CS 4803 / 7643: Deep Learning

Topics:

- Linear Classifiers
- Loss Functions

Dhruv Batra Georgia Tech

Administrativia

- Notes and readings on class webpage
 - https://www.cc.gatech.edu/classes/AY2020/cs7643 fall/
- HW0 solutions and grades released
- Issues from PS0 submission

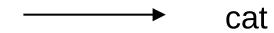
 - Instructions not followed = not graded
 We will be using Gradescope to collect your assignments. Please read the following instructions for submitting to Gradescope carefully! Failure to follow these instructions may result in parts of your assignment not being graded. We will not entertain regrading requests for failure to follow instructions.
 - For Section 1: Multiple Choice Questions, it is mandatory to use the LATEX template provided on the class webpage (https://www.cc.gatech.edu/classes/AY2020/cs7643_ fall/assets/ps0.zip). For every question, there is only one correct answer. To mark the correct answer, change \choice to \CorrectChoice
 - For Section 2: Proofs, each problem/sub-problem is in its own page. This section has 5 total problems/sub-problems, so you should have 5 pages corresponding to this section. Your answer to each sub-problem should fit in its corresponding page.
 - For Section 2, LATEX'd solutions are strongly encouraged (solution template available at https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/assets/ps0.zip), but scanned handwritten copies are acceptable. If you scan handwritten copies, please make sure to append them to the pdf generated by LATEX for Section 1.

Recap from last time

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}



An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Supervised Learning

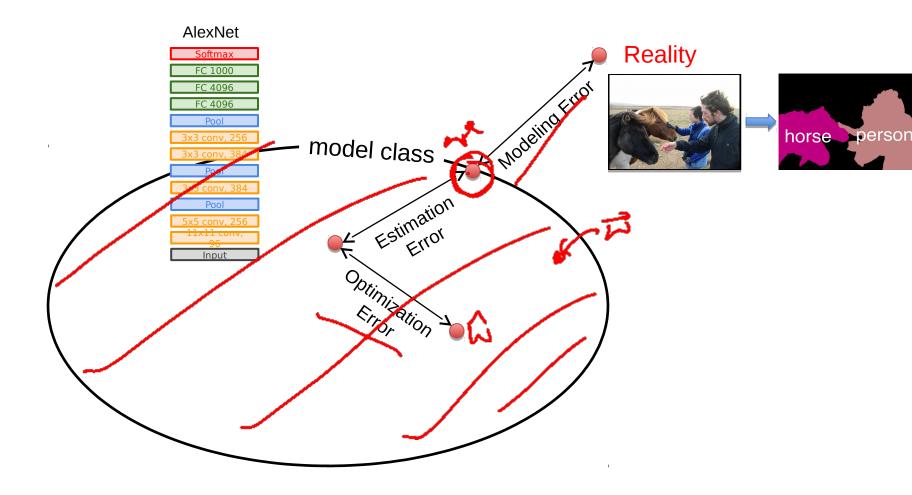
- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
 - f: X Y ___(the "true" mapping / reality)

-
$$\{(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)\}$$

- Model / Hypothesis Class− H = {h: X = Y}

 - e.g. y = h(x) = sign(w^Tx)
- - How good is a model wrt my data D?

Error Decomposition



First classifier: Nearest Neighbor

Nearest Neighbours

Instance/Memory-based Learning

Four things make a memory based learner:

A distance metric

• How many nearby neighbors to look at?

A weighting function (optional)

How to fit with the local points?

Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test	
fold 1	fold 2	fold 3	fold 4	fold 5	test	
fold 1	fold 2	fold 3	fold 4	fold 5	test	

Useful for small datasets, but not used too frequently in deep learning

Problems with Instance-Based Learning

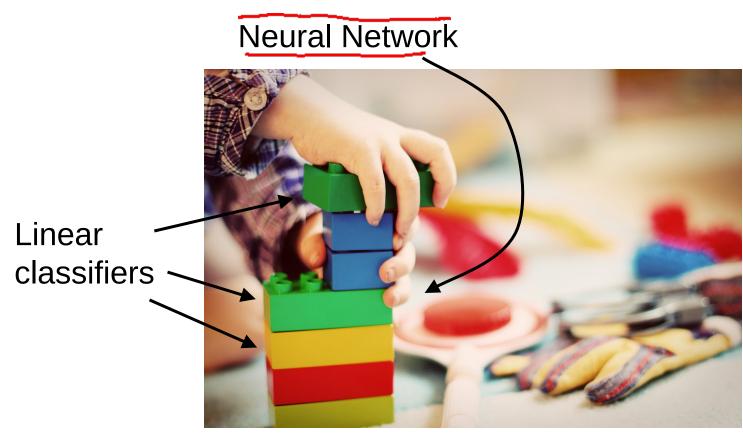
- Expensive

 - No Learning: most real work done during testing
 For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbour search
- Doesn't work well when large number of irrelevant
 - Distances overwhelmed by noisy features
- Curse of Dimensionality
 Distances become meaningless in high dimensions
 (See proof in next lecture)

