# CS 4803 / 7643: Deep Learning

#### Topics:

- Image Classification
- Supervised Learning view /
- K-NN

Dhruv Batra Georgia Tech

## Administrativia

- - Due: Aug 20 11:59pm
- More seats
  - We were able to recruit 1 more TA25 more seats added to 7643
- - 117/~200 people signed up. Please use that for questions.
- Office hours start next week
- - Anybody not have access?Please post on Piazza

# What is the collaboration policy?

#### Collaboration

- Only on HWs and project (not allowed in HW0).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part

## Zero tolerance on plagiarism

- Neither ethical nor in your best interest
- Always credit your sources
- Don't cheat. We will find out.

# Python+Numpy Tutorial

#### CS231n Convolutional Neural Networks for Visual Recognition

#### Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/

# Plan for Today

- Image Classification
- Supervised Learning view
- K-NN

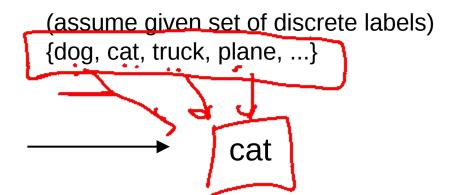
Next time: Linear Classifiers

# Image Classification

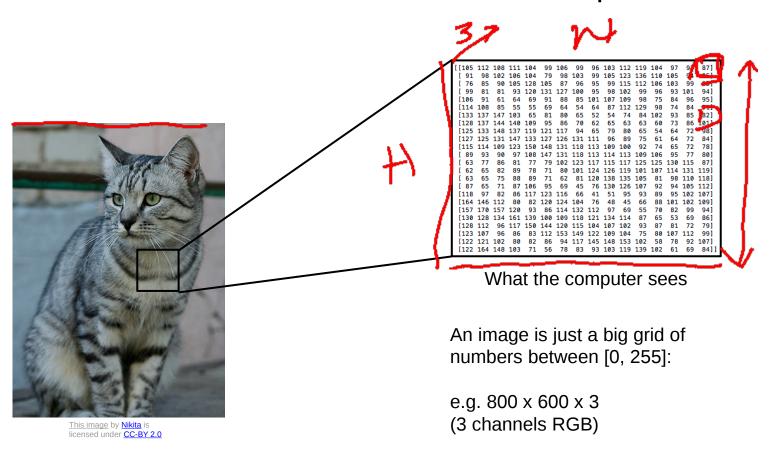
## Image Classification: A core task in Computer Vision



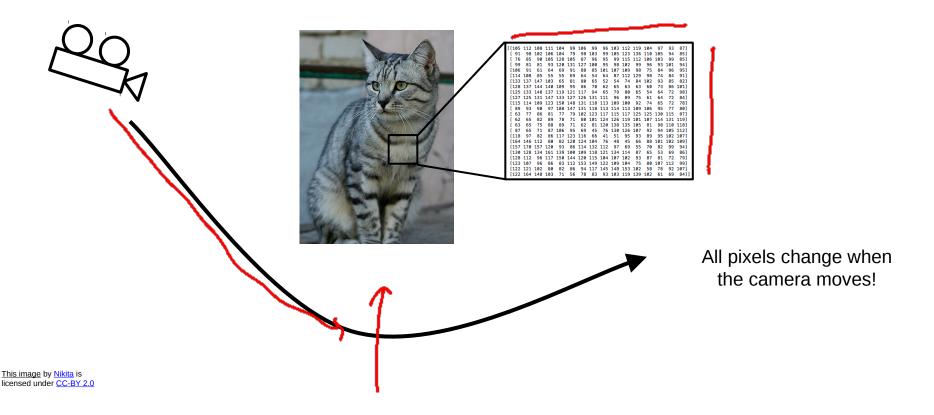
This image by Nikita is licensed under CC-BY 2.0



