- Latent variable probabilistic models Example GMMs
- Autoencodeders Variational Inference

Variational Autoencoders (VAE)

So far...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_{i}|x_{1},...,x_{i-1}) \qquad D = \{ \vec{x}_{i} \}$$

$$P(\vec{x},\vec{z}) \qquad P(\vec{x},\vec{z}) \qquad P(\vec{x},\vec{x}) \qquad P(\vec$$

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent **z**: $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure Credit: Kevin Murphy

Gaussian Mixture Model zell...,
$$k_{3}^{T_{1}}$$

 $P(z,z)$
 $P(z,z)$
 $Z \sim (at (T)) \begin{bmatrix} T_{1} \\ \vdots \\ T_{R_{1}} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{c} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{R_{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{R_{1}} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{R_{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{R_{1}} \end{bmatrix} \begin{bmatrix} T_{c} = P_{a}(z=c) \\ T_{R_{1}} \end{bmatrix} \end{bmatrix} \begin{bmatrix}$

Gaussian Mixture Model

$$P(2=c) = \pi_c$$

 $P(x|2) = N($)
 $P(x|2) = N($)
 $P(x) = \sum_{z} P(x,z)$
 $= \sum_{z} P(x|z) P(z) = Mayinalzaha$
 $\overline{P(2|x)} = \frac{P(z,x)}{P(x)} = \frac{P(x|z)P(z)}{\sum_{z} (-1, -1)(-1)}$
 $= (Inference)$

K-means vs GMM

- K-Means
 - <u>http://stanford.edu/class/ee103/visualizations/kmeans/kmean</u>
 <u>s.html</u>
- GMM
 - <u>https://lukapopijac.github.io/gaussian-mixture-model/</u>

Hidden Data Causes Problems #1

• Fully Observed (Log) Likelihood factorizes

• Marginal (Log) Likelihood doesn't factorize

• All parameters coupled!

Parameters: (T.,., T., T., T., T., E., E., S. JEO $D = \{\overline{x}_i\}_{i=1}^N$ $\overline{x}_i \in \mathbb{R}^d$

agmon log P(DIO) Omle. 0) 2 log P(Zi Ð

(C) Dhruv Batra

Figure Credit: Kevin Murphy

Hidden Data Causes Problems #3

 Likelihood has singularities if one Gaussian "collapses"

(C) Dhruv Batra

Variational Auto Encoders

VAEs are a combination of the following ideas:

- 1. Auto Encoders
- 2. Variational Approximation
 - Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick

How to learn this feature representation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Demo
 - <u>https://cs.stanford.edu/people/karpathy/convnetjs/demo/auto</u> <u>encoder.html</u>

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Image Credit: https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Variational Auto Encoders

VAEs are a combination of the following ideas:

- 1. Auto Encoders
- 2. Variational Approximation
 Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks
- 4. "Reparameterization" Trick

(C) Dhruv Batra

What is Variational Inference?

- A class of methods for
 - approximate inference, parameter learning
 - and approximating integrals basically..
- Key idea
 - Reality is complex
 - Instead of performing approximate computation in something complex,
 - Can we perform exact computation in something "simple"?
 - Just need to make sure the simple thing is "close" to the complex thing.

Intuition

KL divergence: Distance between distributions

• Given two distributions *p* and *q* KL divergence:

- D(p||q) = 0 iff p=q
- Not symmetric p determines where difference is important

Find simple approximate distribution

- Suppose *p* is intractable posterior
- Want to find simple *q* that approximates *p*
- KL divergence not symmetric
- D(p||q)
 - true distribution p defines support of diff.
 - the "correct" direction
 - will be intractable to compute
- D(q||p)
 - approximate distribution defines support
 - tends to give overconfident results
 - will be tractable

Example 1

- p = 2D Gaussian with arbitrary co-variance
- q = 2D Gaussian with diagonal co-variance

Example 2

- p = Mixture of Two Gaussians
- q = Single Gaussian