Plan for Today

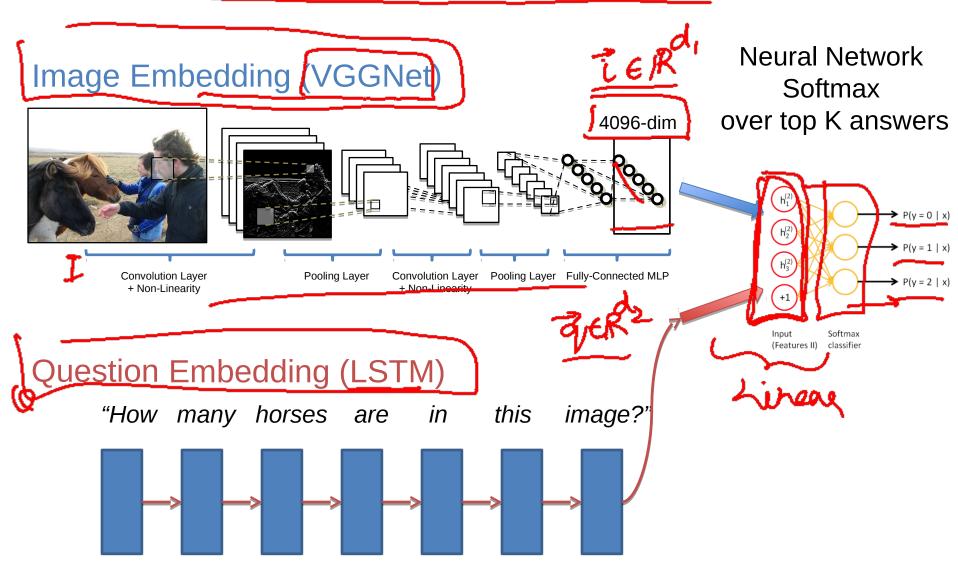
- Linear ClassifiersLinear scoring functions
- Loss Functions
- Multi-class hinge loss
- Softmax cross-entropy loss

Linear Classification

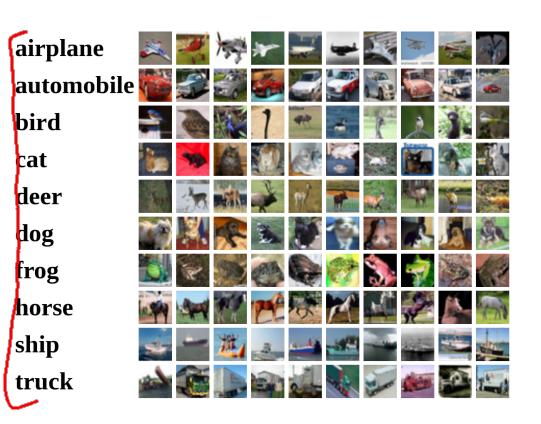


This image is CC0 1.0 public domain

Visual Question Answering



Recall CIFAR10

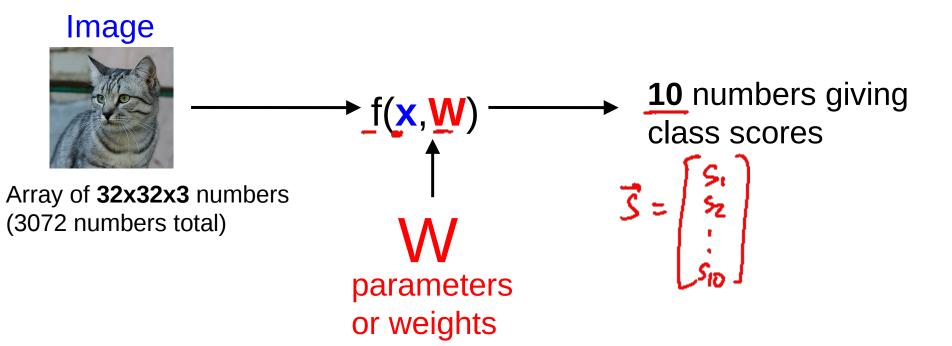


50,000 training images each image is **32x32x3**

10,000 test images.