#### The Problem: Semantic Gap



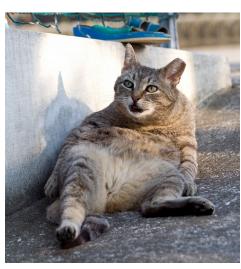
### **Challenges**: Viewpoint variation



## **Challenges**: Illumination



## **Challenges**: Deformation



This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>



This image by Umberto Salvagnin is licensed under CC-BY 2.0



This image by sare bear is licensed under CC-BY 2.0

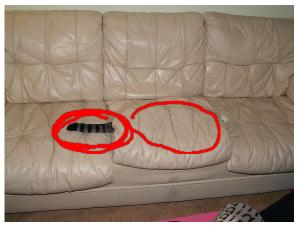


<u>This image</u> by <u>Tom Thai</u> is licensed under <u>CC-BY 2.0</u>

## Challenges: Occlusion







This image is CC0 1.0 public domain

This image is  ${\color{red} {\rm CC0~1.0}}$  public domain

 $\frac{\text{This image}}{\text{under}} \text{ by } \underline{\text{jonsson}} \text{ is licensed} \\ \text{under } \underline{\text{CC-BY 2.0}}$ 

## Challenges: Background Clutter





This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

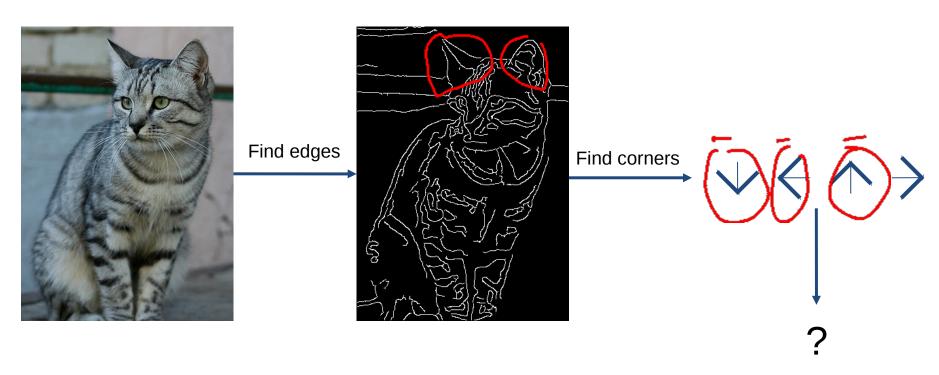
# An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

**no obvious way** to hard-code the algorithm for recognizing a cat, or other classes.

# Attempts have been made



John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

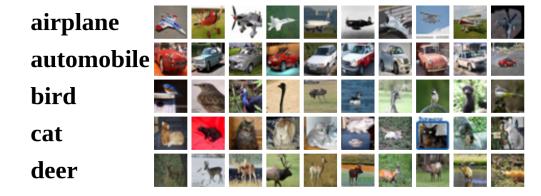
## ML: A Data-Driven Approach

- Collect a dataset of images and labels
- Use Machine Learning to train a classifier
   Evaluate the classifier on new images

#### def train(images, labels): # Machine learning! return model

```
def predict(model, test_images):
  # Use model to predict labels
  return test_labels
```

#### **Example training set**



## **Notation**

Scalars: x, y, Z EIR'

Vectors: 72, 3 GIR

Malics, X, Y

Ry, Sats

Importion: d REIRd

Dulput/ K & FRK
H closses

# samples n, N

parameters: 23, 3

# Supervised Learning

- Input: x (mages, text/femails...)
- Output: y (cats(vs) dogs) spam vs not...)
- (Upknown) Target Function
  - \_ f: X Y \_ (the "true" mapping / reality)
- Data Set
  - $\{(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)\}$

Eval: find f

Predict /f(x) at

Supervised Learning

Though these Set

$$H = \{h: X \rightarrow gY\}$$
 $g = h(x)$ 

(2) Loss Function
$$Loss(h, D) = \frac{1}{N} \sum_{i=1}^{N} Lil(hav, yv)$$

# **Supervised Learning**

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
  - f: X ➤ Y (the "true" mapping / reality)
- Data
  - $\{ (x_1,y_1), (x_2,y_2), ..., (x_N,y_N) \}$

Model / Hypothesis Class  $- H = \{h: X \boxtimes Y\}$   $- e.g. y = h(x) = sign(w^Tx)$ 