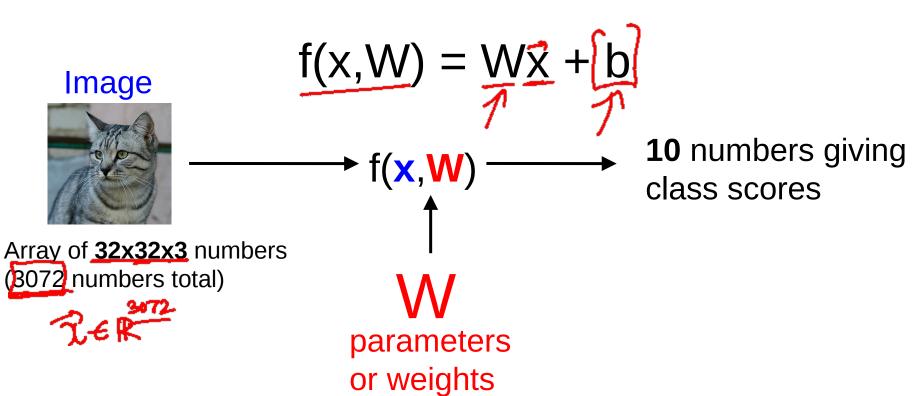
Parametric Approach

#={h: x-> y}

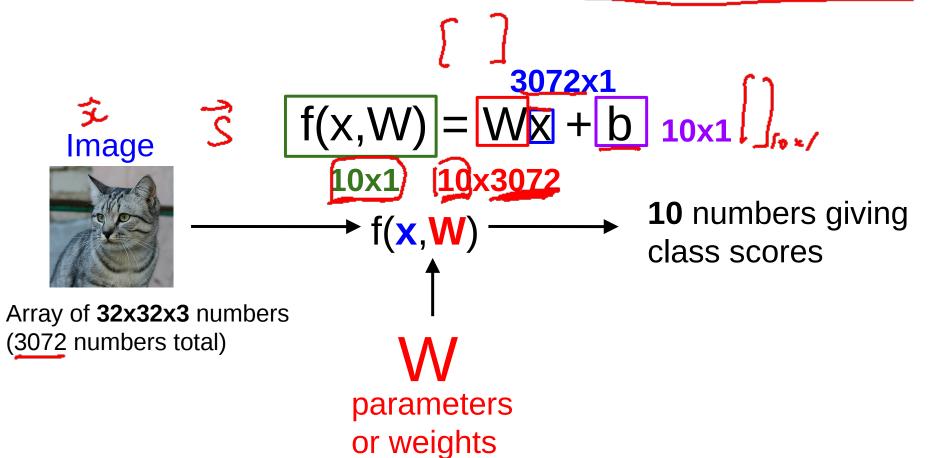


Parametric Approach: Linear Classifier

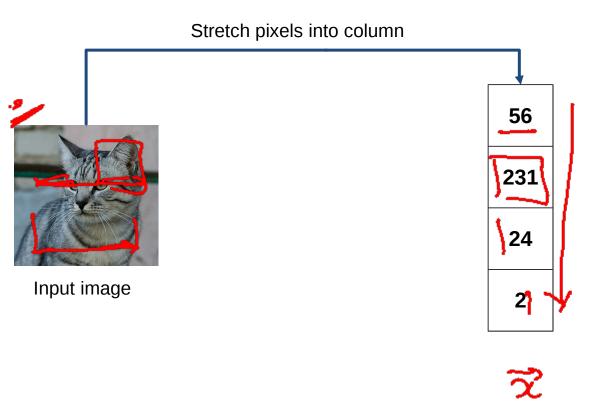
H=(1:x-y)



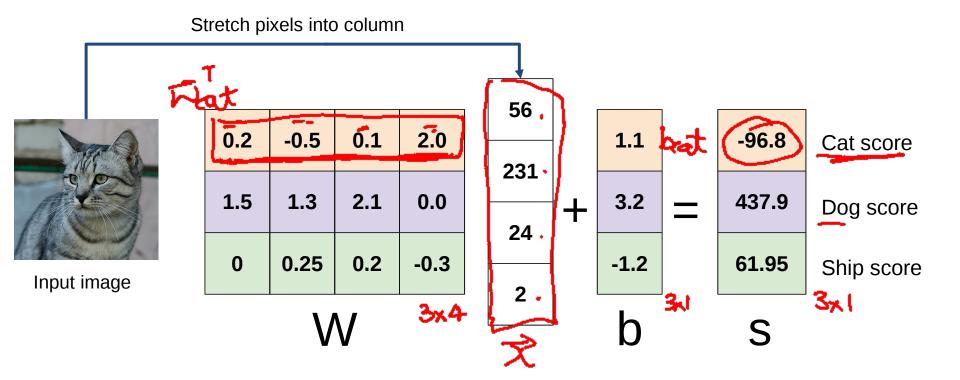
Parametric Approach: Linear Classifier



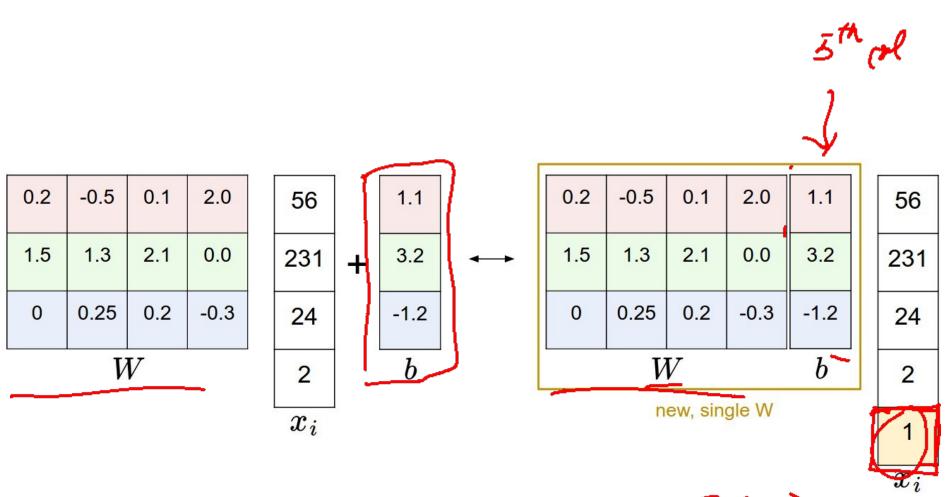
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