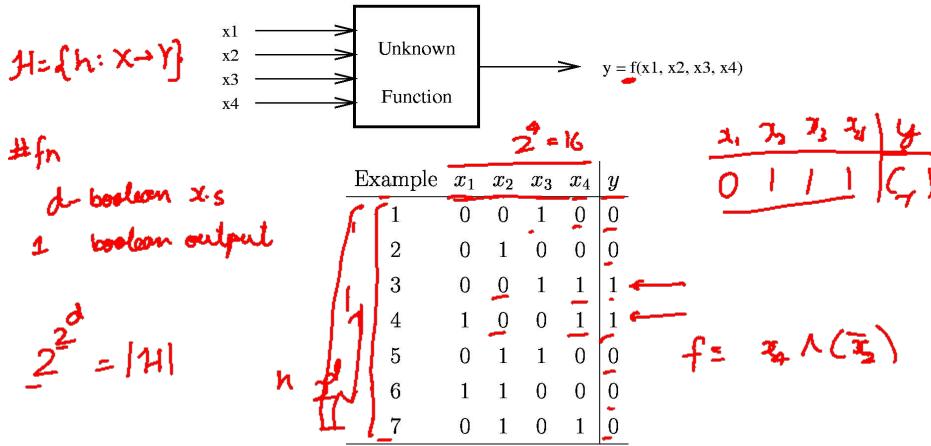
Learning = Search in hypothesis space

— Find best h in model class.

(C) Dhruv Batra

21

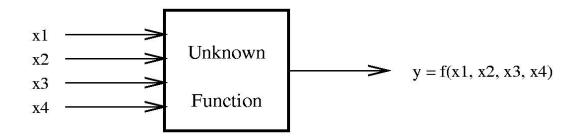
#### A Learning Problem



# Learning is hard!

No assumptions = No learning

#### A Learning Problem



| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |

## **Procedural View**

- Training Stage:

  − Training Data { (x<sub>i</sub>,y<sub>i</sub>) } 

  h (Learning)
- Testing Stage − Test Data x **\**h(x) (Apply function, Evaluate error)

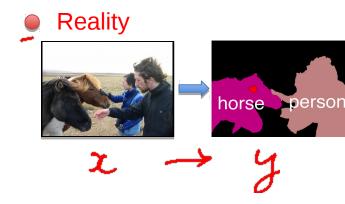
# Statistical Estimation View

- Probabilities to rescue:
  - X and Y are random variables

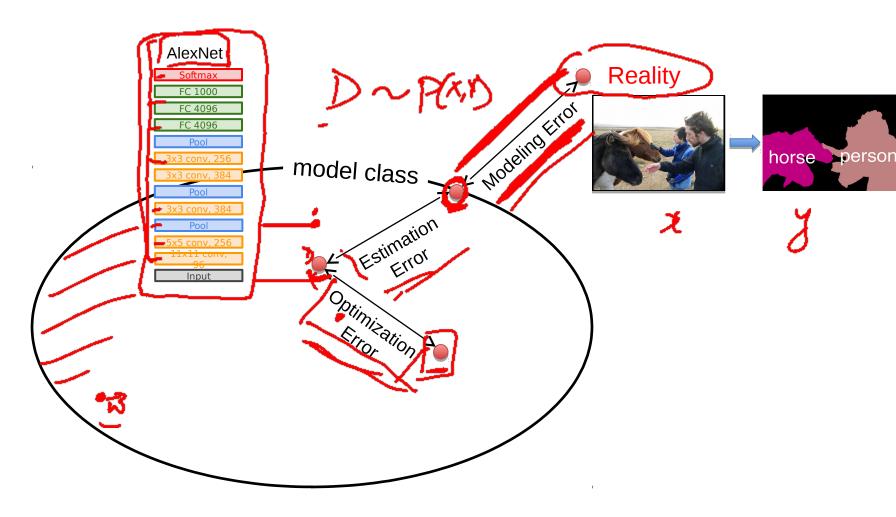
$$-D = (x_1, y_1), (x_2, y_2), ..., (x_N, y_N) \sim$$

- IID: Independent Identically Distributed
  - Both training & testing data sampled IID from P(X,Y)
  - Learn on training set
  - Have some hope of generalizing to test set

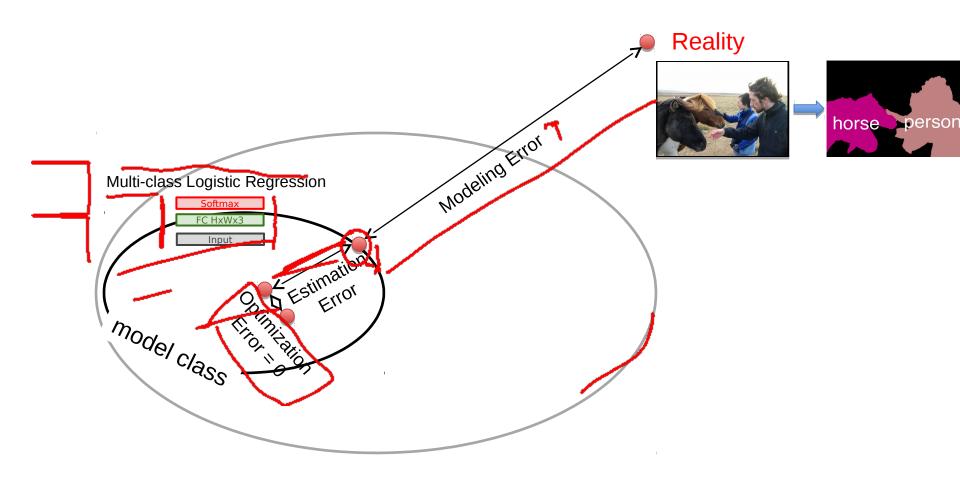
## Classical Learning Theory: Error Decomposition



## Classical Learning Theory: Error Decomposition



## Classical Learning Theory: Error Decomposition



VGG19 Classical earning Theory: Error Decomposition model class wodeling Error Reality horse person Estimation Optimization

# **Error Decomposition**

- Approximation/Modeling ErrorYou approximated reality with model
- **Estimation Error** 
  - You tried to learn model with finite data
- **Optimization Error** 
  - You were lazy and couldn't/didn't optimize to completion
- Bayes ErrorReality just sucks

## Caveats

• A number of recent empirical results question our intuitions built from this clean separation.

# First classifier: Nearest Neighbor

```
def train(images, labels):

# Machine learning!
return model

def predict(model, test_images):

# Use model to predict labels
return test_labels

return test_labels

Memorize all data and labels

Predict the label
of the most similar training image
```

# Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

# Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images



Test images and nearest neighbors



Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

# Nearest Neighbours



# Nearest Neighbours

# Instance/Memory-based Learning

Four things make a memory based learner:A\_distance metric

How many nearby neighbors to look at?

A weighting function (optional)

How to fit with the local points?

# 1-Nearest Neighbour

Four things make a memory based learner:

- A distance metric– Euclidean (and others)
- How many nearby neighbors to look at?
  1
- A weighting function (optional)

   unused

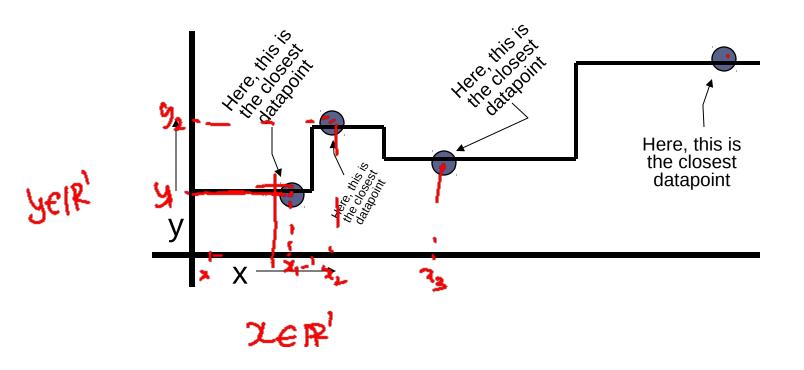
  - How to fit with the local points?
     Just predict the same output as the nearest neighbour.

# k-Nearest Neighbour

Four things make a memory based learner:

- A distance metric
  - Euclidean (and others)
- How many nearby neighbors to look at?
  - -k
- A weighting function (optional)
  - = unused
- How to fit with the local points?
  - Just predict the average output among the nearest neighbours.

# 1-NN for Regression



# Distance Metric to compare images

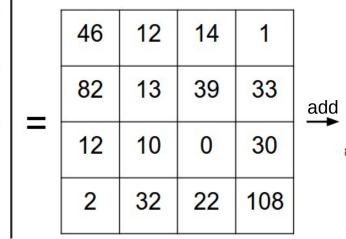
**L1 distance:** 
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

| ç | test image |    |     |     |  |  |  |  |
|---|------------|----|-----|-----|--|--|--|--|
|   | 56         | 32 | 10  | 18  |  |  |  |  |
|   | 90         | 23 | 128 | 133 |  |  |  |  |
|   | 24         | 26 | 178 | 200 |  |  |  |  |
|   | 2          | 0  | 255 | 220 |  |  |  |  |