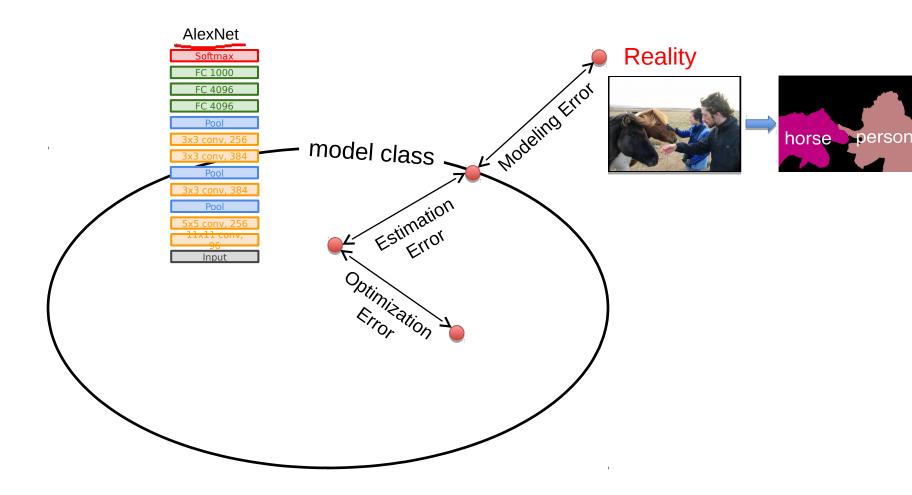


(West, 2) + brat = Scat

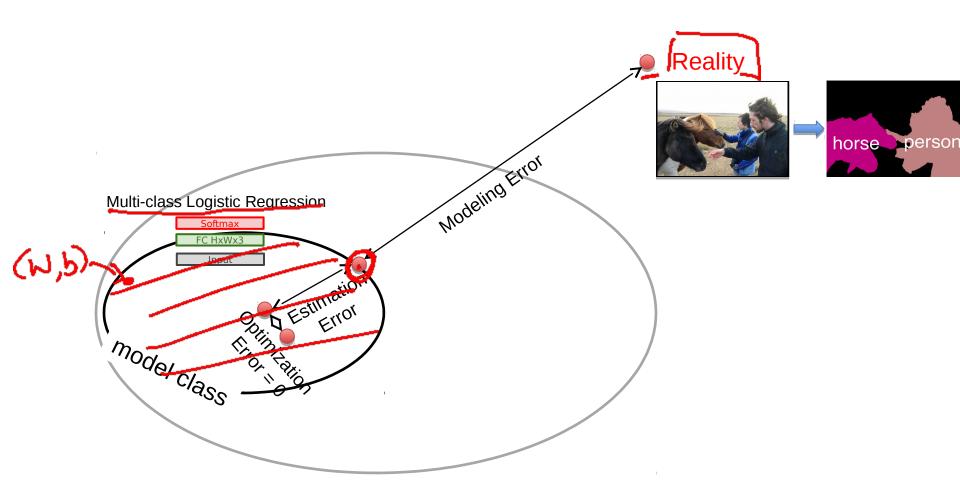


$$\mathcal{D}'\mathcal{R} + \mathcal{G} = \begin{bmatrix} \mathcal{D}' & \mathcal{G} \end{bmatrix} \begin{bmatrix} \mathcal{I} \\ \mathcal{I} \end{bmatrix}$$