#### training image

| 10 | 20 | 24  | 17  |
|----|----|-----|-----|
| 8  | 10 | 89  | 100 |
| 12 | 16 | 178 | 170 |
| 4  | 32 | 233 | 112 |

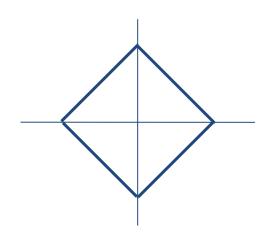
#### pixel-wise absolute value differences



# K-Nearest Neighbors: Distance Metric

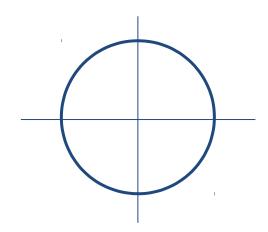
### L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



### L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$



```
import numpy as np
class NearestNeighbor:
  def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

```
import numpy as np
class NearestNeighbor:
  def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest_neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
   Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

For each test image:
Find closest train image
Predict label of nearest image

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
   self.ytr = y
 def predict(self, X):
   """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

**Q:** With N examples, how fast are training and prediction?

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

**Q:** With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
    # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

**Q:** With N examples, how fast are training and prediction?

**A**: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

# Nearest Neighbour

- Demo
  - http://vision.stanford.edu/teaching/cs231n-demos/knn/

(C) Dhruv Batra 51

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn



What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithm that we set rather than learn

Very problem-dependent.

Must try them all out and see what works best.

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

**Idea #1**: Choose hyperparameters that work best on the data

**BAD**: K = 1 always works perfectly on training data

Your Dataset

**Idea #1**: Choose hyperparameters that work best on the data

**BAD**: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

**BAD**: K = 1 always works perfectly on training data

**Your Dataset** 

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

**BAD**: No idea how algorithm/will perform on new data

train

test

**Idea #1**: Choose hyperparameters that work best on the data

**BAD**: K = 1 always works perfectly on training data

#### Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

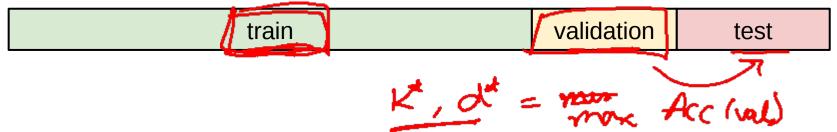
**BAD**: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!



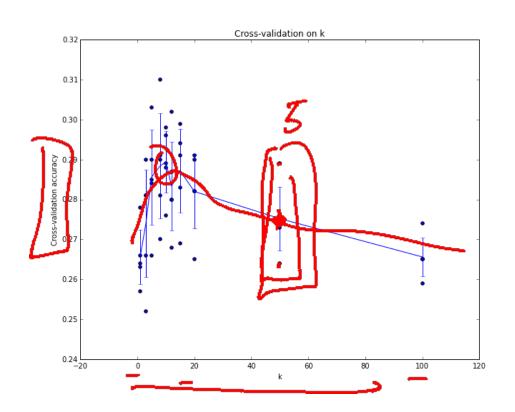
#### Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
|--------|--------|--------|--------|--------|------|
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |

Useful for small datasets, but not used too frequently in deep learning

## Setting Hyperparameters



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

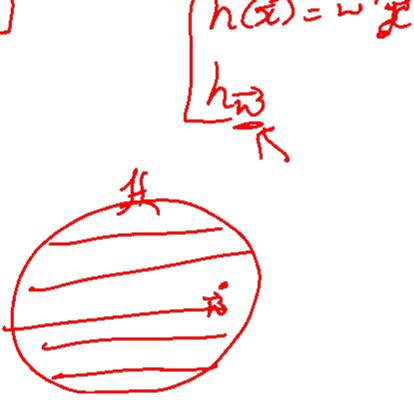
The line goes through the mean, bars indicated standard deviation

(Seems that  $k \sim = 7$  works best for this data)

### Parametric vs Non-Parametric Models

 Does the capacity (size of hypothesis class) grow with size of training data?

Yes = Non-Parametric ModelsNo = Parametric Models

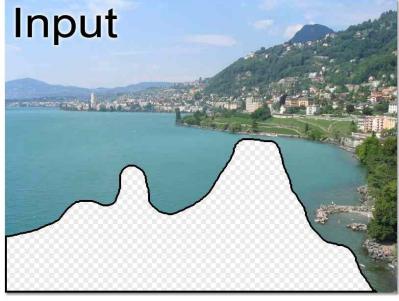


(C) Dhruv Batra 63

# Scene Completion [Hayes & Efros, SIGGRAPH07]



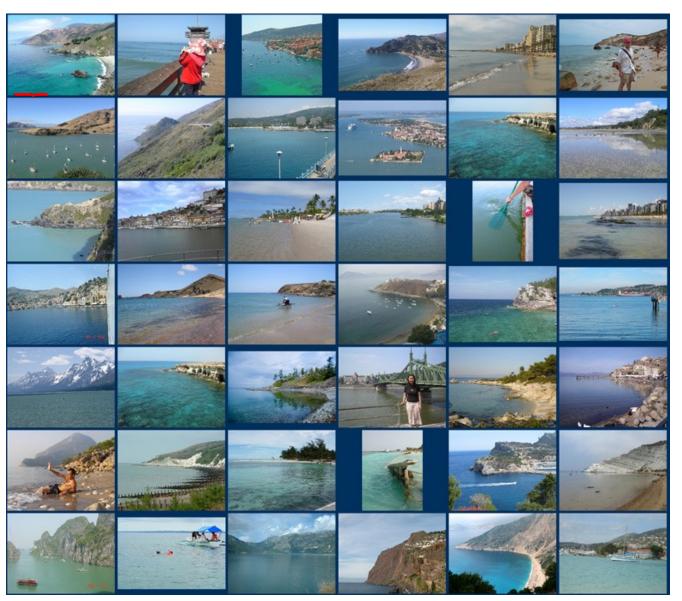








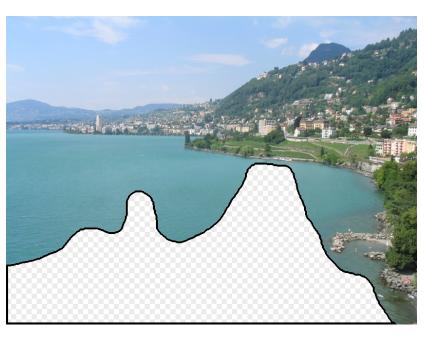






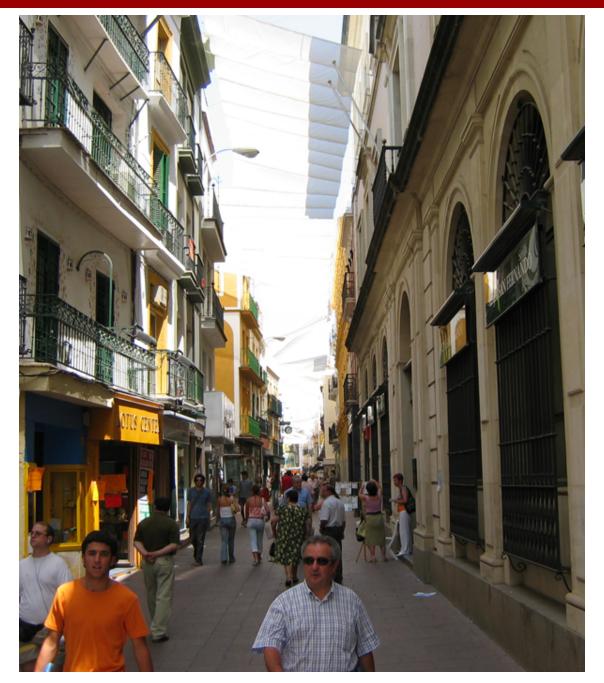
... 200 total

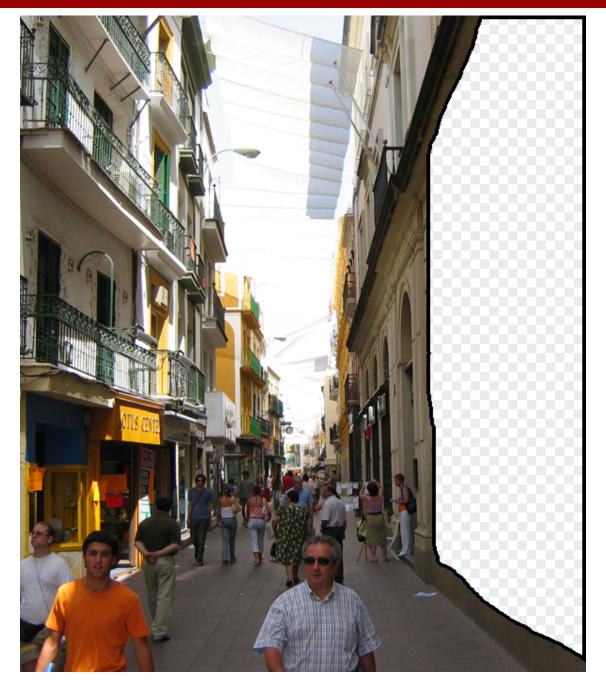
# **Context Matching**



















# Problems with Instance-Based Learning

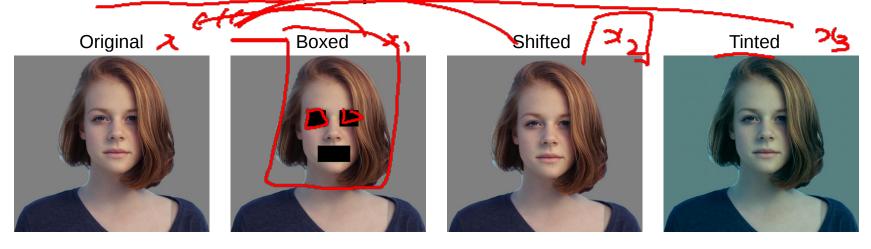
- Expensive
  - No Learning: most real work done during testing
  - For every test sample, must search through all dataset very slow!
  - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant
  - Distances overwhelmed by noisy features

- **Curse of Dimensionality** 
  - Distances become meaningless in high dimensions (See proof next)

(C) Dhruv Batra