Error Decomposition



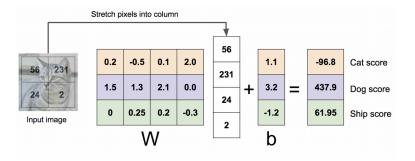
Error Decomposition



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Algebraic Viewpoint

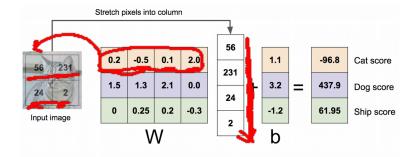
$$f(x,W) = Wx + b$$

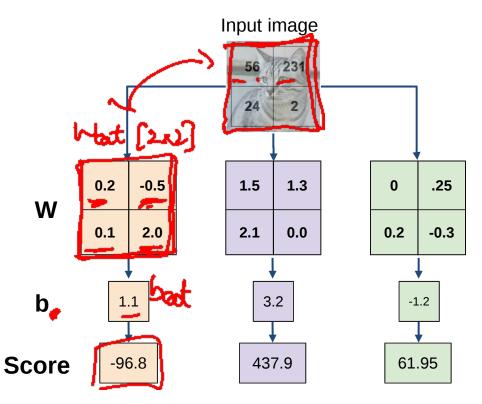


Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

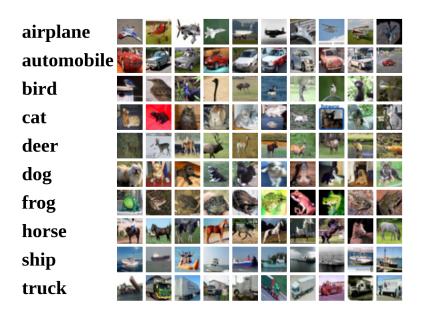
Algebraic Viewpoint

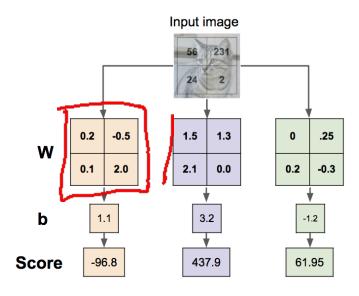
$$f(x,W) = Wx + b$$

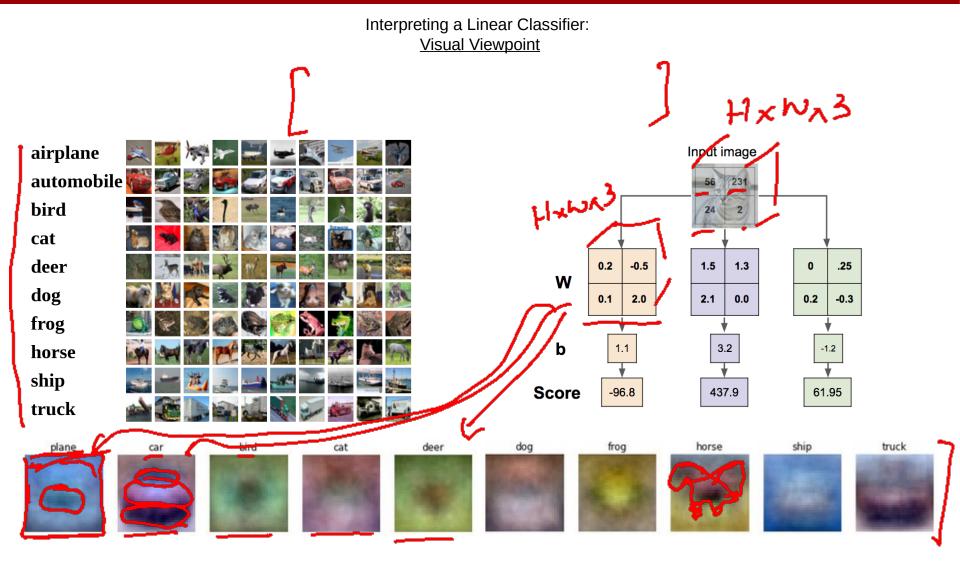




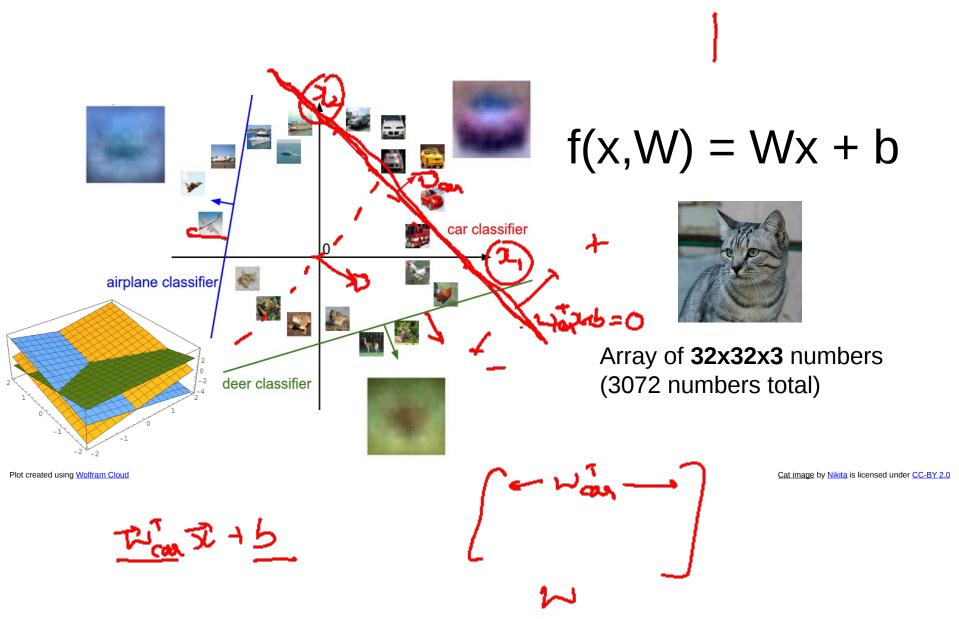
Interpreting a Linear Classifier







Interpreting a Linear Classifier: Geometric Viewpoint



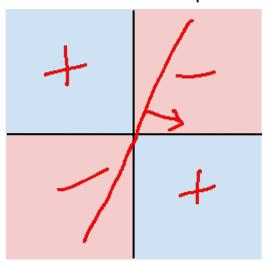
Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2

Second and fourth quadrants

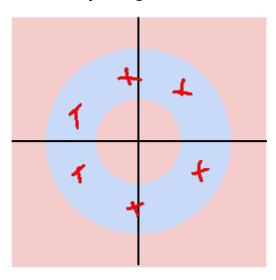


Class 1:

1 <= L2 norm <= 2

Class 2

Everything else

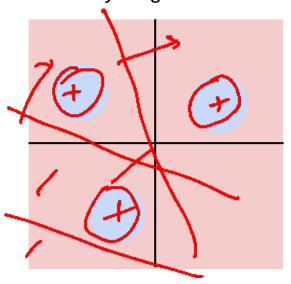


Class 1:

Three modes

Class 2

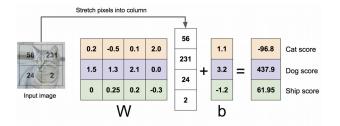
Everything else



Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx + b$$

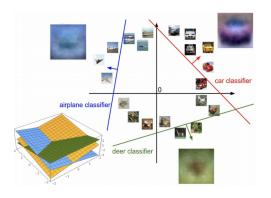


Visual Viewpoint

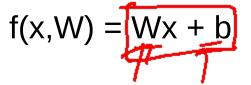
One template per class

Geometric Viewpoint

Hyperplanes cutting up space



So far: Defined a (linear) score function



_				
airplane	-3.45			
automobile	-8.87			
bird	0.09			
cat	2.9			
deer	4.48			
dog	8.02			
frog	3.78			
horse	1.06			
ship	-0.36			
truck	-0.72			
	•			

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

Example class scores for 3 images for some W:

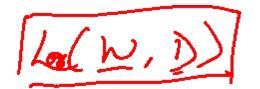
How can we tell whether this W is good or bad?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

So far: Defined a (linear) score function

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:



- 1. Define a **loss function**that quantifies our
 unhappiness with the
 scores across the training
 data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
 - f: X ➤ Y (the "true" mapping / reality)
- Data
 - $-(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)$
- Model / Hypothesis Class
 {h: X ▼ Y}

 - e.g. $y = h(x) = sign(w^Tx)$
- **Loss Function**
 - How good is a model wrt my data D?
- Learning = Search in hypothesis space
 - Find best h in model class.

min Loss max Reward

Loss Functions

	A
1	

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

cat car frog 3.2 5.1 -1.7 3. 1.3

4.9

2.0

2.2

2.5

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \underbrace{\frac{1}{N} \sum_{i} L_{i}(f(x_{i}, W), y_{i})}_{\mathbf{Z}}$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

$$L_i = \sum_{j \neq y_i} \left\{ \begin{array}{c} 0 \\ \hline s_j \\ \end{array} - s_{y_i} + 1 \right\}$$

 $\text{if } |s_{y_i}| \ge s_j + 1 \\
 \text{otherwise}$

Multiclass SVM loss:

Given an example (x_i, y_i) where $\,x_{i}\,$ is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2

car

5.1

frog

-1.7

$$L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1 \\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

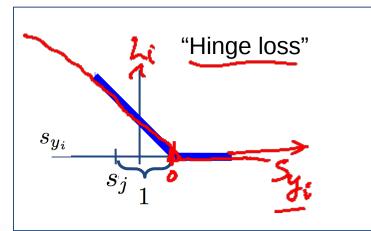
frog

-1.7

2.0

-3.1

Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

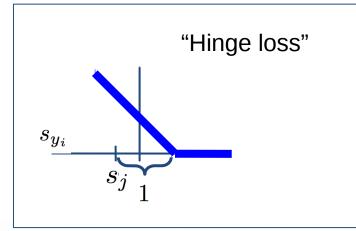
frog

-1.7

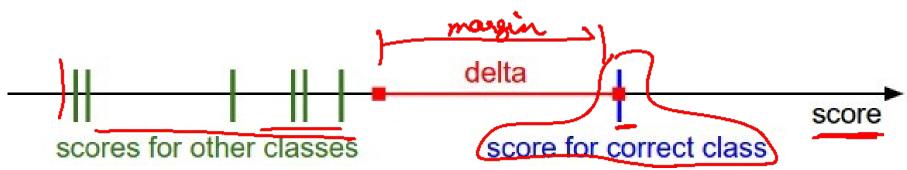
2.0

-3.1

Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

car

frog

Losses:

1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$\Rightarrow = \max(0, 5.1 - 3.2 + 1)$$

$$\Rightarrow +\max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

$$= 2.9$$

cat **3.2**

car 5.1

frog -1.7

Losses: 2.9

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+ \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

cat

3.2

1.3

car

5.1

4.9

frog

-1.7

2.0

Losses:

2.9

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

cat

3.2

1.3

2.2

car

5.1

-1.7

4.9

2.5

frog

Losses:

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where $\,x_{i}\,$ is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$
 $L = (2.9 + 0 + 12.9)/3$

cat

3.2

1.3±

2.2

car

5.1

4.9 = 2

2.5

frog

-1.7

ي 2.0 د

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car image scores change a bit?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0,s_j - s_{y_i} + 1)$$

Q2: what is the min/max possible loss?

cat car 2.0 frog

2.9 Losses:

1.3

2.2

2.5

-3.1

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: At initialization W is small so all $s \approx 0$. What is the loss?

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including $j = y_i$)

cat **3.2**

1.3

2.2

car

5.1 **4.9**

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i \equiv \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

$$egin{align} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \ \end{array}$$

E.g. Suppose that we found a W such that L = 0 Q7: Is this W unique?

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0.

Q7: Is this W unique?

No! 2W is also has L = 0!

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1) = \max(0, -6.2) + \max(0, -4.8) = 0 + 0 = 0$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Want to interpret raw classifier scores as **probabilities**

cat

car

frog

3.2

5.1

-1.7

Want to interpret raw classifier scores as **probabilities**

$$\vec{s} = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax function

cat **3.2**

car 5.1

frog -1.7

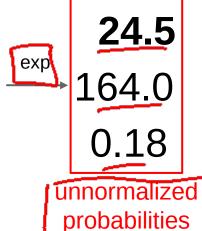
Want to interpret raw classifier scores as **probabilities**

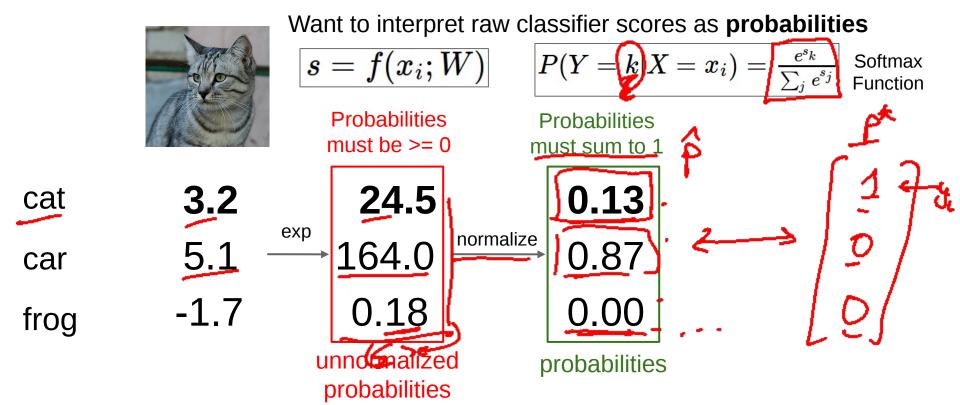
$$s=f(x_i;W)$$

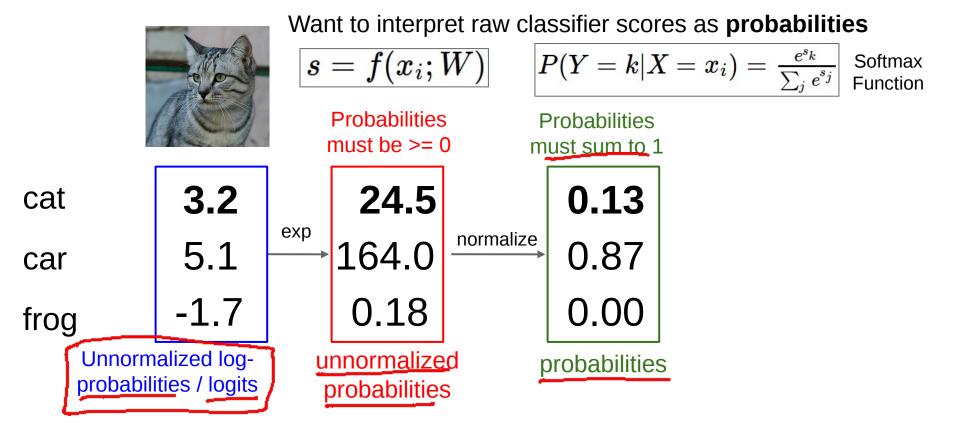
$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Probabilities must be $\geq = 0$

cat car frog







Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s = f(x_i; W)} oxed{P(Y = k|X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}}$$