### k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative



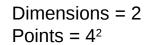
<u>Original image</u> is <u>CC0 public domain</u>

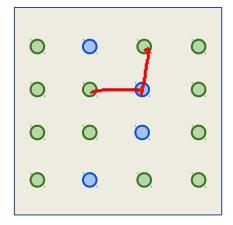
(all 3 images have same L2 distance to the one on the left)

### k-Nearest Neighbor on images never used.

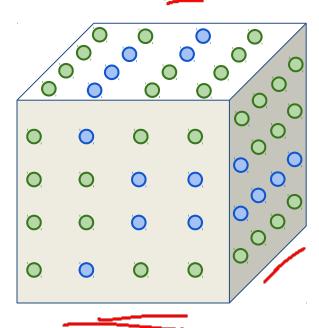
### Curse of dimensionality



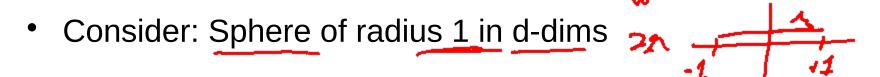




Dimensions = 3  
Points 
$$\frac{1}{4}$$



# **Curse of Dimensionality**



- Consider: an outer ε-shell in this sphere
- What is <u>shell volume</u>? sphere volume

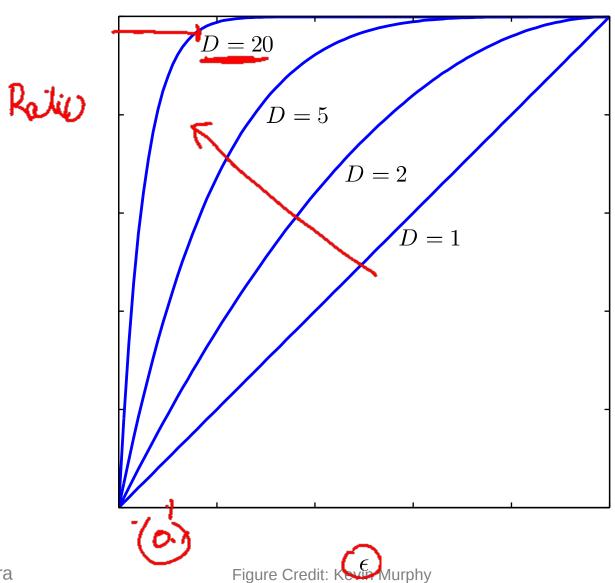


$$\frac{k_{4}I^{d} - k_{4}(1-\epsilon)^{d}}{k_{4}I^{d}} = 1 - (1-\epsilon)^{d}$$
im = 1



go d-din

# **Curse of Dimensionality**



(C) Dhruv Batra

## K-Nearest Neighbors: Summary

In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set** 

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!