3.2 cat

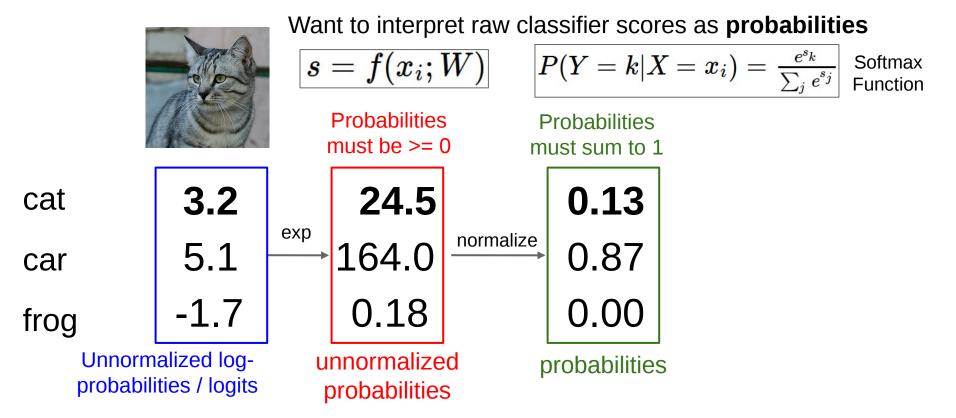
5.1 car

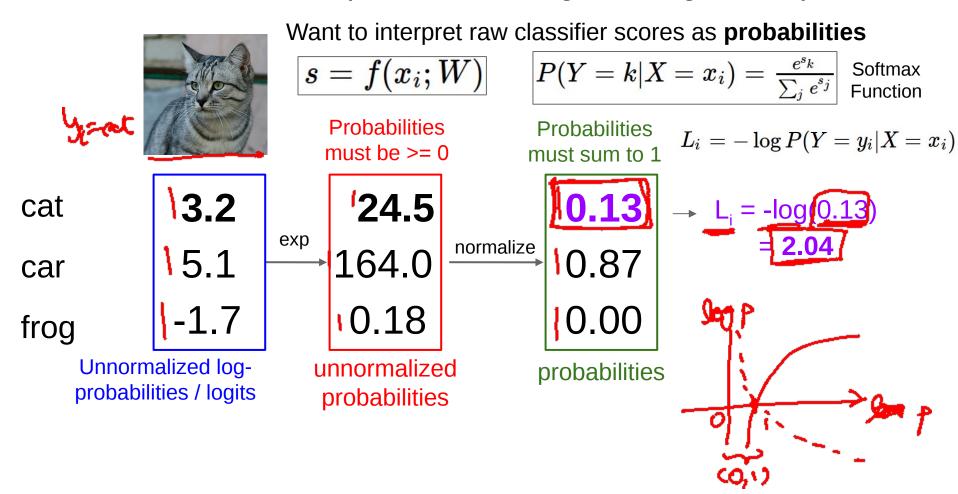
-1.7frog

$$L_i = -\log P(Y = y_i | X = x_i)$$
د

in summary:
$$L_i = -\log(rac{\sum_{j}^{sy_i}}{\sum_{j}^{s}})$$

Maximize log-prob of the correct class = Maximize the log likelihood = Minimize the negative log likelihood





Log-Likelihood / KL-Divergence / Cross-Entropy

$$\beta = \begin{cases} 0 \\ 1 \\ 4 \end{cases}$$

$$\beta = \begin{cases} P_{k}(Y=1|\vec{x}_{k}n) \\ P_{k}(Y=2|\vec{x}_{k}n) \\ P_{k}(Y=k|\vec{x}_{k}|n) - \frac{1}{2} \end{cases}$$

min
$$KL(p^*||p) = Sp(y) log p^*(y)$$

$$N = Sp(y) log p^*(y)$$

Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 68

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i;W)$$
 $P(Y = k|X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

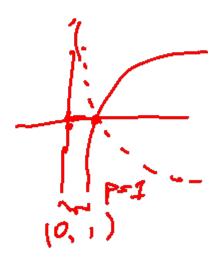
$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat 5.1 car -1.7frog

Q: What is the min/max possible loss L_i?



Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7frog

Q: What is the min/max possible loss L i? A: min 0, max infinity

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Wwo

cat

car

frog

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q2: At initialization all s will be approximately equal; what is the loss?

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

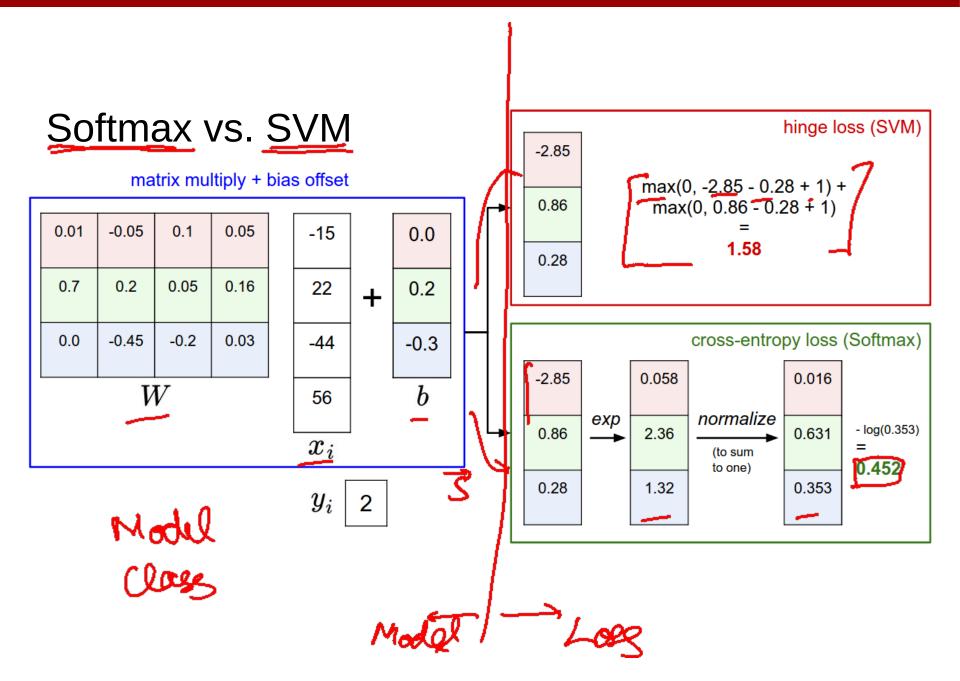
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

5.1 car

-1.7 frog

Q2: At initialization all s will be approximately equal; what is the loss? A: $\log(C)$, eg $\log(10) \approx 2.3$



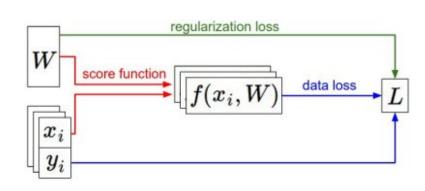
Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Recap

- We have some dataset of (x,y)
- We have a **score function**: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss



Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function**: $s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

